Max—Planck—Institut f Gr biologische Kybernetik
Max Planck Institute for Biological Cybernetics

MAX-PLANCK-GESELLSCHAFT

Technical Report No. TR-101

A compression approach to
support vector model selection

Ulrike von Luxburg,! Olivier Bousquet,!
Bernhard Scholkopf!

September 2002

! Department Schélkopf, email: ulrike.luxburg@tuebingen.mpg.de

This report is available in PDF-format via anonymous ftp at ftp://ftp.kyb.tuebingen.mpg.de/pub/mpi-
memos/pdf/ TRcompression02.pdf. The complete series of Technical Reports is documented at:
http://www.kyb.tuebingen.mpg.de/techreports.html

A compression approach to support vector model
selection

Ulrike von Luxburg, Olivier Bousquet, Bernhard $tkopf

Abstract. In this paper we investigate connections between statistical learning theory and data compression
on the basis of support vector machine (SVM) model selection. Inspired by several generalization bounds we
construct “compression coefficients” for SVMs, which measure the amount by which the training labels can be
compressed by some classification hypothesis. The main idea is to relate the coding precision of this hypothe-
sis to the width of the margin of the SVM. The compression coefficients connect well known quantities such as
R?/p?, the eigenvalues of the kernel matrix and the number of support vectors. To test whether they are useful in
practice we ran model selection experiments on several real world datasets. As a result we found that compression
coefficients can fairly accurately predict the parameters for which the test error is minimized.

1 Introduction

In classification one tries to learn the dependency of lapels patterns: from a given training seftz;, y;)i=1...m-

We are interested in the connections of two different methods to analyse this problem: a data compression approach
and statistical learning theory.

The minimum description length (MDL) principle (cf. Barron et al., 1998, and references therein) states that,
among a given set of hypotheses, one should choose the hypothesis that gives the shortest description of the
training data. Intuitively, this seems to be a reasonable choice: by Shannon’s source coding theorem (cf. Cover
and Thomas, 1991) we know that a short code is closely related to the data generating distribution. Moreover, an
easy-to-describe hypothesis is less likely to overfit than a more complicated one. The description of the data is
given in form of a code which tries to compress the data as well as possible.

There are several connections of the MDL principle to other learning methods. For instance, it is easy to see that
selecting the hypothesis with the highest posterior probability in a Bayesian setting is equivalent to choosing the
hypothesis with the shortest code (cf. Hansen and Yu, 2001).

In statistical learning theory, one derives generalization bounds to analyse learning algorithms. The compression
scheme approach of Littlestone and Warmuth (1986), which describes the generalization ability of a learning
algorithm by its ability to reduce the training set to a few important points, led to a bound for SVMs in terms
of the number of support vectors (cf. Bartlett and Shawe-Taylor, 1999). Combining this result with large margin
bounds leads to the sparse margin bound of Herbrich et al. (2000). In McAllester (1998), a PAC-Bayesian bound
for learning algorithms was derived. For a given prior distributidron the hypotheses space, it bounds the
generalization error essentially byln P(U)/m, whereU is the subset of hypotheses consistent with the training
examples. By Shannon’s theorem we see that P(U) is the length of the shortest code for this subset, which is

an indication that coding arguments can also be important in statistical learning theory.

This view is supported by the following theorem of Vapnik (1998, sec. 6.2). For any classification hypathesis
out of a finite hypotheses space he defines its compression coeffitizhby the number of bits needed to code

the training labels by using, divided by the number of labels. Then he connects the compression coefficient to

the generalization error of a learning algorithm:

Theorem 1 (Vapnik) Given a finite set of classification hypotheses, then with probability at leasy over the
random draw ofm training points, the risk is bounded b§(h) < 21In(2)C(h) — In(n)/m for all hypotheses

h, whereC' is the compression coefficient lofand the risk is defined as the expected loss of the hypothesis with
respect to a fixed loss function.

Even though this bound is only valid in a very restricted setting where we have a hypotheses space which is
independent of the training data it indicates that compression coefficients can be a helpful tool to analyse learning
algorithms.

Inspired by these bounds we want to explore the connection between statistical learning theory and data com-
pression in SVMs. To this end we construct compression coefficients for SVMs (sec.2). It turns out that with
this approach, we recover several quantities already known to be meaningful in statistical learning theory such as
R?/p?, the eigenvalues of the kernel matrix, and the number of support vectors. These quantities, which often
only appear separately in different generalization bounds, can even be integrated into one single compression co-
efficient. Our results support the view that there is a profound relation between data compression and statistical
learning theory. To test the model selection performance of our compression coefficients we ran experiments on
several real world data sets (sec.3). We find that the compression coefficients outperform several standard methods
and can compete with the state of the art span bound.

