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A Compressed Sensing Parameter Extraction

Platform for Radar Pulse Signal Acquisition
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Michael Grant, Justin Romberg, Azita Emami-Neyestanak, and Emmanuel Candès

Abstract—In this paper we present a complete (hard-
ware/software) sub-Nyquist rate (×13) wideband signal acqui-
sition chain capable of acquiring radar pulse parameters in an
instantaneous bandwidth spanning 100 MHz–2.5 GHz with the
equivalent of 8 ENOB digitizing performance. The approach
is based on the alternative sensing-paradigm of Compressed-
Sensing (CS). The hardware platform features a fully-integrated
CS receiver architecture named the random-modulation pre-
integrator (RMPI) fabricated in Northrop Grumman’s 450 nm
InP HBT bipolar technology. The software back-end consists
of a novel CS parameter recovery algorithm which extracts
information about the signal without performing full time-
domain signal reconstruction. This approach significantly re-
duces the computational overhead involved in retrieving desired
information which demonstrates an avenue toward employing
CS techniques in power-constrained real-time applications. The
developed techniques are validated on CS samples physically
measured by the fabricated RMPI and measurement results are
presented. The parameter estimation algorithms are described
in detail and a complete description of the physical hardware
is given.

Index Terms—Compressed sensing, Indium-Phosphide, Pa-
rameter Estimation, Random-Modulation Pre-Integration

I. INTRODUCTION

A principal goal in the design of modern electronic systems

is to acquire large amounts of information quickly and with

little expenditure of resources. In the wireless technology

sector, the goal of maximizing information throughput is

illustrated by the strong interest in RF sensing and spectral

applications that require instantaneous bandwidths of many

GHz. Such systems have applications ranging from scientific

instrumentation to electronic intelligence. Although some
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solutions already exist, their large size, weight, and power

consumption make more efficient solutions desirable.

At present, realizing high bandwidth systems poses two

primary challenges. The first challenge comes from the

amount of power required to operate back-end ADCs at the

necessary digitization rate. This issue is so significant that

the remaining elements of the signal chain (RF front-end,

DSP core, etc.) are often chosen based upon an ADC that is

selected to be compatible with the available power budget [1].

The second challenge comes from need to store, compress,

and post-process the large volumes of data produced by such

systems. For example, a system that acquires samples at a

rate of 1 Gsps with 10 bits of resolution will fill 1 Gb of

memory in less than 1 s. In light of the ever growing demand

to capture higher bandwidths, it would seem that a solution

at the fundamental system level is needed to address these

challenges.

Some promise for addressing these challenges comes from

the theory of compressed sensing (CS) [2]–[6]. CS has

recently emerged as an alternative paradigm to the Shannon-

Nyquist sampling theorem, which at present is used implicitly

in the design of virtually all signal acquisition systems. In

short, the CS theory states that signals with high overall

bandwidth but comparatively low information level can be

acquired very efficiently using randomized measurement pro-

tocols. The requisite sampling rate is merely proportional to

the information level, and thus CS provides a framework for

sub-Nyquist rate signal acquisition. As we discuss further in

Sec. II, aliasing is avoided because of the random nature of

the measurement protocol.

The emergence of the CS theory is inspiring a fundamen-

tal re-conception of many physical signal acquisition and

processing platforms. The beginning of this renaissance has

already seen the re-design of cameras [7], medical imaging

devices [8], and RF transceivers [9]–[11]. However, the bene-

fits of CS are not without their costs. In particular, the task of

reconstructing Nyquist-rate samples from CS measurements

requires solving an inverse problem that cannot be addressed

with simple linear methods. Rather, a variety of nonlinear

algorithms have been proposed (see, e.g., [12]–[14]). While

the speed of these methods continues to improve, their

computational cost can still be appreciably greater than many

conventional algorithms for directly processing Nyquist-rate

samples. This matter of computation, if not addressed, poten-

tially limits the wide-spread application of CS architectures
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in power constrained real-time applications.

In this paper we address these issues by presenting a

complete, novel signal acquisition platform (both hardware

and software) that is capable—in certain applications—of

estimating the desired signal parameters directly from CS

measurements [15]. In the spirit of compressive signal pro-

cessing [16], our approach takes the principal motivation of

CS one step further and aims to eliminate the overhead of first

reconstructing the Nyquist-rate signal samples before apply-

ing conventional DSP techniques for parameter extraction.

On the hardware side, we present a fully integrated

wideband CS receiver called the random-modulation pre-

integrator (RMPI) [9,10,12,17]. We fabricate this device with

Northrop Grumman’s 450 nm InP HBT bipolar process. On

the software side, we focus on signal environments consisting

of radar pulses and present a novel algorithm for extracting

radar pulse parameters—carrier frequency (CF), phase θ0,

amplitude A0, time-of-arrival (TOA), and time-of-departure

(TOD)—directly from CS measurements. (The exact signal

model is described in Sec. IV.)

Our complete system is capable of recovering radar

pulse parameters within an effective instantaneous bandwidth

(EIBW) spanning 100 MHz—2.5 GHz with a digitizing per-

formance of 8 ENOB. We validate the system by feeding the

fabricated RMPI with radar pulses and using the physically

digitized CS measurements to recover the parameters of

interest.

An outline of this paper is as follows: Sec. II provides

a brief background on CS and a description of the high-

level operation of the RMPI, Sec. III provides a complete

description of the hardware platform used to encode the CS

samples, Sec. IV provides details of the parameter estimation

algorithms, and Sec. V presents measurement results.

II. THE RMPI

A. Compressed Sensing

CS at its heart relies on two concepts: sparsity and

incoherence [5]. Sparsity captures the idea that many high-

dimensional signals can be represented using a relatively

small set of coefficients when expressed in a properly chosen

basis. Incoherence captures the idea of dissimilarity between

any two representations; two bases are said to be incoherent if

any signal having a sparse expansion in one of them must be

dense in the other. An example of an incoherent pair comes

from the classical time-frequency duality. A sparse signal

time—e.g., a Dirac-delta function—has a dense spectrum.

