A Compressed Breadth-First Search for Satisfiability

DoRon B. Motter and Igor L. Markov University of Michigan, Ann Arbor

Motivation

- SAT is a fundamental problem in CS thry & apps
- "Efficient" SAT solvers abound (GRASP, Chaff)
- Many small instances are still difficult to solve
- We are pursuing novel algorithms for SAT facilitated by <u>data structures with compression</u>
 - Zero-suppressed Binary Decision Diagrams (ZDDs)
- Existing algorithms can be implemented w ZDDs
 - The DP procedure: Simon and Chatalic, *IJCAI 2000*
 - DLL: Aloul, Mneimneh and Sakallah, DATE 2002

Outline

- Background
 - Partial truth assignments and implied clause classification
 - Representing collections of subsets with Zero-Suppressed BDDs (ZDDs)
- Cassatt: a simple example
- Cassatt: algorithm overview
 - Outer loop: process one variable at a time
 - Processing a given variable
 - Efficiency improvements using ZDDs
- Empirical results and conclusions

Partial Truth Assignments

- SAT instance: {V, C}
 - V: set of variables {a, b, ... n}
 - C: set of clauses
 - Each clause is a set of literals over V
- Partial truth assignment to some V ⊆ V
 - If it makes all literals in some clause false
 - call it invalid
 - Otherwise, call the assignment valid

Clause Classification

- With respect to a valid truth assignment, no clauses evaluate to false
- ⇒ Every clause must be either
 - Unassigned
 - No literals in this clause are assigned
 - Satisfied
 - At least one literal in this clause is true
 - Open
 - At least one literal assigned, and all such literals are false
- {Open clauses} ⇔ partial truth assignment
- ⇒ Store sets of open clauses instead of assgnmts

- BDD: A directed acyclic graph (DAG)
 - Unique source
 - Two sinks: the 0 and 1 nodes
- Each node has
 - Unique label
 - Level number
 - Two children at lower levels
 - T-Child and E-Child
- BDDs can represent Boolean functions
 - Evaluation is performed by a single DAG traversal

- BDD: A directed acyclic graph (DAG)
 - Unique source
 - Two sinks: the 0 and 1 nodes
- Each node has
 - Unique label
 - Level number
 - Two children at lower levels
 - T-Child and E-Child
- BDDs can represent Boolean functions
 - Evaluation is performed by a single DAG traversal

- BDD: A directed acyclic graph (DAG)
 - Unique source
 - Two sinks: the 0 and 1 nodes
- Each node has
 - Unique label
 - Level number
 - Two children at lower levels
 - T-Child and E-Child
- BDDs can represent Boolean functions
 - Evaluation is performed by a single DAG traversal

Binary Decision Diagrams

- BDD: A directed acyclic graph (DAG)
 - Unique source
 - Two sinks: the O and 1 nodes
- Each node has
 - Unique label
 - Level number
 - Two children at lower levels
 - T-Child and E-Child
- BDDs can represent Boolean functions
 - Evaluation is performed by a single DAG traversal

Binary Decision Diagrams

- BDD: A directed acyclic graph (DAG)
 - Unique source
 - Two sinks: the O and 1 nodes
- Each node has
 - Unique label
 - Level number
 - Two children at lower levels
 - T-Child and E-Child
- BDDs can represent Boolean functions
 - Evaluation is performed by a single DAG traversal

- Collection of subsets:
 - **1**, 3
 - **2**, 3
 - **4** {3}

- Collection of subsets:
 - **1**, 3
 - **2**, 3
 - **4** {3}

- Collection of subsets:
 - **1**, 3
 - **2**, 3
 - **4** {3}

- Collection of subsets:
 - **1**, 3
 - **2**, 3
 - **4** {3}

Zero-Supressed BDDs (ZDDs)

- Zero-supression rule
 - Eliminate nodes whose T-Child is O
 - No node with a given index ⇒ assume a node whose T-child is 0
- ZDDs can store a collection of subsets
 - Encoded by the collection's characteristic function
 - O is the empty collection Ø
 - 1 is the one-collection of the empty set {∅}
- Zero-suppression rule enables compact representations of sparse or regular collections

Cassatt: Example

 $(b + c + \sim d)(a+b)(\sim a + b + d)(a + \sim b + \sim c)$

- a ← 1
 - activates clause 3 (satisfies 2, 4)
- a ← 0
 - activates clauses 2, 4 (sat 3)
- "Cut" clauses
 - **2**, 3, 4

Cassatt: Example

$$(b + c + \sim d)(a+b)(\sim a + b + d)(a + \sim b + \sim c)$$

- b ← 1
 - satisfies clauses 2, 3 (and 1)
- b ← 0
 - activates 1, satisfies 4, violates 2
- "Cut" clauses
 - **1**, 3, 4

Cassatt: Example

$$(b + c + \sim d)(a+b)(\sim a + b + d)(a + \sim b + \sim c)$$

- c ← 1
 - violates 4, satisfies 1
- c ← 0
 - satisfies 4
- "Cut" clauses
 - **1**, 3

Cassatt: Example

$$(b + c + \sim d)(a+b)(\sim a + b + d)(a + \sim b + \sim c)$$

- d ← 1
 - violates 1, satisfies 3
- $d \leftarrow 0$
 - violates 3, satisfies 1
- "Cut" clauses
 - Ø