2 Compression coefficients for SVMs

The main idea for constructing compression coefficients for SVMs is an interpretation of the margin in terms of
coding precision: Suppose the data are (correctly) classified by a hyperplane with nhormatwaothmargin

p. In case of a large margin it is commonly held (e.g. 8kbpf and Smola, 2002) that small perturbations of

the direction of the hyperplane will not change the classification result on the training points (see figure 1a). In

/ rotation cone

Figure 1: (a.) All hyperplanes within the rotation cone induced by the margiroduce the same classification result on the
training patterns ag/. (b.) In case of an ellipsoid data domajnjnduces different rotation cone angles depending on the
direction of the hyperplane. Their associated covering balls on the spherical hypotheses space also have different sizes. In the
example showny < 3, henceH; must be coded with higher accuracy thdp.

compression language this means that we do not have to code the direction of the hyperplane with high accuracy —
the larger the margin, the less accurate we have to code. This is one way to justify the method of maximizing the
margin with the help of coding/compression arguments.

More concretely, we are givem pairs(x;, y;)i=1,...,m Of training patterns with labels. In classification we want

to predict the labelg for given patterns;, i.e. we want to lear(y|x), or at least some aspects Bfy|x), such

as the se{x|P(y|z) > 0.5}. So for the coding approach we assume that an imaginary sender and receiver both
know the trainingpatterns It will be the task of the sender to transmit tladels of the training patterns to the
receiver (cf. Vapnik, 1998, sec. 6.2.). Sender and receiver are allowed to agree on the details of the code before
transmission starts. First the sender trains an SVM and forms a hypothesis how the data should be separated. In
the easiest case this hypothesis is the direction of the separating hyperplane in the feature space. Now he transmits
the labels in two parts. First he codes the hypothesis and sends it. Then he transmits which of the training patterns
are misclassified by this hypothesis. To decode, the receiver applies the hypothesis to the training patterns and
constructs the labels for all patterns. Then he flips the labels of all patterns that are indicated to be misclassified by
this hypothesis. After this, the receiver will have reconstructed all labels correctly.

The second part, i.e. coding the misclassifications, is easy. We only have to code the hoimtisclassifications

(log(m) bits) and the indices of the misclassified training vectbss (') bits). Here and in the followindpg

denotes the base-2 logarithm.

The code of the first part depends on the kind of hypothesis we want to form after having trained the SVM. One
way of coding the labels with the help of an SVM was described above: we code the direction of the hyperplane
and adapt the precision by which we code this direction to the width of the margin. The space of all hypotheses
then consists of the unit sphere in the feature space. Now suppose that all training patterns lie in a ball of radius
R around the origin and that they are separated by a hyperplatiwough the origin with normal vecter and
marginp. Then every “slightly rotated” hyperplane that inside the ball still lies within the margin produces the
same classification result on all training points as the original hyperplane. Thus, instead aof ilseifto separate

the points we could use any vector in the rotation cone (ff. figure 1a).

To codew we now choose a set of “equidistant” representation vectors on the sphere of the feature space. Here we
have to ensure that in each cone “of wigthof the sphere there is at least one representation vector. The number

of vectors needed to fulfill this condition can be described as the number of balls of patesled to cover the
sphere of radiug?, such that the centers of the covering balls lie on the sphere. An upper bound of this number is
the following:

Proposition 2 To cover the sphenSj‘Q*1 of radius R in the d-dimensional Euclidean space we need less than
d—1
2 [%W balls of radiusp. The exponent in this upper bound is tight.

Proof We use an inductive procedure to prove the upper bound on the covering numhegrbeetn upper bound

on the number of balls needed to cover the spbﬁg‘el C R<. To construct @-covering onS% c R4*! we cover

the cylinderS% ! x [~ Rm/2, Rrr/2] with a grid of cqy1 := ¢4 - [Rm/p] points. The grid is then mapped on the
sphere. As the distances between the grid points do not increase by this mapping the projected points form an
p-cover of the spher§%. Ford = 2 the sphere is a circle which can be covered iitRr/p| < 2 [Rr/p] balls.

By the iteration described above we then get= 2 [Rrr/p]?~ " forall d € N.

