
A Compressed Breadth-First
Search for Satisfiability

DoRon B. Motter and Igor L. Markov
University of Michigan, Ann Arbor

Motivation
! SAT is a fundamental problem in CS thry & apps
! �Efficient� SAT solvers abound (GRASP, Chaff)
! Many small instances are still difficult to solve
! We are pursuing novel algorithms for SAT

facilitated by data structures with compression
! Zero-suppressed Binary Decision Diagrams (ZDDs)

! Existing algorithms can be implemented w ZDDs
! The DP procedure: Simon and Chatalic, IJCAI 2000
! DLL: Aloul, Mneimneh and Sakallah, DATE 2002

Outline
! Background

! Partial truth assignments
and implied clause classification

! Representing collections of subsets
with Zero-Suppressed BDDs (ZDDs)

! Cassatt: a simple example
! Cassatt: algorithm overview

! Outer loop: process one variable at a time
! Processing a given variable
! Efficiency improvements using ZDDs

! Empirical results and conclusions

Partial Truth Assignments
! SAT instance: {V, C}

! V: set of variables {a, b, � n}
! C: set of clauses

! Each clause is a set of literals over V

! Partial truth assignment to some V ⊆ V
! If it makes all literals in some clause false

! call it invalid

! Otherwise, call the assignment valid

Clause Classification
! With respect to a valid truth assignment,

no clauses evaluate to false
⇒ Every clause must be either

! Unassigned
! No literals in this clause are assigned

! Satisfied
! At least one literal in this clause is true

! Open
! At least one literal assigned, and all such literals are false

! {Open clauses} ⇔ partial truth assignment
⇒ Store sets of open clauses instead of assgnmts

Binary Decision Diagrams
! BDD: A directed acyclic graph (DAG)

! Unique source
! Two sinks: the 0 and 1 nodes

! Each node has
! Unique label
! Level number
! Two children at lower levels

! T-Child and E-Child

! BDDs can represent Boolean functions
! Evaluation is performed by a single DAG traversal

0 1

A

1

i

n

∞

Binary Decision Diagrams
! BDD: A directed acyclic graph (DAG)

! Unique source
! Two sinks: the 0 and 1 nodes

! Each node has
! Unique label
! Level number
! Two children at lower levels

! T-Child and E-Child

! BDDs can represent Boolean functions
! Evaluation is performed by a single DAG traversal

0 1

A

1

i

n

∞

Binary Decision Diagrams
! BDD: A directed acyclic graph (DAG)

! Unique source
! Two sinks: the 0 and 1 nodes

! Each node has
! Unique label
! Level number
! Two children at lower levels

! T-Child and E-Child

! BDDs can represent Boolean functions
! Evaluation is performed by a single DAG traversal

0 1

A

1

i

n

∞

Binary Decision Diagrams
! BDD: A directed acyclic graph (DAG)

! Unique source
! Two sinks: the 0 and 1 nodes

! Each node has
! Unique label
! Level number
! Two children at lower levels

! T-Child and E-Child

! BDDs can represent Boolean functions
! Evaluation is performed by a single DAG traversal

0 1

A

1

i

n

∞

Binary Decision Diagrams
! BDD: A directed acyclic graph (DAG)

! Unique source
! Two sinks: the 0 and 1 nodes

! Each node has
! Unique label
! Level number
! Two children at lower levels

! T-Child and E-Child

! BDDs can represent Boolean functions
! Evaluation is performed by a single DAG traversal

0 1

A

1

i

n

∞

ZDD: Example
! Collection of subsets:

! {1, 3}
! {2, 3}
! {3}

A

B

C

0 1

1

2

3

∞

ZDD: Example
! Collection of subsets:

! {1, 3}
! {2, 3}
! {3}

A

B

C

0 1

1

2

3

∞

ZDD: Example
! Collection of subsets:

! {1, 3}
! {2, 3}
! {3}

A

B

C

0 1

1

2

3

∞

ZDD: Example
! Collection of subsets:

! {1, 3}
! {2, 3}
! {3}

A

B

C

0 1

1

2

3

∞

Zero-Supressed BDDs (ZDDs)
! Zero-supression rule

! Eliminate nodes whose T-Child is 0
! No node with a given index ⇒

assume a node whose T-child is 0
! ZDDs can store a collection of subsets

! Encoded by the collection�s characteristic function
! 0 is the empty collection ∅
! 1 is the one-collection of the empty set {∅}

! Zero-suppression rule enables compact
representations of sparse or regular collections

Cassatt: Example
(b + c + ~d)(a+b)(~a + b + d)(a + ~b + ~c)

! a ← 1
! activates clause 3 (satisfies 2, 4)

! a ← 0
! activates clauses 2, 4 (sat 3)

! �Cut� clauses
! 2, 3, 4

0 1 ∞

2

3

4

Cassatt: Example
(b + c + ~d)(a+b)(~a + b + d)(a + ~b + ~c)

! b ← 1
! satisfies clauses 2, 3 (and 1)

! b ← 0
! activates 1, satisfies 4, violates 2

! �Cut� clauses
! 1, 3, 4

1 ∞

Cassatt: Example
(b + c + ~d)(a+b)(~a + b + d)(a + ~b + ~c)