Similarly, a single tone is sparse in the Fourier domain but

dense in time.

The key observation underlying CS is that when a signal

is sparse in some basis, it can be acquired by taking a

small number of measurements that are incoherent with

its sparse basis [18]. Often this incoherence is achieved

voltage. The chip was designed for a full-scale input amplitude of 0.5V p
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Fig. 1: (a) Simplified block diagram of 4-channel RMPI. The analog-signal
path of each RD channel is identical, however the timing signals they receive
in operation are different. (b) Functional diagram of the mixer and integrator
circuits.

by incorporating randomness into the measurement process.

There are many possibilities for implementing incoherent

random measurements; a convenient and admissible choice

for hardware implementation is to correlate the input signal

(in our case, a time-windowed version of the input signal)

with a pseudo-random binary sequence (PRBS) [4]. We

refer the reader to [5] and references therein for additional

information about the mathematical theory of CS.

B. A Brief History and Description of the RMPI

Almost simultaneously with the introduction of CS [2],

a number of CS-based signal-acquisition architectures were

proposed. Some of the more well-known proposals include:

the Random Demodulator (RD) [17,19,20], the Random-

Modulation Pre-Integrator (RMPI) [9,10,21], the Non-

Uniform Sampler (NUS) [4,22], Random Convolution [23],

the Modulated Wideband Converter (MWC) [24], and many

others [25]—for a comprehensive overview see [12]. The

basic function that all of these systems implement is to cor-
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relate of the input signal x(t) with an incoherent, randomly

generated set of “basis” elements over a fixed time window.

The RMPI is one of the most direct physical implemen-

tations of the CS concept; it is composed of a parallel set

of RDs driven by a common input. (See Fig. 1a, which is

described more fully in Sec. III.) Each RD is driven by

a distinct PRBS p(t); it uses this PRBS to modulate the

incoming signal x(t), integrates the result over a time interval

of length Tint, and then digitizes the output at a rate fADC =
1/Tint ≪ fnyq. In our RMPI, Tint = 52 · Tnyq with fnyq =
1/Tnyq = 5 GHz. Thus fADC = 1/(52 · Tnyq) = 96.154 MHz;

the aggregate back-end sampling rate fs = 384.616 Msps,

which corresponds to undersampling the Nyquist rate by a

factor of 13. Aliasing is avoided in this measurement scheme

because (i) the modulation with the PRBS will spread the

spectrum of any tone (including high-frequency ones) across

the entire band so that one can effectively subsample, and

(ii) the input signal is again assumed to obey some model

(aside from merely being bandlimited).

Letting x denote a time-windowed vector of Nyquist-rate

samples of the input signal x(t), we can implicitly model

the RMPI measurement process as multiplication of x by a

matrix Φ having 13× fewer rows than columns. Each row of

this matrix corresponds to a portion of the PRBS sequence

used in a specific integration window from a specific channel.

As an example, if we consider a sample vector x of length

N = 1040, the matrix Φ will be block-diagonal, with each

block having 4 rows (representing the parallel operation of

the 4 channels) and Tint/TNyq = 52 columns (representing

an integration window of 52 Nyquist bins). The rows of

each block contain ±1 entries, and the overall matrix will

be composed of NTNyq/Tint = 20 blocks (one for each

integration window). Denoting the vector of measurements as

y, the RMPI mode of acquisition can be modeled as y = Φx
where Φ ∈ R

80×1040.

We point out that high-fidelity recovery/extraction of in-

formation from CS measurements requires precise knowledge

of the system transfer function Φ. Thus, practical deviations

from the block-diagonal ±1 model described above must be

taken into account. For the measurements presented in this

paper, we construct a model of our system’s Φ matrix by

feeding in sinusoidal tones and using the output measure-

ments to characterize the system’s impulse response.

III. HARDWARE IMPLEMENTATION DESCRIPTION

A. Architecture and Operation

The RMPI presented in this work was realized with the

proprietary Northrop Grumman (NG) 450 nm InP HBT

bipolar process [26]. The process features a 4-layer metal

stack with an fT and fmax > 300 GHz. Fig. 1a shows the

block diagram of the IC containing the input buffer driving

the common node of the four RD channels and the timing

generator. The timing generator is responsible for generating

the pseudo-random bit sequences (PRBS) and the clocking

waveforms to coordinate the track-and-hold (T/H) and inte-

gration operations. All analog and digital signal paths are

implemented differentially to improve common-mode noise

rejection and increase linearity of the system. The analog path

up to the integrator was designed for a 2.5 GHz bandwidth.

The ensuing integration reduces the bandwidth containing

significant energy content. The circuits following the inte-

grator are designed to meet the settling requirements of the

reduced bandwidth. A 5 GHz master clock reference (CLKin)

is used to toggle the PRBS generators and is chosen to be

the Nyquist-rate of the input bandwidth [12,17]. The T/H

operate at 1/52 the master clock frequency (= 96.154 MHz).

A switched-capacitor interleaving integrator [27] is used so

that one capacitor can be reset while the second integrates the

mixer output. Finally, an output buffer is designed to drive the

ADC with the correct swing and common-mode voltage. The

chip was designed for a full-scale input amplitude of 0.5 Vpp

differential and 1 Vpp differential output. In operation, the

RMPI circuit takes the analog input signal, buffers it, and

distributes the buffered signal to each of the 4 channels. In

each channel, the signal is multiplied by one of 4 orthogonal

PRBS—each of which is a 3276 bit long Gold code [28]. The

resulting product is integrated by one of two sets of inter-

leaved capacitors for exactly one frame (52 CLKin cycles).