To show that the exponent is tight we construct a lower bound on the covering number by dividing the area of the
surface of the whole sphere by the part of the surface covered by one single ball. As the area of this part is smaller
than the whole surface of the small ball we ¢BY p)?~! as lower bound for the covering number. ®

The code now looks as follows:

Code 1 Sender and receiver agree on the training patterns, a fixed kernel and on a procedure for choosing the
positions oft balls to cover the unit sphere in @&dimensional Euclidean space. Now the sender transmits the
numbern of representation vectors, the indegrf the representation vector representing the normal vector of the
hyperplane, the number of misclassified training examples, and the indices of the misclassified training examples.
To decode this information, the receiver constructs a covering of the sphere in the feature space withalls
according to the common procedure, determines the representation vector given by its index among all representa-
tion vectors, and constructs a hyperplane using this vector as normal vector. Then he classifies all training patterns
according to this hyperplane and flips the labels of the misclassified training examples.

As the numbem of representation vectors is not bounded beforehand we do not have an upper bound on the
number of bits needed to code it. Thus, to transimite use a code described in Cover and Thomas (1991, p. 149)
which use2logn + 2 bits. After this, the receiver already knowsand we can codéwith logn bits. Finally,

to transmit the number and indices of the misclassified training examples wédgéed + log (') bits. Using

(™) < m' andn < 2[Rr/p]*"" we thus obtain the compression coefficient

1

C; < (3(d—1)log F::T—‘ +310g2+(l+1)10gm+2> . 1)

To refine this analysis we now want to take into account the shape of the data in the feature space. To this end
we assume that the training patterns are contained in an ellipsoid withcaxesc, rather than a ball of radius

R. When using the rotation argument from above, we observe that in the ellipsoid situation the maximal rotation
angle of the hyperplane depends on the actual direction of the hyperplane (cf. figure 1b). The induced covering
balls on the spherical hypotheses space now have different sizes, too. Note, that instead of covering the sphere
with balls of different sizes we can directly cover the surface of the ellipse with balls of equal sizes. Moreover, to
keep the calculations easy, we will cover the whole ellipse instead of the surface only. This means that we use one
extra dimension (volume instead of surface), but in high dimensional spaces this does not make much difference.

Proposition 3 To cover ad-dimensional ellipse with principal axes, ..., ¢, we need at mos}ﬂfz1 hﬂ balls of

radius p. The dependency qﬁle % is tight.

Proof The smallest parallelepiped containing the ellipse has side lefgths., 2¢, and can be covered with a
grid of Hle [2¢;/p] balls of radiusp. This gives an upper bound on the covering number.

To obtain a lower bound we divide the volume of the ellipse by the volume of one single balk, et the
volume of ad-dimensional unit ball. Then the volume of a ball of radjuis p%v,; and the volume of an ellipse

d
with axescy, ..., cq iS given byv, Hle ¢q. SO we need at Ieag{%cd balls. ®

Proposition 4 For given training patterngz;);=1,...., and kernelk, let A4,, A, be the eigenvalues of the
kernel matrixkK . Then all training patterns are contained in an ellipse with principal ax@s, ..., vA,,..

Proof Letspan{d,,|i = 1,...,m} be the subspace of the feature space spanned by the training examples. It is
endowed with the scalar produ@;,,d.,)x = k(z;, z;). We map this space t@», (., .):,) by 0., — e;, where

e; denotes the-th unit vector inlz and (., .);, is the canonical scalar product bf It turns out that for:, v € 5

we have(u,v)x = uv'Kwv. Letw,...,v, be thely-normalized eigenvectors corresponding to the eigenvalues
A1, ..y A They satisfy(v;, v;) k = A;0;;. Now it is easy to check that for all training examplesthe ellipse

inequality
2
<5r‘) Uj>K
; <||Uj|K\//\j

holds. ©)

Combining these two propositions it turns out that the number of balls of radugsneed to cover the data ellipse
is given byn < L/ljif‘ﬁ Now we can state the next code:

Code 2 This code works exactly as cotlgthe only difference is that an ellipse is used instead of a ball.
Counting the number of bits analogously to code 1 we get a compression coefficient of

d
Cy, < ;1(321% P\;X—‘+(l+1)logm+2>. 2)
=1

Both compression coefficients we derived so far depend on the dimehsidhe feature space in which we code

the hyperplane. It is easy to see that the solution of most kernel algorithms lives in the subspace spanned by the
training examples (representer theorem), so that we can always workl withn. For SVMs the solution even

lies in the subspace spanned by the support vectors which form a subset of the training examples. Therefore, an
easy dimension reduction can be achieved by working in this subspace. To do this we additionally have to code the
numbers and the indices of the support vectors among the training patternsogith + log (’s") bits. This leads

to

Code 3 Sender and receiver agree on the training patterns, the kernel, and the procedure of covering an ellipsoid.
After training an SVM the sender transmits the numbef support vectorsl¢g m bits), the indices of the support
vectors {og (") bits), the number of representation vector2{ogn + 2 bits), the index of the representation
vector usedlbg n bits), the numbef of misclassified patterndog m bits), and the indices of the misclassified
patterns [og (T) bits). To decode, the receiver constructs the hypotheses space consisting of the data ellipse
projected on the subspace spanned by the support vectors. He covers this ellipsballistand chooses the vector
representing the normal vector of the hyperplane. Then he labels the training patterns by first projecting them into
the subspace and then classifying them according to the hyperplane. Finally, the labels of the misclassified patterns
are flipped.

Using propositions 3 and 4 with the eigenvalugs> ... > ~; of the kernel matrix restricted to the support vectors
we obtainn < []7_, 2,/7:/p°. So code 3 has a compression coefficient of

1 u 2\/7i

O3 < ((l—!—s—i—?)logm—I—SZlog [ﬁ%z). (3)
m =1 P

A further dimension reduction can be obtained with the following idea: The axes of the data ellipse are decreasing

fast for large dimensions. Once the axis in one direction is very small we can discard this dimension by projecting

the data in a lower dimensional subspace using kernel PCA. Essentially, the idea is to “use up” part of the margin

for the projection error. If, say, the maximal projection errgs/8, then even after projection the training patterns
will lie on the same side of the hyperplane as before. Now we can use the remaining part of the margin to code the
hyperplane as before.
More detailed this approach works as follows: First we train the SVM and get the normal vegtal marginp.
As hypotheses space we will use the sphere with rafliuise. we renormw to lengthR by wq := ﬁR. Itis
important here not to confuse the hypotheses space (sphere) and the data space (ellipse). We place the rotation cone
of width p aroundw,. Above we argued that in the ellipse setting the rotation cone has different sizes depending
on the position ofv in the data ellipse. By using a sphere of raditiand the rotation cone of widthwe actually
consider the smallest possible rotation cone.
Now we perform a principal component decomposition of the training data in feature space. The principal com-
ponents are the directions of the axes of the ellipse. We sort the principal components such that their eigenvalues
A1, .., A, decrease. Fop € {1,...,m} let P be the projection on the the subspace spanned by theifirst
eigenvectors.
Now we have to check if the projected hypothe#¥s)) still lies within the rotation cone. If no, the projection
error made byP is too big and we cannot project on tlig-dimensional subspace. If yes, we are still within the
allowed bound of precision after projecting, i.e. we can discard the last — d » dimensions. In this case we can
encode the projected normal vectB(w,) in andp-dimensional space and we c#la valid projection. As we
already made some error by projecting into this low-dimensional space we have to code more precisely now.
For a valid projection we can compute the part of the margin it uses by

_ Nlwo = P(wo)l| _ [lw = Pw)[- R

P - Tl =R |jw— Pw)|| €0,1].

The remaining part of the margin can be used for the error made by cétiing) with a representation vector
r(wp) of a covering of thelp-dimensional data ellipse, i.e. we have to cover the ellipse with balls of radius

\/1— c2p. Then the total error made by this code can be calculated as

llwo = 7(wo)|* = [lwo — P(wo)lI” + [|P(wo) = r(wo)ll* < cpp® + (1 = cp)p® = p*

i.e the representation vectofw,) still lies within the original rotation cone.

As we already used in the construction of code 3 we can always work in the subspace spanned by the support
vectors. Starting from this subspace we try to projecn smaller subspaces. For this we use a PCA only of the
support vectors. So the code looks as follows:

Code 4 Sender and receiver agree upon the training patterns, the kernel, the procedure of covering ellipsoids,
and on how to perform a PCA. The sender trains the SVM and chooses a valid projection on some subspace.
He transmits the number of support vectorsl¢g m bits), the position of the support vectoisg (') bits), the
numberm — dp of dimensions to discarddg m bits), the number of representation vectorg {og n + 2 bits),

the index of the representation vector uség; (bits), the numbel of misclassified patternsdgm bits), and

the position of the misclassified pattermsg((’f) bits). To decode, the receiver constructs the hypotheses space
consisting of the ellipse projected on the subspace spanned by the support vectors. Then he performs a PCA on the
support vectors and projects the hypotheses space on the subspace spanned byitheriinsipal components.

