
170
IEICE TRANS. INF. & SYST., VOL.E106–D, NO.2 FEBRUARY 2023

PAPER

A Compression Router for Low-Latency Network-on-Chip

Naoya NIWA†a), Yoshiya SHIKAMA†, Nonmembers, Hideharu AMANO†, Fellow,
and Michihiro KOIBUCHI††,†††, Senior Member

SUMMARY Network-on-Chips (NoCs) are important components for
scalable many-core processors. Because the performance of parallel ap-
plications is usually sensitive to the latency of NoCs, reducing it is a
primary requirement. In this study, a compression router that hides the
(de)compression-operation delay is proposed. The compression router
(de)compresses the contents of the incoming packet before the switch ar-
bitration is completed, thus shortening the packet length without latency
penalty and reducing the network injection-and-ejection latency. Evalua-
tion results show that the compression router improves up to 33% of the
parallel application performance (conjugate gradients (CG), fast Fourier
transform (FT), integer sort (IS), and traveling salesman problem (TSP))
and 63% of the effective network throughput by 1.8 compression ratio on
NoC. The cost is an increase in router area and its energy consumption
by 0.22 mm2 and 1.6 times compared to the conventional virtual-channel
router. Another finding is that off-loading the decompressor onto a network
interface decreases the compression-router area by 57% at the expense of
the moderate increase in communication latency.
key words: Network-on-Chips, router architecture, lossy data compression

1. Introduction

The number of cores in a system is increasing, particu-
larly in high-performance computing. A high degree of
parallelism in these systems introduces various challenges
to their applications and component architectures. The in-
crease in bandwidth requirements for on-chip communica-
tion is one of the most serious problems. Network-on-Chip
(NoC) is a popular method to support this high bandwidth
requirement, which uses on-chip routers to build a network
for scalable on-chip communication. Compared to the bus
method, which uses global signal lines within the chip, NoC
can achieve higher throughput, because communication can
be initiated from multiple cores and a number of routers can
transmit data simultaneously. On the contrary hand, NoC
relies on complex routers, which increase the circuit area
and energy consumption and cause increased latency be-
cause of multiple hops between routers. The major concern
in NoC design is the reduction of latency without compro-
mising scalability.

Manuscript received May 18, 2022.
Manuscript revised August 23, 2022.
Manuscript publicized November 8, 2022.
†The authors are with Keio University, Yokohama-shi, 223–

8522 Japan.
††The author is with National Institute of Informatics, Tokyo,

101–8430 Japan.
†††The author is with PRESTO JST, Tokyo, 101–8430 Japan.
a) E-mail: naoya@am.ics.keio.ac.jp

DOI: 10.1587/transinf.2022EDP7080

Assuming that a packet that consists of L flits is trans-
ferred through H hops, the ideal zero-load communication
latency, T , is calculated on a wormhole NoC as follows:

T = Tlt × (H + 1) + Trouter × H + L, (1)

where Trouter and Tlt are the latency of the router and link
transfer, respectively. To reduce the value H, the network
topology needs to be changed, which tends to be fixed by
the implementation requirements of the system. Thus, prior
studies focused on reducing Trouter with innovation on router
architectures, and various low-latency routers have been
proposed [1], [2].

This study attempts to reduce L in Eq. (1) by data com-
pression. Data compression is a widely used technique that
has been extensively researched. In NoCs, there is a se-
vere restriction on latency. Assuming the number of cycles
for data compression Tcomp and that for data decompression
Tdecomp, Eq. (1) can be rewritten as follows:

T = Tlt × (H + 1) + Trouter × H + Lcompressed

+ Tcomp + Tdecomp,
(2)

That is, in order to reduce zero-load latency of NoC,
L − Lcompressed > Tcomp + Tdecomp must be satisfied. In
the practical NoC design, only a few cycles are allowed for
Tcomp + Tdecomp. Thus, the compression algorithm must sat-
isfy a strict compression-time limitation.