At the end of the integration period the signal is sampled and

then held for 26 CLKin cycles to allow the external ADC

to digitize the signal for post-processing. Immediately after

the signal is sampled, the capacitor begins discharging and

the second capacitor begins integrating the next frame (see

Fig. 1b). The interleaved integration capacitors are used to

avoid missing frames due to the reset operation. Additionally,

the sampling instants for each channel are staggered to create

more diversity in the windowed integrations obtained.

B. Analog Signal Path

The input buffer is a differential pair with emitter degen-

eration and 50 Ω termination at each single-ended input. It

has a gain of 3 dB, a 2.5 GHz bandwidth, 70 dB SFDR,

and a full-scale differential input amplitude of 0.5 Vpp. The

random modulation is performed by a standard differential

Gilbert mixer with the PRBS generator driving the top pair

and the analog input driving the bottom differential pair.

Emitter degeneration is used on the bottom differential pair

to improve linearity. To reduce noise, the mixer was designed

to have about 20 dB gain to offset the attenuation from

the integrator. The output of the mixer is integrated using

interleaved switched capacitors as shown in Fig. 1b and Fig. 2

and has a 12.5 MHz pole frequency. Input and output select

switches are closed to route the mixer output current to the

integration capacitor as well as to read out the capacitors

with the T/H circuit. When the reset switch is on, the

integration capacitor voltage is reset to zero. At the end of

each integration cycle (one frame = 10.4 ns), the output of
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the integrator is sampled by the T/H and held for 5.2 ns. This

ensures that the external ADC has enough time to digitize

the held voltage.

The T/H was implemented using the switched emitter

follower topology with gain ≈ 1. To minimize the hold-

mode feed-through, small feed-forward capacitors were in-

serted [29]. The switched emitter follower was chosen in

favor over the more conventional diode bridge switch for

its smaller footprint and comparatively low parasitic capaci-

tance. The amplifier after the T/H has a gain of 2. In addition

to emitter degeneration, diode connected transistors are used

in the output load to cancel the input differential pair Vbe

modulation and improve linearity. The output driver was

designed to be DC-coupled to the external ADC and have

70 dB SFDR and a 1 Vpp swing. In order to save power,

200 Ω on-chip termination resistors were used on each side

to exploit the relatively long settling time.

Fig. 2: Simplified schematic of the interleaved switch capacitor integrator. 
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Fig. 2: Simplified schematic of interleaved switched capacitor integrator.
The diodes act as switches to configure capacitors for integration or reset it
based on the level of the control signal (SEL). When SEL is high, integrator
A is resetting and integrator B is integrating. When SEL+ is low, integrator
B is resetting and integrator A is integrating.

C. PRBS & Timing Generator

A master clock is applied to CLKin, from which all

required timing signals are generated. The input clock buffer

was biased with a relatively high power to reduce jitter. In

addition, it has 4 separate output emitter followers to mitigate

the deleterious effects of cross-talk on the clock jitter. Each

emitter follower provides a low jitter signal to re-clock the

PRBS input before it is mixed with the RF input in each

channel.

The PRBS signals are generated with two 6 bit PRBS gen-

erating linear-feedback shift-registers (LFSR(s)) [30]. One

PRBS generator (PN6A in Fig. 3) is programmed to cycle

every 52 CLKin cycles while the second (PN6B in Fig. 3)

is allowed to cycle through all 63 states. The 2 PRBS

generator outputs are combined to generate 4 orthogonal

52 × 63 = 3276 bit long Gold code sequences. PN6A is

also used to generate the T/H clocks (divide by 52) and

select signal (divide by 104) for the switched capacitor

integrator. Both PN generators also output a sync pulse used

to synchronize the system. The output pulse from PN6B is

re-clocked with the pulse from PN6A to produce a sync

pulse that is 52 CLKin cycles long once every 3276 cycles.

The synchronization pulse is essential to provide precise

knowledge of the chipping sequence used in each integration

window. This relative alignment information is crucial for

signal-recovery and parameter estimation.

CLKin and the RF input are located on opposite sides of

the chip to minimize coupling. Special attention was paid

to the routing of the PRBS, T/H clocks, and select signals

to minimize clock/data coupling among the four channels.

A simplified block diagram of the PRBS/timing generator is

shown in Fig. 3. The timing generator block was designed to

operate at speeds in excess of 5 GHz and consumes 2.8 W

when operated at the designed rate.

Fig. 3:   Simplified block diagram of PRBS/timing generator.  Shown are (4) quadrature clocks for the Fig. 3: Simplified block diagram of PRBS/timing generator. Shown are (4)
quadrature clocks for the S/H and (4) control signals for the interleaved
capacitors. Combinational logic is used to prevent the illegal start up
condition of the PN generators and to generate divide by 52 and divide
by 104 used as control signals in the S/H and in the interleaved integrators
respectively.

D. Performance Analysis

Simulation validation was done by performing transient-

based two-tone inter-modulation distortion simulations in the

Cadence design environment. Noise simulations were per-

formed using the periodic steady-state (PSS) mode of spectre.

The RMPI sampling system, including the off-chip ADCs

consumed 6.1 W of power. We point out that this system

was designed as a proof-of-concept and was not optimized

for power. Thus, caution should be used when comparing

the CS system in this work to conventional counterparts.

For example, the use of an InP process in this work leads

to power penalties compared to the CMOS RMPI (which

consumes ≈ 0.5 W) reported in [9,10], which is also similarly

unoptimized, due to the availability of static logic. A die

photo of the fabricated chip is shown in Fig. 4.
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.

Fig. 4: RMPI IC die photo. Die size is 4.0 mm ×4.4 mm.

