
Max–Planck–Institut f ür biologische Kybernetik
Max Planck Institute for Biological Cybernetics

Technical Report No. TR-101

A compression approach to
support vector model selection

Ulrike von Luxburg,1 Olivier Bousquet,1

Bernhard Schölkopf1

September 2002

1 Department Schölkopf, email: ulrike.luxburg@tuebingen.mpg.de

This report is available in PDF–format via anonymous ftp at ftp://ftp.kyb.tuebingen.mpg.de/pub/mpi-
memos/pdf/TRcompression02.pdf. The complete series of Technical Reports is documented at:
http://www.kyb.tuebingen.mpg.de/techreports.html

A compression approach to support vector model
selection

Ulrike von Luxburg, Olivier Bousquet, Bernhard Schölkopf

Abstract. In this paper we investigate connections between statistical learning theory and data compression
on the basis of support vector machine (SVM) model selection. Inspired by several generalization bounds we
construct “compression coefficients” for SVMs, which measure the amount by which the training labels can be
compressed by some classification hypothesis. The main idea is to relate the coding precision of this hypothe-
sis to the width of the margin of the SVM. The compression coefficients connect well known quantities such as
R2/ρ2, the eigenvalues of the kernel matrix and the number of support vectors. To test whether they are useful in
practice we ran model selection experiments on several real world datasets. As a result we found that compression
coefficients can fairly accurately predict the parameters for which the test error is minimized.

1 Introduction

In classification one tries to learn the dependency of labelsy on patternsx from a given training set(xi, yi)i=1...m.
We are interested in the connections of two different methods to analyse this problem: a data compression approach
and statistical learning theory.
The minimum description length (MDL) principle (cf. Barron et al., 1998, and references therein) states that,
among a given set of hypotheses, one should choose the hypothesis that gives the shortest description of the
training data. Intuitively, this seems to be a reasonable choice: by Shannon’s source coding theorem (cf. Cover
and Thomas, 1991) we know that a short code is closely related to the data generating distribution. Moreover, an
easy-to-describe hypothesis is less likely to overfit than a more complicated one. The description of the data is
given in form of a code which tries to compress the data as well as possible.
There are several connections of the MDL principle to other learning methods. For instance, it is easy to see that
selecting the hypothesis with the highest posterior probability in a Bayesian setting is equivalent to choosing the
hypothesis with the shortest code (cf. Hansen and Yu, 2001).
In statistical learning theory, one derives generalization bounds to analyse learning algorithms. The compression
scheme approach of Littlestone and Warmuth (1986), which describes the generalization ability of a learning
algorithm by its ability to reduce the training set to a few important points, led to a bound for SVMs in terms
of the number of support vectors (cf. Bartlett and Shawe-Taylor, 1999). Combining this result with large margin
bounds leads to the sparse margin bound of Herbrich et al. (2000). In McAllester (1998), a PAC-Bayesian bound
for learning algorithms was derived. For a given prior distributionP on the hypotheses space, it bounds the
generalization error essentially by− lnP (U)/m, whereU is the subset of hypotheses consistent with the training
examples. By Shannon’s theorem we see that− lnP (U) is the length of the shortest code for this subset, which is
an indication that coding arguments can also be important in statistical learning theory.
This view is supported by the following theorem of Vapnik (1998, sec. 6.2). For any classification hypothesish
out of a finite hypotheses space he defines its compression coefficientC(h) by the number of bits needed to code
the training labels by usingh, divided by the numberm of labels. Then he connects the compression coefficient to
the generalization error of a learning algorithm:

Theorem 1 (Vapnik) Given a finite set of classification hypotheses, then with probability at least1 − η over the
random draw ofm training points, the risk is bounded byR(h) ≤ 2 ln(2)C(h) − ln(η)/m for all hypotheses
h, whereC is the compression coefficient ofh and the risk is defined as the expected loss of the hypothesis with
respect to a fixed loss function.

Even though this bound is only valid in a very restricted setting where we have a hypotheses space which is
independent of the training data it indicates that compression coefficients can be a helpful tool to analyse learning
algorithms.