When the load of a network is heavy, the delay in the
network increases significantly compared to the zero-load
latency. Thus, the influence of the increased delay owing
to data compression becomes small in such a case. In this
study, a compression router that hides the latency by com-
pressing and decompressing packets in the router pipeline,
thus making Tcomp = Tdecomp = 0, is proposed.

A source router compresses the data body of a packet,
while the destination router decompresses them. The control
information required for packet transfer, for example, a des-
tination, a virtual channel (VC) number, and a flit type are
not compressed. Because it is a small portion of a packet,
its influence on the packet length is low.

The compression router (de)compresses the data con-
tent of an incoming packet before completing the switch ar-
bitration operations. Because the advanced on-chip router
takes two to four pipeline stages, the compression latency
should be completed in one or two cycles to achieve no la-
tency penalty by the data (de)compression operation. In this

Copyright c© 2023 The Institute of Electronics, Information and Communication Engineers

NIWA et al.: A COMPRESSION ROUTER FOR LOW-LATENCY NETWORK-ON-CHIP
171

context, two simple bitwise compression algorithms, the fre-
quent pattern compression(FPC) approach for integer num-
bers [3], and bit-cut approximation for floating-point num-
bers [4], [5] on the compression router, are considered. The
FPC uses patterns effective for data sequences of positive
integers with consecutive zeros in the upper bits. We then
evaluated how the proposed method improved performance
when the FPC worked efficiently. Although the proposed
method can be efficient for different applications, investi-
gating the area is outside the scope of this study.

The traditional data-compression approach (de) com-
presses the data at a network interface(NI) or processing
element (PE) which heavily imposes the (de)compression
latency to end-to-end communication latency on NoCs [6],
[7].

The contributions of this paper are as follows.

• A compression router architecture that performs packet
forwarding processing and (de)compression in parallel
is proposed. The (de)compression overhead is two cy-
cles, and its operation latency is hidden.
• The cycle-accurate network simulation shows that the

compression router improved up to 63% of the effec-
tive network throughput under synthetic traffic patterns
compared to the conventional NoC with no compres-
sion. Communication latency decreased up to 41%.
• The cost is an increase in router area and its energy con-

sumption by 0.22 mm2 and 1.6 times compared to the
conventional virtual-channel router. Another finding is
that off-loading the decompressor onto a network inter-
face decreases the compression-router area by 57% at
the expense of the moderate increase in communication
latency.

This study extends the work of our prior publication [8]
by exploring alternative compression router architectures
and detailing a comprehensive analysis of NoCs using com-
pression routers.

The remainder of this paper is organized as follows.
Section 2 presents the background of the compression
router. Section 3 describes the architecture of the compres-
sion router. Section 4 presents the results of the analysis and
simulation. Section 5 concludes the paper with a summary
of our findings.

2. Background

2.1 Compression in Network-on-Chip

Using compression to enlarge the network effective through-
put is a common technique on networks outside chips. For
example, well-known lossless compression algorithms such
as gzip are widely used in common communications such as
HTTP. In the field of High-Performance Computing (HPC),
communication compression is also used to improve perfor-
mance and reduce energy consumption [9], [10].

In such a network, because end-to-end communication

Fig. 1 (a) Block diagram of a baseline on-chip router, and (b) pipeline
processing of a packet.

latency is long and a message is composed of multiple pack-
ets, the time margin for data compression can be maintained
and a certain number of packet reductions by compression
can be expected. On the contrary, in NoC, its short end-
to-end latency imposes severe restrictions on the compres-
sion overhead. To improve the system performance using
data compression on NoCs, a method is to relax such se-
vere design limitations. This study presents a proposal for
communication compression of NoCs that overcomes these
constraints.

2.2 Baseline Router

The input-buffered router architecture shown in Fig. 1 (a)
was introduced as the baseline. A wormhole router with
p physical channels, each of which has two virtual channels
(VCs) is assumed.