IV. PULSE-DESCRIPTOR WORD (PDW) EXTRACTION

Having described the acquisition system, we now present

algorithms for detecting radar pulses and estimating their pa-

rameters, referred to as pulse-descriptor words (PDW), from

randomly modulated pre-integrated (RMPI) samples. The

detection process is based on familiar principles employed

by detectors that operate on Nyquist samples. Our algorithms

use a combination of template matching, energy thresholding,

and consistency estimation to determine the presence of

pulses. By using all three of these methods, we gain robust

detection at the cost of a number of tunable parameters that

must be set to appropriate levels depending on the application

and sensing equipment. The general procedure consists of

three steps: first, we estimate the carrier frequency and energy

of a potential pulse segment at various time shifts; second,

based on consistency in frequency estimates and large enough

pulse energies, we apply criteria to determine if a pulse is

present; finally, for detected pulses we use our parameter

estimation methods to refine our carrier frequency, amplitude,

phase, time-of-arrival, and time-of-departure estimates.

The remainder of the section elaborates on the procedure

and is arranged as follows. First, we describe our methods

of parametric estimation, focusing in particular on carrier

frequency estimation. After describing how we can reliably

estimate the carrier frequency of a signal from compressive

measurements, we then explain how we use such estima-

tions to form a detection algorithm that jointly uses energy

detection and consistency of our frequency measurements.

We then describe how we perform parametric estimation on

compressive samples while simultaneously removing a band

in which a known interfering signal is present. Finally, we

combine the detection algorithm we have formulated with

the cancellation technique to present an algorithm capable of

detecting multiple overlapping pulses.

A. General Parametric Estimation

Our general parameter estimation problem can be stated

as follows. We consider signals x0(t) drawn from one of a

collection of (low-dimensional) subspaces {Sα} indexed by

a parameter set α = (α1, α2, . . . , αK). Given the measure-

ments y = Φ[x0]+noise, we search for the set of parameters

corresponding to the subspace which contains a signal which

comes closest to explaining the measurements y. We solve

α̂ = argmin
α

(

min
x∈Sα

‖y − Φ[x]‖22

)

. (IV.1)

The inner optimization finds the signal in Sα that is most

consistent with the measurements for a fixed α; the outer

optimization compares these best fits for different α.

The inner optimization program, which is the classical

“closest point in a subspace” problem, has a well-known

closed form solution as it is easily formulated as a least-

squares problem.

Let uα,1(t), uα,2(t), . . . , uα,d(t) be a basis for the space

Sα, meaning that

x0(t) ∈ Sα

⇒ x0(t) = a1uα,1(t) + a2uα,2(t) + · · ·+ apuα,d(t),

for some unique a1, a2, . . . , ad ∈ R. If we define Vα to be the

M×d matrix containing the inner products between each pair

of RMPI test functions φm(t) and basis functions uα,i(t),

Vα =











〈φ1, uα,1〉 〈φ1, uα,2〉 · · · 〈φ1, uα,d〉
〈φ2, uα,1〉 〈φ2, uα,2〉 · · · 〈φ2, uα,d〉

...
... · · ·

...

〈φM , uα,1〉 〈φ1, uα,2〉 · · · 〈φM , uα,d〉











(IV.2)

then we can re-write (IV.1) as

α̂ = argmin
α

‖y − Vα(V
T
α Vα)

−1V T
α y‖22

= argmin
α

‖(I − Pα)y‖
2
2, (IV.3)

where Pα = Vα(V
T
α Vα)

−1V T
α is the orthogonal projector

onto the column space of Vα. It is worth mentioning that

when the measurement noise consists of independent and

identically distributed Gaussian random variables, the result

α̂ in (IV.3) is the maximum likelihood estimate (MLE). When

the noise is correlated, we may instead pose the optimization

in terms of a weighted least squares problem.

In Sec. IV-B and Sec. IV-C below, we will discuss the

particular cases of frequency estimation for an unknown tone,

and time-of-arrival estimation for a square pulse modulated

to a known frequency. In both of these cases, we are trying

to estimate one parameter and the underlying subspaces Sα

have dimension d = 2. Moreover, the functional ‖(I−Pα)y‖
2
2
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can be efficiently computed over a fine grid of values for α
using the Fast Fourier Transform (FFT).

When there are multiple parameters, performing the joint

minimization over α = (α1, α2, . . .) can be computationally

prohibitive. In Sec. IV-D, we present a heuristic algorithm

for estimating the key parameters of a Doppler pulse (carrier

frequency, time-of-arrival, and pulse length) that operates by

looking for consistent frequency estimates over consecutive

windows of time. The frequency and time-of-arrival estima-

tors play a central role in this algorithm.

In Sec. IV-F, we show how the algorithm can be modified

to accommodate overlapping pulses and strong narrowband

interferers.

B. Carrier Frequency, Amplitude, and Phase

In this section, we consider the task of estimating the

frequency of a pure (Doppler) tone from the observed RMPI

measurements. The algorithms developed here play a central

role in the detection process as well, as the frequency esti-

mation procedure is fundamental to determining the presence

of pulses. We also describe how to estimate the amplitude

and phase once the carrier frequency (CF) is known. A

similar technique can be used to estimate the amplitude and

phase while estimating the time of arrival (TOA) and time

of departure (TOD) as well.

For our CF estimation task, we suppose that we observe

an M -vector y (consisting of a concatenation of all samples

from the RMPI device over a certain interval) given by y =
Φ[x0] +noise, where x0 consists of N Nyquist samples of a

sinusoid

x0[n] = A0 cos(2πf0tn + θ0),

tn = n/fnyq, n = 1, . . . , N,

and fnyq is the Nyquist frequency. The amplitude A0, phase

θ0, and frequency f0 of the sinusoid are a priori unknown, and

we make the implicit assumption that the TOA corresponds

to n = 1 and the TOD corresponds to n = N .