1

Inspired by these bounds we want to explore the connection between statistical learning theory and data com-
pression in SVMs. To this end we construct compression coefficients for SVMs (sec.2). It turns out that with
this approach, we recover several quantities already known to be meaningful in statistical learning theory such as
R2/ρ2, the eigenvalues of the kernel matrix, and the number of support vectors. These quantities, which often
only appear separately in different generalization bounds, can even be integrated into one single compression co-
efficient. Our results support the view that there is a profound relation between data compression and statistical
learning theory. To test the model selection performance of our compression coefficients we ran experiments on
several real world data sets (sec.3). We find that the compression coefficients outperform several standard methods
and can compete with the state of the art span bound.

2 Compression coefficients for SVMs

The main idea for constructing compression coefficients for SVMs is an interpretation of the margin in terms of
coding precision: Suppose the data are (correctly) classified by a hyperplane with normal vectorω and margin
ρ. In case of a large margin it is commonly held (e.g. Schölkopf and Smola, 2002) that small perturbations of
the direction of the hyperplane will not change the classification result on the training points (see figure 1a). In

rotation cone

H

R
α

ρ

a.

H2

H1α
β

b.

Figure 1: (a.) All hyperplanes within the rotation cone induced by the marginρ produce the same classification result on the
training patterns asH. (b.) In case of an ellipsoid data domain,ρ induces different rotation cone angles depending on the
direction of the hyperplane. Their associated covering balls on the spherical hypotheses space also have different sizes. In the
example shown,α ≤ β, henceH1 must be coded with higher accuracy thanH2.

compression language this means that we do not have to code the direction of the hyperplane with high accuracy –
the larger the margin, the less accurate we have to code. This is one way to justify the method of maximizing the
margin with the help of coding/compression arguments.
More concretely, we are givenm pairs(xi, yi)i=1,...,m of training patterns with labels. In classification we want
to predict the labelsy for given patternsx, i.e. we want to learnP (y|x), or at least some aspects ofP (y|x), such
as the set{x|P (y|x) ≥ 0.5}. So for the coding approach we assume that an imaginary sender and receiver both
know the trainingpatterns. It will be the task of the sender to transmit thelabelsof the training patterns to the
receiver (cf. Vapnik, 1998, sec. 6.2.). Sender and receiver are allowed to agree on the details of the code before
transmission starts. First the sender trains an SVM and forms a hypothesis how the data should be separated. In
the easiest case this hypothesis is the direction of the separating hyperplane in the feature space. Now he transmits
the labels in two parts. First he codes the hypothesis and sends it. Then he transmits which of the training patterns
are misclassified by this hypothesis. To decode, the receiver applies the hypothesis to the training patterns and
constructs the labels for all patterns. Then he flips the labels of all patterns that are indicated to be misclassified by
this hypothesis. After this, the receiver will have reconstructed all labels correctly.
The second part, i.e. coding the misclassifications, is easy. We only have to code the numberl of misclassifications
(log(m) bits) and the indices of the misclassified training vectors (log

(
m
l

)
bits). Here and in the following,log

denotes the base-2 logarithm.

2

The code of the first part depends on the kind of hypothesis we want to form after having trained the SVM. One
way of coding the labels with the help of an SVM was described above: we code the direction of the hyperplane
and adapt the precision by which we code this direction to the width of the margin. The space of all hypotheses
then consists of the unit sphere in the feature space. Now suppose that all training patterns lie in a ball of radius
R around the origin and that they are separated by a hyperplaneH through the origin with normal vectorω and
marginρ. Then every “slightly rotated” hyperplane that inside the ball still lies within the margin produces the
same classification result on all training points as the original hyperplane. Thus, instead of usingω itself to separate
the points we could use any vector in the rotation cone ofω (cf. figure 1a).
To codeω we now choose a set of “equidistant” representation vectors on the sphere of the feature space. Here we
have to ensure that in each cone “of widthρ” of the sphere there is at least one representation vector. The number
of vectors needed to fulfill this condition can be described as the number of balls of radiusρ needed to cover the
sphere of radiusR, such that the centers of the covering balls lie on the sphere. An upper bound of this number is
the following:

Proposition 2 To cover the sphereSd−1
R of radiusR in the d-dimensional Euclidean space we need less than

2
⌈

Rπ
ρ

⌉d−1

balls of radiusρ. The exponent in this upper bound is tight.