! c ← 1
! violates 4, satisfies 1

! c ← 0
! satisfies 4

! �Cut� clauses
! 1, 3

1 ∞

Cassatt: Example
(b + c + ~d)(a+b)(~a + b + d)(a + ~b + ~c)

! d ← 1
! violates 1, satisfies 3

! d ← 0
! violates 3, satisfies 1

! �Cut� clauses
! ∅

1 ∞

Cassatt: Algorithm Overview
! Maintain collection of subsets of open clauses

! Analogous to maintaining all
�promising� partial solutions of increasing depth

! Enough information for BFS on the solution tree
! This collection of sets is called the front

! Stored and manipulated in compressed form (ZDD)
! Assumes a clause ordering (global indices)

! Clause indices correspond to node levels in the ZDD

! Algorithm: expand one variable at a time
! When all variables are processed two cases possible

! The front is ∅ ⇒ Unsatisfiable
! The front is {∅} ⇒ Satisfiable

Cassatt: Algorithm Overview
Front ← 1 # assign {∅} to front
foreach v ∈ Vars

Front2 ← Front
Update(Front, v ← 1)
Update(Front2, v ← 0)
Front ← Front ∪s Front2

if Front == 0 return Unsatisfiable
if Front == 1 return Satisfiable

Processing a Single Variable
! Given:

! Subset S of open clauses
! Assignment of 0 or 1 to a single variable x

! Do they imply that some clauses must be
violated?
! I.e., does it correspond to a partial valid truth

assignment ? (otherwise, can prune it)
! What subset S� of clauses corresponds

to the new truth assignment?
! In our BFS algorithm, we consider both 0 and 1

Detecting Violated Clauses
! Variables are processed in a static order

⇒ Within each clause,
some literal must be processed last

⇒ The end literal of a clause is known beforehand

! For all literals in clause C to be false,
it is necessary and sufficient that
! Clause C must be open
! The end literal of C must be assigned false

New Set of Open Clauses
! Given:

! Subset S of open clauses
! Assignment of 0 or 1 to a single variable x
! The combination of the two is valid

! What subset S� corresponds to the new
truth assignment?

New Set of Open Clauses
! Given:

! Subset S of open clauses
! Assignment of 0 or 1 to a single variable x

! In the table below, select
! Row: current status of a clause C ∈ S
! Column: location of literal l in C (l corresp. to x)

!

Gaining Efficiency Using ZDDs
! Use ZDD to store the collection

of all subsets of open clauses (front)
! Achieves data compression (in some cases, with

exponential compression ratio)
! Improves memory requirements of BFS

! Use ZDD algorithms to consider
all subsets in the ZDD at the same time
! Implicit (symbolic) manipulation of compressed data

Gaining Efficiency Using ZDDs
! Given:

! Assignment of 0 or 1 to a single variable x
! Consider its effect on all clauses

! It violates some clauses
! x corresponds to the end literal l

of some clause C, and l is assigned false
! It satisfies some clauses

! x appears in C, and its literal l is assigned true
! It activates some clauses

! x corresponds to the beginning literal l for C,
and l is assigned false

Newly Violated Clauses
! Given:

! Subset U of violated clauses

! Each set S in the ZDD containing u ∈ U must
be removed
! This branch cannot yield satisfiability

! Efficient implementation in terms of ZDD ops
! Form the ZDD containing all possible subsets of Ū:

the set-complement to U
! Intersect this with the original front

Newly Violated Clauses
! Build the ZDD containing all

subsets of Ū
! For each element in Ū

! add a don�t care node at that level

! Size is O(Ū)
! Exponential compression in this

simple case

A

B

N

1

i1

i2

i| Ū |

Newly Satisfied Clauses
! Given:

! Set F of newly-satisfied clauses
! If f ∈ F is in some subset of the front

! It has now been satisfied
! Any occurrence of f in the ZDD

must be removed
! Implementation

! The ZDD Existential Abstraction operation

Newly Activated Clauses
! Given:

! Set A of activated clauses

! Each a ∈ A must be added to every set
in the front

! Implementation:
! The ZDD Cartesian Product operation

Pseudocode
Front ← 1 # assign {∅} to front
foreach v ∈ Vars

Front2 ← Front
Update(Front, v ← 1)
Update(Front2, v ← 0)
Front ← Front ∪s Front2

if Front == 0 return Unsatisfiable
if Front == 1 return Satisfiable

Pseudocode
Update(ZDD Z, v ← value)

Find the set U of violated clauses

Z ← Z ∩ 2~U

Find the set F of satisfied clauses
Z ← ExistentialAbstract(Z, F)

Find the set A of activated clauses
Z ← CartesianProduct(Z, A)

Results

Results

Summary of Results
! Proposed a novel algorithm for SAT

! BFS with compression
! Efficiency is due to exponential compression via

ZDDs
! Implementation and empirical results

! Solves pigeon-hole instances in poly-time
! Outperforms Zres of Simon and Chatalic

! Beats best DLL solvers on Urquhart instances
! not better than Zres

! Reasonable but not stellar performance on
DIMACS benchmarks

Future Work
! Improved efficiency via Boolean

Constraint Propagation
! BCP is a part of all leading-edge SAT solvers

! Exploring the effects of clause and
variable ordering on memory/runtime

! Implications of Cassatt in terms of proof
systems

Questions?