It is convenient to rewrite x0 as a weighted sum of a cosine

and sine with zero phase,

x0[n] = a1 cos(2πf0tn) + a2 sin(2πf0tn), (IV.4)

where we can relate a1, a2 to A, θ by realizing that they

are the real and complex parts of the phasor Aejθ: a1 +
ja2 = Aejθ. The subspaces Sf we search are thus spanned

by two vectors u1 and u2 with u1[n] = cos(2πf0tn) and

u2[n] = sin(2πf0tn). Since we have discretized the signal

x(t) through its Nyquist samples, our measurement process

is modeled through a matrix Φ, the rows of which are the

basis elements φk. For a given frequency f , we define Vf as

in (IV.2) and solve (IV.3) to obtain the MLE estimate of the

basis expansion coefficients in the subspace Sf .

Rather than dealing with continuously variable frequency,

we define a fine grid of frequencies between 0 and fnyq/2. As

an equivalent alternative to minimizing the outer optimization

in (IV.1), for each fk in the grid (and corresponding subspace

Sk) we may instead compute the quantity

Wk =
‖Vfkαfk‖

2

‖y‖2

and choose the frequency fk that maximizes Wk.

In practice, since we obtain values for Wk on a grid

of frequencies, we can realize tangible gains by treating

these values as samples of a continuous function W (f)
and interpolating in between the samples of W (f) once the

maximum has been localized; that is, we can “super-resolve”

W (f) using cubic interpolation. Fig. 5 illustrates the function

W (f) for an example Doppler tone.
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Fig. 5: Plot of the energy function W (f) for measurements derived from
a noisy Doppler tone at 1.4567 GHz over (a) the entire range of allowable
frequencies and (b) frequencies close to the true CF. In (a) we see that the
energy functional is clearly maximized in an area near the true CF, and (b)
shows that the maximum of the energy function occurs at 1.4571 GHz. For
this example, we used a total of 3315 Nyquist samples with a sampling
rate of 5 GHz, so our intrinsic frequency resolution is on the order of
5 GHz/3315 ≈ 1.5 MHz. The estimate of the carrier frequency is well
within this resolution.

Once the carrier frequency is estimated as f̂ , we estimate

the tone amplitude as Â =
√

(αf̂ )
2
1 + (αf̂ )

2
2 and the tone

phase as θ̂ = tan−1((αf̂ )2/(αf̂ )1).

C. Time of Arrival/Departure

Next we describe how the TOA of a pulse can be estimated.

We now assume that we have RMPI samples of a pure tone

at a known frequency windowed by a step function. That is,

we observe an M -vector y = Φ[x0]+noise, where x0[n] has

the form

x0[n] = µ(tn − τ0) ·A0 cos(2πf0tn + θ0), (IV.5)

tn = n/fnyq, n = 1, . . . , N,

and µ(·) is the unit step, µ(t) = 1 for t ≥ 0 and is zero for

t < 0. While we assume that the frequency f0 is known (or

has been estimated as in Sec. IV-B), the amplitude, phase,

and TOA τ0 are unknown. The processes we describe are

perfectly analogous for TOD estimation if we consider a

“flipped” version of x0[n].
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As in (IV.4), we can write x0 as a weighted sum of a

windowed sine and cosine:

x0[n] = a1u1[n] + a2u2[n],

u1[n] = µ(tn − τ0) cos(2πf0tn),

u2[n] = µ(tn − τ0) sin(2πf0tn).

Then for any given candidate TOA τ , the subspace Sτ is

spanned by the vectors

uτ,1[n] = µ(tn − τ) cos(2πf0tn)

and

uτ,2[n] = µ(tn − τ) sin(2πf0tn).

We can again construct the matrix Vτ of (IV.2) and complete

the MLE estimate of ατ by solving (IV.3) and subse-

quently (IV.1)

Again, rather than deal with continuously variable τ we

define a grid of times τk. In practice, using the grid of Nyquist

sample locations τk = tk is sufficient. As in the case of

carrier frequency, rather than choose the subspace with the

smallest value of the norm in (IV.1), we instead solve (IV.3)

for each grid point and then select the subspace Sk yielding

the largest value of

E(τk) =
‖Vτk α̂τk‖

2

‖y‖2
,

which is an equivalent solution. We may once again super-

resolve by treating these values as samples of a continuous

function. Fig. 6 illustrates the function E(τ) for an example

Doppler tone.
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(b)
Fig. 6: Plot of the energy function E(τ) for measurements derived from a
noisy Doppler tone at 1.4567 GHz arriving at Nyquist sample n = 3028
over (a) the entire range of sample indices and (b) sample indices close to
the true TOA. In (a) we see that the energy functional is clearly maximized
in an area near the true TOA, and (b) shows that the maximum of the energy
function occurs at n = 3030. Since the sampling rate for this example is
5 GHz, this corresponds to an error of 400 ps.

D. Pulse Detection

With our estimation techniques explained we next describe

a pulse detection algorithm that takes a stream of RMPI

samples and classifies each as either having a “pulse present”

or “no pulse present.” We start by assuming that only one

pulse is present at any given time. In the next section we

will describe an extension of this algorithm that can account

for multiple simultaneous pulses.

We model the pulses we are trying to detect as continuous

functions of the form

pk(t) = AkwR(t, τk0, τk1) cos(2πfk0t+ θk),

where Ak is the pulse amplitude, τk0 the TOA, τk1 the TOD,

wR(t, τk0, τk1) is the rectangular window wR(t, τk0, τk1) =
u(t − τk0) − u(t − τk1), fk0 the CF, and θk the phase. We

assume that the input to our acquisition system consists of

the Nyquist samples of some number of these pulses; that is,

x[n] =
∑

k

pk(nTs),

where Ts is the sampling period. The vector of RMPI mea-

surements we receive is the result of a linear matrix Φ applied

to this input together with additive noise: y = Φx + noise.

Our task is to determine how many pulses are present and to

estimate the parameters of each pulse we find.

We use the CF estimation method of Sec. IV-B as a build-

ing block. The general approach of the detection algorithm is

to divide the RMPI samples up into overlapping blocks and

estimate how well the measurements corresponding to each

block can be explained by the presence of a single tone.