Proof We use an inductive procedure to prove the upper bound on the covering number. Letcd be an upper bound
on the number of balls needed to cover the sphereSd−1

R ⊂ R
d. To construct aρ-covering onSd

R ⊂ R
d+1 we cover

the cylinderSd−1
R × [−Rπ/2, Rπ/2] with a grid ofcd+1 := cd · dRπ/ρe points. The grid is then mapped on the

sphere. As the distances between the grid points do not increase by this mapping the projected points form an
ρ-cover of the sphereSd

R. Ford = 2 the sphere is a circle which can be covered withd2Rπ/ρe ≤ 2 dRπ/ρe balls.
By the iteration described above we then getcd = 2 dRπ/ρed−1 for all d ∈ N.
To show that the exponent is tight we construct a lower bound on the covering number by dividing the area of the
surface of the whole sphere by the part of the surface covered by one single ball. As the area of this part is smaller
than the whole surface of the small ball we get(R/ρ)d−1 as lower bound for the covering number. ,

The code now looks as follows:

Code 1 Sender and receiver agree on the training patterns, a fixed kernel and on a procedure for choosing the
positions oft balls to cover the unit sphere in ad-dimensional Euclidean space. Now the sender transmits the
numbern of representation vectors, the indexi of the representation vector representing the normal vector of the
hyperplane, the number of misclassified training examples, and the indices of the misclassified training examples.
To decode this information, the receiver constructs a covering of the sphere in the feature space witht = n balls
according to the common procedure, determines the representation vector given by its index among all representa-
tion vectors, and constructs a hyperplane using this vector as normal vector. Then he classifies all training patterns
according to this hyperplane and flips the labels of the misclassified training examples.

As the numbern of representation vectors is not bounded beforehand we do not have an upper bound on the
number of bits needed to code it. Thus, to transmitn we use a code described in Cover and Thomas (1991, p. 149)
which uses2 log n + 2 bits. After this, the receiver already knowsn and we can codei with log n bits. Finally,
to transmit the number and indices of the misclassified training examples we needlog(m) + log

(
m
l

)
bits. Using(

m
l

)
≤ ml andn ≤ 2 dRπ/ρed−1 we thus obtain the compression coefficient

C1 ≤ 1
m

(
3(d− 1) log

⌈
Rπ

ρ

⌉
+ 3 log 2 + (l + 1) log m + 2

)
. (1)

To refine this analysis we now want to take into account the shape of the data in the feature space. To this end
we assume that the training patterns are contained in an ellipsoid with axesc1, ..., cd rather than a ball of radius
R. When using the rotation argument from above, we observe that in the ellipsoid situation the maximal rotation
angle of the hyperplane depends on the actual direction of the hyperplane (cf. figure 1b). The induced covering
balls on the spherical hypotheses space now have different sizes, too. Note, that instead of covering the sphere
with balls of different sizes we can directly cover the surface of the ellipse with balls of equal sizes. Moreover, to
keep the calculations easy, we will cover the whole ellipse instead of the surface only. This means that we use one
extra dimension (volume instead of surface), but in high dimensional spaces this does not make much difference.

Proposition 3 To cover ad-dimensional ellipse with principal axesc1, ..., cd we need at most
∏d

i=1

⌈
2ci

ρ

⌉
balls of

radiusρ. The dependency on
∏d

i=1
ci

ρ is tight.

3

Proof The smallest parallelepiped containing the ellipse has side lengths2c1, ..., 2cd and can be covered with a
grid of

∏d
i=1 d2ci/ρe balls of radiusρ. This gives an upper bound on the covering number.

To obtain a lower bound we divide the volume of the ellipse by the volume of one single ball. Letvd be the
volume of ad-dimensional unit ball. Then the volume of a ball of radiusρ is ρdvd and the volume of an ellipse

with axesc1, ..., cd is given byvd

∏d
i=1 cd. So we need at least

∏d
i=1 cd

ρd balls. ,

Proposition 4 For given training patterns(xi)i=1,...,m and kernelk, let λ1,, λm be the eigenvalues of the
kernel matrixK. Then all training patterns are contained in an ellipse with principal axes

√
λ1, ...,

√
λm.