Each packet is forwarded along the pipelining, as
shown in Fig. 1 (b). A header flit is forwarded along three
pipeline stages: routing computation (RC), VC, and switch
allocation (VSA) to obtain the access grant of an out-
put channel, and switch traversal (ST) for transferring flits
through the crossbar on a router.

The speculation technique was applied to an on-chip
router. The speculative router performs multiple pipeline
stages parallel to [1], [2]. If both stage operations succeed,
the flit-transfer latency decreases. For example, in the spec-
ulation that performs VSA and ST operations in parallel, a
router transfers a flit with two cycles. To perform this spec-
ulation, at least the input speedup is required [2].

2.3 Compression Algorithms

A compression algorithm that considers the similarity of
the data to be compressed has been well researched. A
low-latency compression algorithm that uses the prefix pat-
tern of data appearing at high frequencies has been pro-
posed for cache line and NoC communication [3], [11], [12].
There are also low latency compression algorithms used to
enhance the performance of interconnection network [13],
which is used in this study. An NoC forwards packets that
contain data in a cache line between a processor element
(PE) and a shared Level-2/3 cache on a chip multiprocessor

172
IEICE TRANS. INF. & SYST., VOL.E106–D, NO.2 FEBRUARY 2023

(CMP). Compression algorithms have been proposed for
such NoC communications, and there are trade-offs in terms
of compression ratio, latency, and accuracy. In our compres-
sion router, we chose existing compression algorithms that
are appropriate for the application and adjusted their param-
eters.

Compression algorithms are classified as lossless and
lossy. In terms of correctness, the lossless algorithm can
be applied to any data, whereas the lossy algorithm can be
applied only to applications that satisfy the requirement of
accuracy.

This study follows the policy: lossless compression is
used for accurate data transfer, and lossy compression is
used for possible applications that accept degraded accu-
racy.

2.4 Compression Latency Hiding

Data compression can increase the effective throughput,
while it may increase the communication latency owing to
its operational overhead, which stretches the application ex-
ecution time. Hiding the (de)compression operation delay is
an essential consideration in the design.

Jin et al. proposed embedding the compressor (en-
coder) and decompressor (decoder) in the network inter-
face [14]. The overhead of encoding is only one clock cy-
cle by the pipelined implementation of packet injection us-
ing streamlined encoding. Boyapati et al. introduced an ap-
proximation for NoC compression, similar to the proposed
method [12]. They also proposed to compress the data with
a VC allocation operation or the queuing time of the net-
work interface in parallel. Both studies can hide the latency
of compression; however, they do not touch the decompres-
sion.

In most studies, including this study, compression is
performed when packets are injected into the network, and
decompression is performed at the ejection. This allows the
transfer of compressed data in the network and treatment
of uncompressed data in the processing elements. In this
framework, compression and decompression are asymmet-
ric from the viewpoint of NoC. That is, at the injection, a
packet is always the compression target, while the ejection
of a packet is judged by the router at its final stage of packet
processing. When a packet is judged to be ejected, the role
of the NoC is simply ejecting it; thus, there is no time to
hide the latency of decompression.

3. Compression Router

3.1 Router Components

The proposed compression router is an extension of the
baseline input-buffered router, as shown in Fig. 1 (a). In the
baseline router, a header flit waits for the completion of the
RC and VSA operations at the input port. The compression
router (de)compresses the contents of an incoming packet

Fig. 2 (a) Block diagram of the compression router, and (b) pipeline pro-
cessing of a packet.

at the input port before completing the two pipeline opera-
tions. Our data compression targets are the cache line con-
tent of the packets. This includes some of the cash lines
included in the flit. Figure 2 (a) illustrates the change in the
compression router architecture from the baseline router in
Fig. 1 (a).

The changes required for the compression router are
as follows: (1) adding a compressor for an input channel
corresponding to a local endpoint, that is, PE or cache, (2)
adding a decompressor for each input channel from a neigh-
boring router, and (3) aggregating five links from/to a local
endpoint for compression latency hiding.