This is done by assuming a pulse is present in each block,

estimating its CF, and determining how well the observed

measurements agree with measurements generated by this

pulse. As is shown in Fig. 7, if a pulse is indeed present at

the estimated CF, it should account for a reasonably large

portion of the measurement energy.
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(b)
Fig. 7: Fraction of measurement energies that are explained by frequencies
up to 2.5 GHz for the case where (a) there is a 1.581 GHz tone and noise
present and (b) there is only noise present. The noise energy is equally spread
out over the band, where the tone energy is concentrated at one frequency.

Once we obtain the CF estimates, we look for consistency

from block to block. If neighboring blocks have CF estimates

that are consistent in value and tones at these frequencies

account for a considerable portion of their measurement

energies, then we are confident that a pulse is indeed present.

If the CF estimates vary across neighboring blocks or contain

insufficient energy in a single frequency, we consider there
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to be insufficient evidence to indicate that there is a pulse

present. Fig. 8 illustrates consistency in frequency estimation

and energy proportion when pulses are present. In practice,

the blocks near the end of a pulse may account for a smaller

percentage of their measurement energies with a single tone,

since they may contain some RMPI samples that correspond

only to noise. To counteract this effect we use a weighted

average across blocks consistent in their CF estimates.
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Fig. 8: Carrier frequency estimates and measurement energy percentages
for block shifts of RMPI measurements. In this simulation, several pure-
tone pulses are present at various times. The blocks corresponding to
RMPI samples that cover the time support of the pulse contain consistent
CF estimates which account for a reasonably large portion of the RMPI
measurement energy. When pulses are absent, the CF estimates are erratic
and account for considerably less energy in the measurements.

Once we have obtained pulse detections, we can further

resolve their parameters. For example, suppose we have

detected a pulse that starts at RMPI sample index k and

has length P . We create a vector with the following RMPI

samples:

ys =
[

yk−P/2 yk−P/2+1 · · · yk+3P/2−1

]T
.

While we are uncertain of the exact TOA and TOD of the

pulse, the middle portion of the detected pulse (corresponding

to samples k + P/4 to k + 3P/4) almost certainly contains

only samples where the pulse is active. We use these samples

to refine and super-resolve our carrier frequency estimate.

Empirically, we find that our initial estimates for the TOA and

TOD can often dramatically under/overestimate the correct

values. Accordingly, we use the samples k − P/2 to k +
P/2 − 1 to refine and super-resolve our TOA estimate and

k + P/2 to k + 3P/2 − 1 to refine and super-resolve our

TOD estimate. For longer pulses (large P ), this means that

we check a larger number of potential locations for our TOA

and TOD estimates. We could instead fix a certain number

of samples before and after each pulse detection to check,

invariant of the detected pulse length, but we have found

experimentally that making the search length dependent on

the detected pulse length results in more accurate estimation.

Once the TOA, TOD, and CF estimates have been refined,

we calculate our amplitude and phase estimates.

Supposing we have a stream of RMPI measurements

y1, y2, · · · , yB over some time period, where each yi is a

vector of m RMPI samples at a given sample time, the

complete detection algorithm is outlined in Alg. 1.

Algorithm 1 RMPI Pulse Parameter Extraction Algorithm

1: Choose a set of block lengths, each of which corresponds

to a certain number of RMPI samples per channel.

2: For fixed block length L and for each sample time k =
1, . . . , B, find the measurement vector ỹk containing the

samples from time k− (L−1)/2, . . . , k+(L−1)/2 and

the corresponding portion of the measurement matrix Φ̃k.

3: Estimate the CF for each block by following the pro-

cedure in §IV-B, calling the frequency estimate Fk and

the corresponding fraction of the energy it accounts for

Pk = P (Fk)/‖ỹk‖
2
2.

4: Determine for which blocks |Fk − Fk−1| is below some

threshold. Call each sequence of blocks with consistent

frequency estimates a segment.

5: In each segment, take a weighted average of the Pk

values. Keep all segments for which this average exceeds

a certain threshold.

6: Repeat steps 2-5 for different values of L, creating a list

of potential pulse segments for each block length.

7: Merge any segments that are close together in time and

have similar CF estimate.

8: Keep only the remaining segments in the merged list that

are longer than a pre-determined minimum signal length.

9: Super-resolve the amplitude, phase, TOA, and TOD can

then using the techniques in Sec. IV-B and Sec. IV-C.

E. Complexity

For the measurement system we consider, Φ consists of

shifted repetitions of a matrix Φ0 that produces 63 separate

4-channel RMPI samples (for a total of 252 rows). For CF

estimation, we can precompute the product Vf = ΦUf for

each frequency f in our grid by taking the real and imaginary

parts of the FFT of each row of Φ. In fact, since Φ contains

repetitions of Φ0 we need only take the FFT of the 252 rows

of Φ0, which we may then shift through complex modulation.

This calculation does not depend on the measurement data,

and therefore can be done offline as a precomputation.

For each window length L (typically between 5-11 RMPI

samples) and each window shift, we have to compute Pf ỹk
for each f in the grid. For a given frequency f , we have

precomputed the matrix Vf . We have 4L samples (since there

are 4 channels per measurement), so Vf is 4L×2 and V T
f Vf

is a 2 × 2 system. We can explicitly invert V T
f Vf using the

2×2 matrix inverse formula, and all other calculations involve

a small number of 4L-point inner products. The number of

frequencies we test is proportional to the number of Nyquist
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samples N , and thus the cost of the frequency estimation

for each sliding window shift is O(NL). Since the number

of window shifts is equal to the number of RMPI samples,

this is our per-sample computational cost. If we use multiple

window lengths, our complexity is O(N
∑

i Li).

F. Cancellation and multiple pulses

In this section, we focus on how to remove contributions

from certain frequency bands in the RMPI measurements.