In this subspace he covers the remaining ellipse wittalls, chooses the representation vector as indicated and
uses it to construct a hyperplane in the subspace. Now he projects all training data in this subspace, classifies it
according to the hyperplane and flips the labels of the misclassified patterns.

For fixed numberip the compression coefficient for this code is given by

1
o (310gm+10g (T?) +log<) +310gn—|—2>

Cy

< ;<3logm+log<?)+log<)+3210g{ \/tpp—‘+2> (4)
dp
< ;L((l+s+3)logm+3210g’r\/76p“—|—2> (5)
P

wherecp is determined as described above apdre the eigenvalues of the kernel matrix restricted to the support
vectors only.

So far we always considered codes that used the direction of the hyperplane as hypothesis. A totally different
approach is to reduce the data by transmitting support vectors only. This quite simple code works as follows:

Code 5 Sender and receiver agree on training patterns and a kernel. The sender sends the nwihdgpport
vectors [og(m) bits), the indices of the support vectotsg (’Z) bits), the labels of the support vectorsHits),

the numbei of misclassified training patternsog(m) bits), and the indices of the misclassified training patterns
(log (T) bits). To decode this information, the receiver trains an SVM with the agreed kernel and with the support
vectors as training set. Then he computes the classification result of this SVM for the original training patterns
and flips the labels of the misclassified patterns.

This code leads to a compression coefficient of

Cs < —((l+s+2)logm+s). (6)

1
m
3 Experiments

To test the utility of the derived compression coefficients for model selection we ran experiments on different real
world datasets: the Pima Indians diabetes database (768 data points), the Wisconsin breast cancer database (683
data points) and the abalone dataset (4177 data points) from the UCI machine learning repository, and the US
postal service handwritten digit recognition benchmark (9298 data points). In all experiments we first permuted
the whole dataset and divided it into subsets of a certain sample size (100, 200 or 500). Then, to be consistent
with the rotation argument, we centered each subset in feature space. We trained hard and soft margin SVMs
(C = 0.1, 10,1000, 100000, cc) with Gaussian kernelsy(= 1073,1072,...,10%). The test error was computed

on the training subset’'s complements. We plotted the mean values of the test errors and compression coefficients
over all training subsets. Error bars depict standard deviations. We compared our results to several other model
selection criteria: the trace criteriopfy ® \;/m?p? (Bartlett and Mendelson, 2001), the sparse margin criterion

V/ R?/p?(m — s) (Herbrich et al., 2000), the span bound (cf. Vapnik and Chapelle (2000) and Opper and Winther
(2000)) and the well known radius-margin bougti? /mp? (Vapnik, 1998). Note that there exists an improved
version of the latter bound, which uses rescaling to adapt to the shape of the data in the feature space (Chapelle
and Vapnik, 2000). We plan to use this version instead of the standard version in future experiments. In figure 2
we plotted all results for the abalone dataset, in figure 3 we show some results on different datasets.

It turns out that some of the compression coefficients predict the shape of the test error curve quite well, even
if their absolute values are 1 because of too small sample sizes. The best results seem to be obtained by
the compression coefficients, andCs , but even the very simple coefficie@t looks better than some of the
standard bounds. The projection bouriddoes not produce better results th@n The standard deviations of the
compression coefficients are small compared to the span bound, which indicates that the compression results are
quite stable.

In another experiment we went one step further than only plotting the curves and actually used the bounds for
model selection. We focused on selecting the value,dixing C' to a constant value. Comparing the test errors

of the selected model to the optimal ones, we found that in most ¢aspsrforms well (better tha6@'s, although

the latter looks better in figure 3), in general only slightly beaten by the span bound, but nearly always better than
the radius-margin bound or the sparse margin bound.

4 Discussion

We derived compression coefficients for SVMs which combine well-known quantities such as the margin, the
eigenvalues of the kernel matrix and the number of support vectors. The results of our experiments suggest that
these compression coefficients can be a good tool to describe the generalization error of SVMs. As they are easy
to compute they can be readily used in practice. We think, performance can even be improved by using tighter
bounds in the derivation (e.g., when bounding the covering numbers or the binomial coefficients).