In (2), the decompressors are placed at each input port
instead of the output port to the local endpoint to hide the
latency caused by the decompressor. If the routing desti-
nation is a local endpoint, decompressed data is forwarded.
If the routing destination is a router, it forwards undecom-
pressed (compressed) data, and discards the decompressed
data. From the packet’s viewpoint, it is compressed once
when it is injected to the network and decompressed each
time it is forwarded to the router. In the case of a route
with many hops, many of its decompressed values will be
discarded. As described in Sect. 3.2, the proposed method
hides the compression and decompression latency in the
early part of the router pipeline. If a decompressor is placed
on the output port from the neighboring router to the lo-
cal endpoint, this latency concealment becomes impossible.
Installing a decompressor at the input port means that an
increasing area proportional to the number of routers is re-
quired. There is a trade-off relationship where the latency
can be reduced at the cost of increasing the area. The pro-
posed method first selects latency reduction.

In (3), link aggregation is necessary to work the com-
pressor, which requires two cycles to compress the entire
packet. The details are presented in Sect. 3.4.

The compressor and decompressor are equipped with
multiple compression algorithm circuits and a mechanism
to select one. This allows for adaptive compression depend-
ing on the cache line content. The details are described in
Sect. 3.3.

3.2 Pipeline Structure

The data compression is independent of the operation of

NIWA et al.: A COMPRESSION ROUTER FOR LOW-LATENCY NETWORK-ON-CHIP
173

the routing computation and VC/switch-allocation; thus, the
compression can be executed in parallel with them. The
compression router thus becomes a three-stage pipeline,
[RC/CMP1] [VSA/CMP2] [ST], as shown in Fig. 2 (b).

At the time of switch traversal, data must be kicked out
of the queue, therefore compression is not possible. Because
the header flit also contains part of the data payload, the
maximum latency that can be hidden is two cycles in the
baseline router.

On an intermediate router, the incoming packet data
body has already been compressed. Because the control in-
formation is not compressed on the packet, the pipelining
of a packet can be the same as the conventional router in
Fig. 1 (b), except for the case where the destination is a local
endpoint. For such a case, a compression router is required
to decompress an incoming packet.

3.3 Compressors

Two compressors, lossless and lossy, were designed. Both
compressors only compress the cache lines contained in the
packet, and not the headers containing packet destination
and cache address information.

The compression router can provide multiple compres-
sors and switch them using a compression mode field at-
tached to the header. This proposal can be easily applied by
changing the compression circuit accordingly.

3.3.1 The Lossless Compressor

We used the lossless compression algorithm and customized
FPC [3] for integer values. The compression targets were
32-bit integer arrays. The array was divided into 32-bit inte-
gers, and each value was compared with the pattern shown
in Tables 1, 2, and 3. The pattern on a sequence of zeros
was prepared in the frequently occurring higher bits. We
attempted up to three, seven, and fifteen compression pat-
terns identified by a 2, 3, or 4-bit prefix. The data were
compressed by combining the prefix corresponding to the
matched pattern with the rest of the bits outside the pat-
tern. There was a priority order of patterns, and patterns
with smaller data sizes were prioritized. In the case of the
“Uncompressed” pattern that did not match any of the pat-
terns, the amount of redundant data increased by a purely
redundant amount, from 32 to 35 bits with a 3-bit prefix.

Each pattern was identified to be a frequent pattern in
preliminary experiments that observed NoC traffic. If the
number of prefix bits is increased, the number of supported
patterns can be increased, however, this increases the over-
head of the prefix and complicates the circuit. It is difficult
to set up complex patterns that require arithmetic operations
because of the constraints on the number of cycles of com-
pression. Because many integers with small values and con-
secutive zeros in the upper bits were transferred to the NoC
traffic, a pattern that can be applied to patterns with particu-
larly high frequencies was constructed.

Table 1 Customized Frequent Pattern Encoding (The pattern upper is
the higher priority.)