Proof Let span{δxi
|i = 1, ...,m} be the subspace of the feature space spanned by the training examples. It is

endowed with the scalar product〈δxi
, δxj

〉K = k(xi, xj). We map this space to(l2, 〈., .〉l2) by δxi
7→ ei, where

ei denotes thei-th unit vector inl2 and〈., .〉l2 is the canonical scalar product ofl2. It turns out that foru, v ∈ l2
we have〈u, v〉K = u′Kv. Let v1, ..., vm be thel2-normalized eigenvectors corresponding to the eigenvalues
λ1, ..., λm. They satisfy〈vi, vj〉K = λiδij . Now it is easy to check that for all training examplesxi the ellipse
inequality ∑

j

(
〈δxi

, vj〉K
||vj ||K

√
λj

)2

≤ 1

holds. ,

Combining these two propositions it turns out that the number of balls of radiusρ we need to cover the data ellipse

is given byn ≤
∏m

i=1 2
√

λi

ρd . Now we can state the next code:

Code 2 This code works exactly as code1, the only difference is that an ellipse is used instead of a ball.

Counting the number of bits analogously to code 1 we get a compression coefficient of

C2 ≤ 1
m

(
3

d∑
i=1

log
⌈

2
√

λi

ρ

⌉
+ (l + 1) log m + 2

)
. (2)

Both compression coefficients we derived so far depend on the dimensiond of the feature space in which we code
the hyperplane. It is easy to see that the solution of most kernel algorithms lives in the subspace spanned by the
training examples (representer theorem), so that we can always work withd = m. For SVMs the solution even
lies in the subspace spanned by the support vectors which form a subset of the training examples. Therefore, an
easy dimension reduction can be achieved by working in this subspace. To do this we additionally have to code the
numbers and the indices of the support vectors among the training patterns withlog m + log

(
m
s

)
bits. This leads

to

Code 3 Sender and receiver agree on the training patterns, the kernel, and the procedure of covering an ellipsoid.
After training an SVM the sender transmits the numbers of support vectors (log m bits), the indices of the support
vectors (log

(
m
s

)
bits), the numbern of representation vectors (2 log n + 2 bits), the index of the representation

vector used (log n bits), the numberl of misclassified patterns (log m bits), and the indices of the misclassified
patterns (log

(
m
l

)
bits). To decode, the receiver constructs the hypotheses space consisting of the data ellipse

projected on the subspace spanned by the support vectors. He covers this ellipse withn balls and chooses the vector
representing the normal vector of the hyperplane. Then he labels the training patterns by first projecting them into
the subspace and then classifying them according to the hyperplane. Finally, the labels of the misclassified patterns
are flipped.

Using propositions 3 and 4 with the eigenvaluesγ1 ≥ ... ≥ γs of the kernel matrix restricted to the support vectors
we obtainn ≤

∏s
i=1 2

√
γi/ρs. So code 3 has a compression coefficient of

C3 ≤ 1
m

(
(l + s + 2) log m + 3

s∑
i=1

log
⌈

2
√

γi

ρ

⌉
+ 2

)
. (3)

A further dimension reduction can be obtained with the following idea: The axes of the data ellipse are decreasing
fast for large dimensions. Once the axis in one direction is very small we can discard this dimension by projecting
the data in a lower dimensional subspace using kernel PCA. Essentially, the idea is to “use up” part of the margin