This allows us to remove the effects of interferers that occupy

a known, fixed frequency band. It will also allow us to

remove the contributions of pulses that we have already

detected in order to detect additional pulses that may occur

at simultaneous points in time.

We assume that we have a signal interfering with the

underlying signal whose parameters we wish to estimate,

and that this interferer has energy only in a specific, fixed,

and known frequency band. Our procedure for nulling the

interfering signal involves the computation of discrete prolate

spheroidal sequences (DPSS) [31,32]1. A DPSS is essentially

a set of functions that can best express signals of specified

duration whose frequency content is restricted to a certain

bandwidth. These can be modulated to be centered at any

frequency, and thus can serve as a basis for compact signals

whose energy occupies a specific band.

Suppose we have a DPSS with R elements that serve as

a basis for signals of length N . We can express the DPSS

as an N × R matrix V , whose R columns are the elements

of the sequence. Then the interfering signal z can be written

as a linear combination of these elements z = V a for some

a ∈ R
R. The contribution from the interfering band in a set

of measurements can be modeled as

yi = ΦV a.

Then we can estimate the portion of the measurements y that

correspond to frequency content outside the interfering band

as

ỹ = (I − ΦV (V TΦTΦV )−1V TΦT )y = Ψy.

The operator Ψ can be used to remove the contributions of

the interfering band in the measurements y when we run our

estimation methods. This allows us to effectively operate as

if the interferer is absent. The matrix Ψ does not depend

on the measurements y but merely the RMPI matrix Φ, and

therefore can be precomputed. Fig. 9 shows how the use of

the nulling operator aids in removing interfering bands.

We can use similar concepts to detect multiple overlapping

pulses. After the detection algorithm of Section IV-D, we

can run a second pass of the algorithm. During this second

1These are also known as Slepian sequences.
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Fig. 9: Fraction of measurement energies that are explained by frequencies
up to 2.5 GHz for the case where (a) no nulling is used and there is strong
interfering signal between 1.976 and 2.026 GHz and (b) the nulling operator
is used to cancel out the interfering band. The nulling operator allows us
to estimate the CF of the underlying tone, which is 1.367 GHz. In (b) the
energy in the interfering band has virtually disappeared.

pass, when we calculate the CF estimates for each block

we do so by first constructing a nulling operator Ψk that

cancels the contributions of any of the previously detected

pulse segments that are within the block and then perform

CF estimation using the modified measurements Ψkỹk. When

we compute the metric P (Fk), we use Ψkỹk in place of ỹk
so that the quantity expresses the fraction of the energy of

the potential pulse relative to the nulled measurements.

The nulling operators Ψk that we construct will cancel

a band, rather than a single frequency. The bandwidth and

block length affect the number of elements in the DPSS

that we require to cancel within a certain accuracy. Since

the DPSS is designed to cancel a band rather than a single

frequency, we must make an assumption as to how close in

CF two simultaneously overlapping pulses are allowed to be;

for our 5 GHz system we assume that overlapping pulses are

at least 10 MHz apart in their carrier frequencies. Fig. 10

shows an example of the two-stage detector for overlapping

pulse data.

The additional cost introduced by nulling detected pulses

is dominated by the computation of the DPSS functions.

This computation is dependent on the detected pulse length.

However, if it is known that the pulses we are to detect are of

a specific length, it may be possible to precompute the DPSS

functions. In this case, the nulling produces introduces few

extra calculations.

V. VERIFICATION OF HARDWARE

A. Measurement Test Setup Description

In order to test the performance of the radar-pulse pa-

rameter estimation system-composed of the RMPI sampling

hardware and the PDW extraction algorithm §IV, we ran a

set of over 686 test radar pulses composed of permutations of

A0, θ0, CF, TOA and TOD through the RMPI and estimated

the varied parameters from the compressed-samples digitized

by the RMPI.
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Fig. 10: Stages of the pulse detection and parameter estimation algorithm
for overlapping pulse data: (a) source pulses; the pulse heights indicate their
amplitude and the color of the pulse is reflective of the CF of the pulse,
with red closer to 2.5 GHz and blue closer to 0 Hz; (b) CF estimates for
blocks using 5 RMPI samples; (c) segments detected based on consistent
CF estimates for blocks of size 5 with no phase or amplitude estimation; (d)
CF estimates for blocks of size 9; (e) segments detected based on consistent
CF estimates for blocks of size 9 with no phase or amplitude estimation;
(f) the merged segments; (g) the merged segments after the second pass is
completed; (h) the detected pulses with refined estimates of their parameters.

(a) RMPI IC Mount (b) RMPI Digitizer Board

Fig. 11: Assembled RMPI IC/Digitizer Interface. The board is 5 inches ×

5 inches. The ADC board has 4 12 bit ADCs with output bits routed to 4
data-connectors that are acquired with a Logic Analyzer

Fig. 12 shows a block diagram for the test setup used for

the RMPI. The input clock and data to the RMPI were driven

differentially and AC-coupled. An Arbitrary Waveform Gen-

erator AWG with an output sampling rate of 10 Gsps was

used to output the pulses of interest. The stimulus was input

into the RMPI whose outputs were then sampled by external

ADCs located on a custom digitizing PCB shown in Fig. 11b:

the RMPI IC is mounted on a a low-temperature co-fired

ceramic (LTCC) substrate shown in Fig. 11a which is placed

in the center of the digitizing board. The digitized samples

were then transferred to a PC where the PDW extraction

algorithm was used to estimate the signal parameters.
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Fig. 12: Block Diagram of RMPI Test Setup

B. Parameter Estimation

For each pulse, we estimated the CF only from measure-

ments corresponding to times when the signal was active. We

then estimated the TOA from RMPI samples corresponding

to noise followed by the front end of the pulse. We repeated

the procedure for the TOD, using RMPI samples correspond-

ing to the end of the pulse followed by noise only. Fig. 13

shows the distribution of our estimation errors for CF, TOA,

and TOD. Additionally, Table I shows statistics on the errors

for each of the three parameters.