Prefix Pattern encoded Data size
after encoding

101 18 bits or more leading zero 17 bits
100 17 bits leading zero 18 bits
011 16 bits leading zero 19 bits
010 15 bits leading zero 20 bits
001 14 bits leading zero 21 bits
000 13 bits leading zero 22 bits
111 Uncompressed 35 bits

110 (Unused prefix)

Table 2 Frequent Pattern Encoding (2-bit prefix) (The pattern upper is
the higher priority.)

Prefix Pattern encoded Data size
after encoding

10 18 bits or more leading zero 16 bits
01 17 bits leading zero 17 bits
00 16 bits leading zero 18 bits
11 Uncompressed 34 bits

Table 3 Frequent Pattern Encoding (4-bit prefix) (The pattern upper is
the higher priority.)

Prefix Pattern encoded Data size
after encoding

1110 24 bits or more leading zero 12 bits
1101 23 bits leading zero 13 bits
1100 22 bits leading zero 14 bits
1011 21 bits leading zero 15 bits
1010 20 bits leading zero 16 bits
1001 19 bits leading zero 17 bits
1000 18 bits leading zero 18 bits
0111 17 bits leading zero 19 bits
0110 16 bits leading zero 20 bits
0101 15 bits leading zero 21 bits
0100 14 bits leading zero 22 bits
0011 13 bits leading zero 23 bits
0010 12 bits leading zero 24 bits
0001 11 bits leading zero 25 bits
0000 10 bits leading zero 26 bits
1111 Uncompressed 36 bits

3.3.2 The Lossy Compressor

The lossy compression algorithm used in this study trims the
lower bits for floating-point values [4], [5]. The compres-
sion targets are 64-bit IEEE 754 double-precision floating-
point arrays, and the method reduces the size by trimming
the lower bit data in the array. The number of bits to be
trimmed was specified through the header. The trimmed
bits were recovered on the receiver side. The pattern of
0b100. . . was used to make the completion close to the me-
dian of the possible values.

The characteristics of the application determine the bit
length to be truncated. This number of bits was determined
by finding the maximum number of bits to truncate that can
actually run the application and maintain the quality of re-

174
IEICE TRANS. INF. & SYST., VOL.E106–D, NO.2 FEBRUARY 2023

Fig. 3 The compressor on the compression router.

sults that the application will tolerate. The compression
router used a compression circuit that allows the number of
bits to be trimmed to be set arbitrarily to 2, 4, 6, . . . , 28 bits,
and compresses the data with the accuracy required by the
application.

3.4 Design of (De)Compressor

In the compression router, each compressor was indepen-
dently implemented at a local input port and shared by all
VCs on the compression router. The (de)compression must
be completed within two cycles to avoid affecting the com-
pression latency to the router latency.

In this study, we mainly discuss the implementation of
the lossless compressor because the lossy compressor sim-
ply discards the leading LSBs for floating-point numbers.
We used an FPC lossless algorithm that compressed only
frequently appearing patterns of integer numbers, for exam-
ple, leading 0 s and 1 s, and used three bits for the prefix, that
is, up to seven patterns of values. The bit width on a link is
constant on a router, and two cycles are required for com-
pression. Thus, it was necessary to receive all flits in the
two cycles during compression. Figure 3 shows the archi-
tecture of the compressor at the input port. When a packet
is 10 flits, the router must receive 5 flits per cycle from the
local PE through link aggregation. We need to prepare a 11-
filt channel buffer for the increase in packet size after com-
pression. The flow control is done based on the free buffer
capacity as in common NoCs as well as other control mech-
anisms. If the compression ratio is low and time is needed
to inject the packets after compression, the packets are held
in a queue similar to the case of network congestion.