4

for the projection error. If, say, the maximal projection error isρ/2, then even after projection the training patterns
will lie on the same side of the hyperplane as before. Now we can use the remaining part of the margin to code the
hyperplane as before.
More detailed this approach works as follows: First we train the SVM and get the normal vectorω and marginρ.
As hypotheses space we will use the sphere with radiusR, i.e. we renormω to lengthR by ω0 := ω

||ω||R. It is
important here not to confuse the hypotheses space (sphere) and the data space (ellipse). We place the rotation cone
of width ρ aroundω0. Above we argued that in the ellipse setting the rotation cone has different sizes depending
on the position ofω in the data ellipse. By using a sphere of radiusR and the rotation cone of widthρ we actually
consider the smallest possible rotation cone.
Now we perform a principal component decomposition of the training data in feature space. The principal com-
ponents are the directions of the axes of the ellipse. We sort the principal components such that their eigenvalues
λ1, ..., λm decrease. FordP ∈ {1, ...,m} let P be the projection on the the subspace spanned by the firstdP

eigenvectors.
Now we have to check if the projected hypothesesP (ω0) still lies within the rotation cone. If no, the projection
error made byP is too big and we cannot project on thedP -dimensional subspace. If yes, we are still within the
allowed bound of precision after projectingω0, i.e. we can discard the lastm−dP dimensions. In this case we can
encode the projected normal vectorP (ω0) in andP -dimensional space and we callP a valid projection. As we
already made some error by projectingω0 into this low-dimensional space we have to code more precisely now.
For a valid projection we can compute the part of the margin it uses by

cP :=
||ω0 − P (ω0)||

ρ
=
||ω − P (ω)|| ·R

||ω||ρ
= R · ||ω − P (ω)|| ∈ [0, 1].

The remaining part of the margin can be used for the error made by codingP (ω0) with a representation vector
r(ω0) of a covering of thedP -dimensional data ellipse, i.e. we have to cover the ellipse with balls of radius√

1− c2
pρ. Then the total error made by this code can be calculated as

||ω0 − r(ω0)||2 = ||ω0 − P (ω0)||2 + ||P (ω0)− r(ω0)||2 ≤ c2
P ρ2 + (1− c2

P)ρ2 = ρ2

i.e the representation vectorr(ω0) still lies within the original rotation cone.
As we already used in the construction of code 3 we can always work in the subspace spanned by the support
vectors. Starting from this subspace we try to projectω on smaller subspaces. For this we use a PCA only of the
support vectors. So the code looks as follows:

Code 4 Sender and receiver agree upon the training patterns, the kernel, the procedure of covering ellipsoids,
and on how to perform a PCA. The sender trains the SVM and chooses a valid projection on some subspace.
He transmits the numbers of support vectors (log m bits), the position of the support vectors (log

(
m
s

)
bits), the

numberm − dP of dimensions to discard (log m bits), the numbern of representation vectors (2 log n + 2 bits),
the index of the representation vector used (log n bits), the numberl of misclassified patterns (log m bits), and
the position of the misclassified patterns (log

(
m
l

)
bits). To decode, the receiver constructs the hypotheses space

consisting of the ellipse projected on the subspace spanned by the support vectors. Then he performs a PCA on the
support vectors and projects the hypotheses space on the subspace spanned by the firstdP principal components.
In this subspace he covers the remaining ellipse withn balls, chooses the representation vector as indicated and
uses it to construct a hyperplane in the subspace. Now he projects all training data in this subspace, classifies it
according to the hyperplane and flips the labels of the misclassified patterns.

For fixed numberdP the compression coefficient for this code is given by

C4 =
1
m

(
3 log m + log

(
m

l

)
+ log

(
m

s

)
+ 3 log n + 2

)
≤ 1

m

(
3 log m + log

(
m

l

)
+ log

(
m

s

)
+ 3

dP∑
i=1

log

⌈ √
2γi√

1− c2
P ρ

⌉
+ 2

)
(4)

≤ 1
m

(
(l + s + 3) log m + 3

dP∑
i=1

log

⌈ √
2γi√

1− c2
P ρ

⌉
+ 2

)
(5)

5

wherecP is determined as described above andγi are the eigenvalues of the kernel matrix restricted to the support
vectors only.

So far we always considered codes that used the direction of the hyperplane as hypothesis. A totally different
approach is to reduce the data by transmitting support vectors only. This quite simple code works as follows:

Code 5 Sender and receiver agree on training patterns and a kernel. The sender sends the numbers of support
vectors (log(m) bits), the indices of the support vectors (log

(
m
s

)
bits), the labels of the support vectors (s bits),

the numberl of misclassified training patterns (log(m) bits), and the indices of the misclassified training patterns
(log

(
m
l

)
bits). To decode this information, the receiver trains an SVM with the agreed kernel and with the support

vectors as training set. Then he computes the classification result of this SVM for the original training patterns
and flips the labels of the misclassified patterns.