CF TOA TOD

(MHz) (Frames) (ns) (Frames) (ns)

Max. Err. 1.451 4.176 43.43 24.55 255.32
Min. Err. 7.676e-4 8.149e-5 8.475e-4 3.053e-5 31.75e-4
Std. Dev. 0.305 0.339 3.526 1.540 16.02

TABLE I: Maximum, minimum, and standard deviation of estimation errors
for CF, TOA, and TOD over 686 trials (1 Frame = 1/fADC = 10.4 ns is
the length of one integration window).

C. Pulse Detection

We tested the pulse detection system by generating 60
test cases containing 12 pulses each (for a total of 720
pulses) with varying amplitudes (ranging over 60 dB), phases,
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Fig. 13: Parameter estimation errors for (a) CF, (b) TOA, and (c) TOD over 686 trials.

Input Detection Rate False Positive Rate σCF Error σTOA Error σTOD Error

(dBm) (%) (%) (MHz) (Frames) (ns) (Frames) (ns)

-6 92.08 3.91 0.914 4.266 44.366 4.287 44.585
-9 92.78 2.77 1.281 2.855 29.692 2.917 30.337

-12 92.92 3.74 1.665 3.715 38.636 3.521 36.618
-15 92.50 2.63 0.955 3.411 35.474 3.280 34.112
-18 92.78 1.47 1.665 3.715 38.636 2.521 26.218
-21 92.08 2.93 0.426 2.064 21.466 2.543 26.447

TABLE II: Detection performance as a function of the interferer strength (1 RMPI Samp. = 1/fADC = 10.4 ns).

Pulse Amp. Detection Rate σCF σTOA Error σTOD Error

(V) (%) (MHz) (Frames) (ns) (Frames) (ns)

0.016 92.5 2.089 8.330 86.632 8.033 83.543
0.032 95.0 0.753 2.035 21.164 5.871 61.058
0.063 96.7 1.88 2.993 31.127 5.157 53.633
0.126 97.5 1.349 2.997 31.169 2.577 26.801
0.251 97.5 0.839 1.953 20.311 2.536 26.374
0.501 96.7 1.259 1.983 20.623 5.451 56.690

All 96.0 1.452 4.018 41.787 5.280 54.912

TABLE III: Detection rate and standard deviation of the parameter estimate errors as a function of pulse amplitudes (1 Frame = 1/fADC = 10.4 ns).

Pulse Length Detection Rate σCF Error σTOA Error σTOD Error

(Frames) (ns) % (MHz) (Frames) (ns) (Frames) (ns)

19.23 200 89.58 0.713 2.672 27.789 2.775 28.860
48.08 500 98.75 1.045 2.290 23.816 2.413 25.095
96.15 1000 99.58 2.127 5.855 60.892 8.238 85.675

All 96.0 1.452 4.018 41.787 5.280 54.912

TABLE IV: Detection rate and standard deviation of the parameter estimate errors as a function of pulse lengths (1 Frame = 1/fADC = 10.4 ns).

durations (100 ns—1 µs), carrier frequencies (100 MHz—

2.5 GHz), and overlaps. All pulse rise times were approxi-

mately 10 ns. The pulse amplitudes were taken from a set

of 6 discrete values, with 120 pulses at each amplitude level,

while the durations were taken from a set of 3 discrete values,

with 240 pulses at each pulse length. We then ran the detector

on each data capture and collected the detection statistics.

The detector successfully detected 691 of the 720 pulses

for a detection rate of 95.97%, while also allowing 23 false

positives for a false positive rate of 3.22%.

Table III shows the detection rate and standard deviation

of the parameter estimate errors as a function of the pulse

amplitudes. Aside from the lowest-amplitude pulses, the

detector’s performance is relatively invariant to the pulse

amplitude. Table IV similarly shows the detection rate and

standard deviation of the parameter estimate errors as a

function of the pulse length. As is to be expected, the pulse

detection rate improves as the pulse length grows. The TOA

and TOD estimates are worse for longer pulses than shorter

pulses, but this is to be expected; since the pulses are longer,

there are more potential locations to check, and therefore

the possibility of error increases. However, it is surprising

that the CF estimates get slightly worse as the pulse length

increases.

D. Interferer Cancellation

To test the robustness of the detection and estimation

system, we repeated our detection experiment and included

a constant-frequency interferer at set amplitudes in each

experiment. We tested 6 interferer strengths, running 60
experiments with 12 pulses per experiment, for a total of

720 pulses per interferer strength. In each case, all of the

pulse amplitudes were the same (to keep the relative interferer

strengths well-defined) and the pulses were allowed varying
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amounts of overlap. For each experiment, we assumed that

we knew the center frequency of the interfering bandwidth,

and that the interferer occupied a band with a 25 MHz

width. Table II shows the detector performance as a function

of interferer strength. When the interference is very small

in magnitude, the estimation is predictably better. As the

interferer grows in strength, the performance only degrades

slightly.

VI. CONCLUSION

We have presented a detailed overview of the design of

both hardware and software used in a novel radar-pulse

receiver in which information is extracted without perform-

ing full signal reconstruction. This novel approach obtains

desired information with high accuracy while considerably

reducing the back-end computational load. The reduced com-

putational load for parameter extraction potentially expands

the applicability of CS-based systems, particularly for real-

time processing.

The system was validated using parameter estimates ob-

tained from testing with a large and exhaustive set of realistic

radar pulses spanning the parameter space. The physically

measured results generated from this prototype proof-of-

concept system demonstrates the feasibility of the approach.

In addition, the data obtained provides ample motivation

for further investigation of the merit of CS-based signal

acquisition schemes in general.
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