In the figure, for the compression of integer values,
the prefix calculator was used to count the leading 0 s and
1 s to identify frequently appearing (input) patterns. In the
pipeline, the first stage [CMP1] compresses the first four
flits. A compression algorithm requires the serialization of
the input data, and its operation is included in this stage.
The second stage [CMP2] compresses the remaining flits
and writes the header flit back to an input VC. The com-
pression in the second stage was performed in two steps.
First, the remaining six flits were divided into two fronts
and four backs and compressed each one. The next two front
flits are combined with the four flits compressed in [CMP1]
and written back to the register. In stage [ST], the first six

flits and the second half four flits that have been compressed
separately so far are combined and written back to the input
buffer. We maintain the operating frequency with the com-
pression stage on the router, and the results are presented in
the next section.

The decompressor is implemented on each input port
from a neighbor, unlike the compressor. Because differ-
ent VCs have the probability of receiving flits of multiple
packets simultaneously, each VC has a decompressor that
increases the amount of hardware for the router. Because
the decompressor works only for a packet to a local end-
point at a compression router, it uses the results of RC. If the
destination is not a local endpoint, the decompressor stops
its operation. At this time, the first stage of the decompres-
sor is already in operation, resulting in unnecessary energy
consumption. It reduces latency, but with the trade-off of
increased area and energy consumption. Because a header
flit is not subject to compression, the routing itself does not
require decompression.

3.5 Alternative Design of Compression Router

Since all the input ports from neighbor routers are equipped
with the decompressors, the decompressors can be a dom-
inant factor in the hardware amount of the compression
router. To reduce the hardware amount, an alternative design
is to off-load the decompressors onto a network interface. It
only requires a single decompressor to a network interface
instead. The drawback is that the operation latency of the
decompression can not be hidden, thus increasing the end-
to-end communication latency. We investigate this trade-off
in the next section.

4. Evaluation

4.1 Condition

Similar to a conventional on-chip router with three pipeline
stages, [RC], [VSA], and [ST], the compression router takes
three pipeline stages, [RC/CMP1], [VSA/CMP2], and [ST].
For both routers, a cycle was maintained for the delay of
link transfer. As a topology baseline, a 4 × 4 2-D mesh with
minimal routing was used.

We considered IS, CG, and FT from NAS Parallel
Benchmarks (OpenMP version) and TSP (traverse salesman
problem) parallel applications for the evaluation. The TSP
parallel program was extended to use a genetic algorithm
available from [15], and “berlin52”, which is a 52 cities
problem included in TSPLIB, was used. The integer val-
ues in the communication data are a compression target of
the lossless algorithm on IS and TSP, while floating-point
values in CG and FT are for the lossy algorithm. As re-
ported in the prior study [16], the fault tolerance of CG and
FT is intrinsic as a result quality can remain acceptable even
in the presence of soft errors in LSBs. The lossy compres-
sion marginally decreases the quality of the results on FT,
whereas it converges the computation results on CG. From

NIWA et al.: A COMPRESSION ROUTER FOR LOW-LATENCY NETWORK-ON-CHIP
175

the evidence of the prior study, we considered discarding
28 bits from Mantissa in floating-point communication data
in CG and FT to accept the quality of results in NAS Parallel
Benchmarks.

4.2 Data Compression Ratio

The data compression ratio was evaluated by applying each
compression algorithm to a run-time dump of data that must
be transferred to the NoC.

The application source codes and captured memory
access dumps were analyzed to measure the compression
ratio of the communication data. Each application used
OpenMP for communication between the processing ele-
ments. We targeted the loop using the pragma of OpenMP
(e.g., #pragma omp parallel for) for the analysis, and
we only captured the data that would not be stored in the
L1 cache or cache-coherent control messages between the
processing elements. Note that we excluded multiple read
traffic data from the same addresses in a loop because they
are expected to be stored in the local L1 cache.

The variables in the loop parallelized by OpenMP were
classified into several groups as follows, and it was deter-
mined whether they were required to transfer in the NoC.
We then dumped only those variables that were transferred.
We did not dump the variables that were incremented in
the “for” loop to be parallelized because they were not ex-
changed between threads. The loop variables and temporary
variables inside the “for” loop to be parallelized were not
dumped for the same reason.