This code leads to a compression coefficient of

C5 ≤
1
m

((l + s + 2) log m + s) . (6)

3 Experiments

To test the utility of the derived compression coefficients for model selection we ran experiments on different real
world datasets: the Pima Indians diabetes database (768 data points), the Wisconsin breast cancer database (683
data points) and the abalone dataset (4177 data points) from the UCI machine learning repository, and the US
postal service handwritten digit recognition benchmark (9298 data points). In all experiments we first permuted
the whole dataset and divided it into subsets of a certain sample size (100, 200 or 500). Then, to be consistent
with the rotation argument, we centered each subset in feature space. We trained hard and soft margin SVMs
(C = 0.1, 10, 1000, 100000,∞) with Gaussian kernels (σ = 10−3, 10−2, ..., 105). The test error was computed
on the training subset’s complements. We plotted the mean values of the test errors and compression coefficients
over all training subsets. Error bars depict standard deviations. We compared our results to several other model
selection criteria: the trace criterion

√∑
λi/m2ρ2 (Bartlett and Mendelson, 2001), the sparse margin criterion√

R2/ρ2(m− s) (Herbrich et al., 2000), the span bound (cf. Vapnik and Chapelle (2000) and Opper and Winther
(2000)) and the well known radius-margin bound

√
R2/mρ2 (Vapnik, 1998). Note that there exists an improved

version of the latter bound, which uses rescaling to adapt to the shape of the data in the feature space (Chapelle
and Vapnik, 2000). We plan to use this version instead of the standard version in future experiments. In figure 2
we plotted all results for the abalone dataset, in figure 3 we show some results on different datasets.
It turns out that some of the compression coefficients predict the shape of the test error curve quite well, even

if their absolute values are> 1 because of too small sample sizes. The best results seem to be obtained by
the compression coefficientsC2 andC3 , but even the very simple coefficientC5 looks better than some of the
standard bounds. The projection boundC4 does not produce better results thanC3. The standard deviations of the
compression coefficients are small compared to the span bound, which indicates that the compression results are
quite stable.
In another experiment we went one step further than only plotting the curves and actually used the bounds for
model selection. We focused on selecting the value ofσ, fixing C to a constant value. Comparing the test errors
of the selected model to the optimal ones, we found that in most casesC2 performs well (better thanC3, although
the latter looks better in figure 3), in general only slightly beaten by the span bound, but nearly always better than
the radius-margin bound or the sparse margin bound.

4 Discussion

We derived compression coefficients for SVMs which combine well-known quantities such as the margin, the
eigenvalues of the kernel matrix and the number of support vectors. The results of our experiments suggest that
these compression coefficients can be a good tool to describe the generalization error of SVMs. As they are easy
to compute they can be readily used in practice. We think, performance can even be improved by using tighter
bounds in the derivation (e.g., when bounding the covering numbers or the binomial coefficients).
What is still missing is a mathematically rigorous proof for a generalization bound in terms of general compression
coefficients. In this context it is important to notice that the proof of the compression bound in theorem 1 is only
valid in the situation where the hypotheses space is fixed independent of the training data. In our case, however, the

6

−2 0 2 4
0

0.1

0.2

0.3

tra
ing

 er
ror

−2 0 2 4

0.22

0.24

0.26

0.28

0.3

tes
t e

rro
r

−2 0 2 4

15

20

25

C 1

−2 0 2 4

5

10

15

C 2

−2 0 2 4
6

8

10

12

C 3

−2 0 2 4

10

15

20

C 4

−2 0 2 4

6

8

10

C 5

−2 0 2 4

2

4

6

8

10

rad
ius

−m
arg

in
bo

un
d

−2 0 2 4

5

10

15

spa
rse

 m
arg

in
bo

un
d

−2 0 2 4

2

4

6

8

10

tra
ce

bo
un

d

−2 0 2 4
0.2

0.25

0.3

spa
n b

ou
nd

Figure 2: Plots for abalone dataset withC = 1000 and sample sizem = 500. The x–scale shows the logarithm of the kernel
width σ. Shown are training and test error, the compression coefficientsC1 to C5 as well as several other model selection
criteria (see text).