Cassatt: Algorithm Overview

- Maintain collection of subsets of open clauses
 - Analogous to maintaining all "promising" partial solutions of increasing depth
 - Enough information for BFS on the solution tree
- This collection of sets is called the front
 - Stored and manipulated in compressed form (ZDD)
 - Assumes a clause ordering (global indices)
 - Clause indices correspond to node levels in the ZDD
- Algorithm: expand one variable at a time
 - When all variables are processed two cases possible
 - The front is $\varnothing \Rightarrow$ Unsatisfiable
 - The front is $\{\emptyset\} \Rightarrow$ Satisfiable

Cassatt: Algorithm Overview

```
Front \leftarrow 1  # assign \{\emptyset\} to front

foreach v \in Vars

Front2 \leftarrow Front

Update(Front, v \leftarrow 1)

Update(Front2, v \leftarrow 0)

Front \leftarrow Front \cup_s Front2

if Front == 0 return Unsatisfiable

if Front == 1 return Satisfiable
```


Processing a Single Variable

- Given:
 - Subset S of open clauses
 - Assignment of 0 or 1 to a single variable x
- Do they imply that some clauses must be violated?
 - I.e., does it correspond to a partial valid truth assignment? (otherwise, can prune it)
- What subset S' of clauses corresponds to the new truth assignment?
- In our BFS algorithm, we consider both 0 and 1

Detecting Violated Clauses

- Variables are processed in a static order
 - Within each clause, some literal must be processed last
 - The end literal of a clause is known beforehand
- For all literals in clause C to be false, it is necessary and sufficient that
 - Clause C must be open
 - The end literal of C must be assigned false

New Set of Open Clauses

- Given:
 - Subset S of open clauses
 - Assignment of 0 or 1 to a single variable x
 - The combination of the two is valid
- What subset S' corresponds to the new truth assignment?

New Set of Open Clauses

- Given:
 - Subset S of open clauses
 - Assignment of 0 or 1 to a single variable x
- In the table below, select
 - Row: current status of a clause C ∈ S
 - Column: location of literal / in C (/ corresp. to x)

	Beginning	Middle	End	None
Satisfied	Impossible	No Action	No Action	No Action
Open	Impossible	$\mathbf{if}(t(l) = 0)$	No Action	$S' \leftarrow S' \cup C$
		$S' \leftarrow S' \cup C$		
Unassigned	$\mathbf{if}(t(l) = 0)$	Impossible	Impossible	No Action
	$S' \leftarrow S' \cup C$			

Gaining Efficiency Using ZDDs

- Use ZDD to store the collection of all subsets of open clauses (front)
 - Achieves data compression (in some cases, with exponential compression ratio)
 - Improves memory requirements of BFS
- Use ZDD algorithms to consider all subsets in the ZDD at the same time
 - Implicit (symbolic) manipulation of compressed data

Gaining Efficiency Using ZDDs

- Given:
 - Assignment of 0 or 1 to a single variable x
- Consider its effect on all clauses
 - It violates some clauses
 - x corresponds to the end literal / of some clause C, and / is assigned false
 - It satisfies some clauses
 - x appears in C, and its literal / is assigned true
 - It activates some clauses
 - x corresponds to the beginning literal / for C, and / is assigned false

Newly Violated Clauses

- Given:
 - Subset U of violated clauses
- Each set S in the ZDD containing u ∈ U must be removed
 - This branch cannot yield satisfiability
- Efficient implementation in terms of ZDD ops
 - Form the ZDD containing all possible subsets of U: the set-complement to U
 - Intersect this with the original front

Newly Violated Clauses

- Build the ZDD containing all subsets of Ū
 - For each element in Ū
 - add a don't care node at that level
 - Size is O(Ū)
 - Exponential compression in this simple case

Newly Satisfied Clauses

- Given:
 - Set F of newly-satisfied clauses
- If $f \in F$ is in some subset of the front
 - It has now been satisfied
 - Any occurrence of f in the ZDD must be removed
- Implementation
 - The ZDD Existential Abstraction operation

Newly Activated Clauses

- Given:
 - Set A of activated clauses
- Each a ∈ A must be added to every set in the front
- Implementation:
 - The ZDD Cartesian Product operation

Pseudocode

```
Front \leftarrow 1  # assign \{\emptyset\} to front foreach v \in Vars

Front2 \leftarrow Front

Update(Front, v \leftarrow 1)

Update(Front2, v \leftarrow 0)

Front \leftarrow Front \cup_s Front2

if Front == 0 return Unsatisfiable

if Front == 1 return Satisfiable
```

Pseudocode

Update(ZDD Z, $v \leftarrow value$)

Find the set U of violated clauses

$$z \leftarrow z \cap \mathbf{2}^{\sim U}$$

Find the set F of satisfied clauses

 $Z \leftarrow ExistentialAbstract(Z, F)$

Find the set A of activated clauses

 $Z \leftarrow CartesianProduct(Z, A)$

Results

Results

Summary of Results

- Proposed a novel algorithm for SAT
 - BFS with compression
 - Efficiency is due to exponential compression via ZDDs
- Implementation and empirical results
 - Solves pigeon-hole instances in poly-time
 - Outperforms Zres of Simon and Chatalic
 - Beats best DLL solvers on Urquhart instances
 - not better than Zres
 - Reasonable but not stellar performance on DIMACS benchmarks

Future Work

- Improved efficiency via Boolean Constraint Propagation
 - BCP is a part of all leading-edge SAT solvers
- Exploring the effects of clause and variable ordering on memory/runtime
- Implications of Cassatt in terms of proof systems

Questions?