What is still missing is a mathematically rigorous proof for a generalization bound in terms of general compression
coefficients. In this context it is important to notice that the proof of the compression bound in theorem 1 is only
valid in the situation where the hypotheses space is fixed independent of the training data. In our case, however, the

0.3

0.3
g 0.2 ;E’; 0.28 _'25
2 B 0.26 O 20
T o1 £ 0.24
0.22 15
°=Z o 2z a -2 o0 2 a4 -2 o 2 a

15

o

e

a C;
*l
c
-
mmﬁ
c
3

—2 o =2 —2 o0 2 a —2 o =2 a
=]

s = 15 10

_810 =

= 2 2 8 Z os3

= g0 8. =

g 6 E § . _00-25

t.ln 4 R 5 = é—

= > = o2

g i 0

-2 o

N
IN

-2 o 2 4 -2 o 2 a

Figure 2: Plots for abalone dataset with= 1000 and sample size: = 500. The x—scale shows the logarithm of the kernel
width o. Shown are training and test error, the compression coeffic@nt® Cs as well as several other model selection
criteria (see text).

USPS abalone breast cancer Pima diabetes
0.4 0.3 0.4 04
S03 0.28
3302 0.26 0.2 0.3
g 0.24
0.1 0.22 0 0.2
-2 0 2 4 -2 0 2 4 0 2 4 6 8 0 2 4 6 8
14 10
12 o 10
12
Om 10 6 8
10 8 4
6 2 °
s -2 0 2 4 -2 0 2 4 0 2 4 6 8 0 2 4 6 8
15
S 60 10 08
540 8 0.6 10
T 6 04
S 20 4 0.2 5
° 2
® 0
-2 0 2 4 -2 0 2 4 0 2 4 6 0 2 4 6 8
- 04 03 04 04
S .
303
0.3
g 0.2 0.25 0.2
&
0.1 02 0 0.2

-2 0 2 4 -2 0 2 4 0 2 4 6 8 0 2 4 6 8

Figure 3: Plots of selected criteria for all datasets. The x—scale sl@s). Parameters wer€ = 1000, m = 500 for
abalone” = 1000, m = 100 for diabetesC' = 1000, m = 100 for breast cancer an@ = oo, m = 500 for USPS.

~

hypotheses space is data dependent and not known beforehand. Only after having trained the SVM we know the
hypotheses and how many bits we need to code them. As it is not obvious how to extend the proof of theorem 1 to
this more complicated case, it is necessary to develop new methods to derive data dependent compression bounds.

References
A. Barron, J. Rissanen, and B. Yu. The minimum description length principle in coding and modktiBg.
Trans. Inform. Theory44(6):2743 — 2760, 1998.

P. Bartlett and S. Mendelson. Rademacher and Gaussian complexities: Risk bounds and structural results. In
Proceedings of the 14th annual conference on Computational Learning T,ipeags 273-288, 2001.

P. Bartlett and J. Shawe-Taylor. Generalization performance of support vector machines and other pattern classi-
fiers. In C. Burges B. Sditkopf and A. Smola, editorgydvances in Kernel Methods — Support Vector Learning
MIT press, 1999.

O. Chapelle and V. Vapnik. Model selection for support vector machines. In S. A. Solla, T. K. Leen, and K.-R.
Mduller, editors Advances in Neural Information Processing System$1Z Press, 2000.

T. M. Cover and J. A. Thomaglements of Information ThearWiley, 1991.

Mark H. Hansen and Bin Yu. Model selection and the principle of minimum description ledgtirnal of the
American Statistical AssociatipA6(454):746—774, 2001.

R. Herbrich, T. Graepel, and J. Shawe-Taylor. Sparsity vs. large margins for linear classifierecéedings of
the Thirteenth Annual Conference on Computational Learning Theages 304—308, 2000.

N. Littlestone and M. Warmuth. Relating data compression and learnability. Unpublished manuscript, 1986.

D. McAllester. Some PAC-bayesian theoremsCIOLT: Proceedings of the Workshop on Computational Learning
Theory, Morgan Kaufmann Publisherk998.

M. Opper and O. Winther. Gaussian processes and SVM: mean field and leave-one-out. In A. J. Smola, P. L.
Bartlett, B. Scldlkopf, and D. Schuurmans, editorAdvances in Large Margin Classifierpages 311-326,
Cambridge, MA, 2000. MIT Press.

B. Scholkopf and A. Smola.Learning with kernels. Support Vector Machines, Regularization, Optimization and
Beyond MIT press, 2002.

V. Vapnik. Statistical Learning TheoryWiley, 1998.

V. Vapnik and O. Chapelle. Bounds on error expectation for support vector macNieesal Computation12(9):
2013-2036, 2000.