−2 0 2 4

0.1

0.2

0.3

0.4

te
st

 e
rr

or

USPS

−2 0 2 4

10

12

14

C
3

−2 0 2 4

20

40

60

ra
di

us
−

m
ar

gi
n

b.

−2 0 2 4

0.1

0.2

0.3

0.4

sp
an

 b
ou

nd

−2 0 2 4

0.22

0.24

0.26

0.28

0.3

abalone

−2 0 2 4
6

8

10

12

−2 0 2 4

2
4
6
8

10

−2 0 2 4
0.2

0.25

0.3

0 2 4 6 8
0

0.2

0.4

breast cancer

0 2 4 6 8

2

4

6

8

10

0 2 4 6 8
0

0.2

0.4

0.6

0.8

0 2 4 6 8
0

0.2

0.4

0 2 4 6 8

0.2

0.3

0.4

Pima diabetes

0 2 4 6 8

6

8

10

0 2 4 6 8

5

10

15

0 2 4 6 8

0.2

0.3

0.4

Figure 3: Plots of selected criteria for all datasets. The x–scale showslog(σ). Parameters wereC = 1000, m = 500 for
abalone,C = 1000, m = 100 for diabetes,C = 1000, m = 100 for breast cancer andC =∞, m = 500 for USPS.

7

hypotheses space is data dependent and not known beforehand. Only after having trained the SVM we know the
hypotheses and how many bits we need to code them. As it is not obvious how to extend the proof of theorem 1 to
this more complicated case, it is necessary to develop new methods to derive data dependent compression bounds.

References

A. Barron, J. Rissanen, and B. Yu. The minimum description length principle in coding and modeling.IEEE
Trans. Inform. Theory, 44(6):2743 – 2760, 1998.

P. Bartlett and S. Mendelson. Rademacher and Gaussian complexities: Risk bounds and structural results. In
Proceedings of the 14th annual conference on Computational Learning Theory, pages 273–288, 2001.

P. Bartlett and J. Shawe-Taylor. Generalization performance of support vector machines and other pattern classi-
fiers. In C. Burges B. Scḧolkopf and A. Smola, editors,Advances in Kernel Methods – Support Vector Learning.
MIT press, 1999.

O. Chapelle and V. Vapnik. Model selection for support vector machines. In S. A. Solla, T. K. Leen, and K.-R.
Müller, editors,Advances in Neural Information Processing Systems 12. MIT Press, 2000.

T. M. Cover and J. A. Thomas.Elements of Information Theory. Wiley, 1991.

Mark H. Hansen and Bin Yu. Model selection and the principle of minimum description length.Journal of the
American Statistical Association, 96(454):746–774, 2001.

R. Herbrich, T. Graepel, and J. Shawe-Taylor. Sparsity vs. large margins for linear classifiers. InProceedings of
the Thirteenth Annual Conference on Computational Learning Theory, pages 304–308, 2000.

N. Littlestone and M. Warmuth. Relating data compression and learnability. Unpublished manuscript, 1986.

D. McAllester. Some PAC-bayesian theorems. InCOLT: Proceedings of the Workshop on Computational Learning
Theory, Morgan Kaufmann Publishers, 1998.

M. Opper and O. Winther. Gaussian processes and SVM: mean field and leave-one-out. In A. J. Smola, P. L.
Bartlett, B. Scḧolkopf, and D. Schuurmans, editors,Advances in Large Margin Classifiers, pages 311–326,
Cambridge, MA, 2000. MIT Press.

B. Scḧolkopf and A. Smola.Learning with kernels. Support Vector Machines, Regularization, Optimization and
Beyond. MIT press, 2002.

V. Vapnik. Statistical Learning Theory. Wiley, 1998.

V. Vapnik and O. Chapelle. Bounds on error expectation for support vector machines.Neural Computation, 12(9):
2013–2036, 2000.

8