Access to the array prepared outside the loop was as-
sumed to be a dump target. However, in the case of mul-
tiple writes to the same location, only the last write was
included in the dump. Because the multicore processor em-
ployed a snoop cache, when one PE wrote to the same cache
line continuously, the cache line was not transmitted unless
other PEs accessed the area. Because the order of thread
execution was not guaranteed in OpenMP, reading variables
across threads without using barrier synchronization would
result in race conditions. Therefore, while one thread wrote
multiple times to the same location in a practical parallel ap-
plication, no other thread read the variable. For this reason,
only the last write to the same location was dumped, and
multiple reads were only dumped in the first one.

Each application was executed to capture the memory
dump on a real machine with 32 threads. Because the ex-
ecution log was considered based on source code analysis,
the result depended only on the parallelism of OpenMP and
did not depend on the number of cores of the machine ac-
tually used. The problem with this memory access dump
method was that it did not consider the increase or decrease
of memory accesses owing to differences in cache config-
uration. However, what we want to get from this dump
was only the compression ratio by target compression al-
gorithms; thus, the amount of memory access did not affect
the result. Because the tendency of the contents of memory
reads and writes affected the result if accesses to arrays that

Fig. 4 The compression ratio of communication data. (Integer applica-
tions)

Fig. 5 The compression ratio of communication data. (Floating point
applications)

account for most of the memory accesses could be dumped,
sufficiently reasonable results with good accuracy could be
obtained.

After acquiring the memory dump, the target compres-
sion algorithm was applied to the dumped data, and the ratio
of the data size before and after compression was used as the
compression ratio.

Figures 4 and 5 show the compression ratio (original
size/compressed size) of the communication data for each
parallel application. The control information of a packet, in-
cluding a destination, is not included; however, its size can
be small to a packet data size. As a reference, the results for
lossless compression, gzip, are added in the figure, although
it is not applicable to the proposed router, as described in
Sect. 2. As expected, the gzip has a low compression ratio
(close to 1.0) in CG and FT. By contrast, the bit cut (truncat-
ing) provides 1.6 and 1.8 compression ratios of CG and FT,
respectively. The FPC achieves a 1.4 and 1.9 compression
ratio of IS and TSP, respectively. Note that the compres-
sion ratio of the compression algorithms in the compression
router is determined by the ratio to discard the mantissa bits
in floating-point values that satisfy the quality level defined
by each benchmark.

Figure 4 shows a comparison of the FPCs with different
prefix lengths. In IS, the compression ratio is only slightly
higher for the FPC with a 4-bit prefix than for the 3-bit pre-
fix, however, there is a large difference in the compression
of the TSP, with a 4-bit prefix, and the compression ratio is
approximately 2.7. This is because most of the content com-
municated in the case of TSP is an array of array indexes

176
IEICE TRANS. INF. & SYST., VOL.E106–D, NO.2 FEBRUARY 2023

and concentrates on positive integers with small values. By
preparing patterns that match the workload trends, it is pos-
sible to go beyond the gzip. However, a 4-bit prefix FPC
cannot be used in this study bacause its latency is beyond
the acceptable latency of the proposed method.

In a 2-bit prefix FPC, the compression ratio is lower in
the IS and higher in the TSP compared to the standard 3-bit
prefix FPC. In IS, the compression ratio is below one, and
the size increases owing to compression. This is because
of the fact that the ratio of pattern matches decreased for IS
and remained the same for TSP. The shorter the prefix, the
smaller the overhead, however the fewer the patterns, the
more radical the trend, and the fewer the applications that
can be applied.

In this study, the 3-bit prefix is used as a case study for
the following evaluations. This is because the 2-bit prefix
has a low compression ratio and the 4-bit prefix decreases
the operating frequency in our hardware design.

Figure 5 also shows SZ [17], a lossy compression algo-
rithm for the floating-point number, as a comparison. The
error bound of SZ is set to a value that is equivalent to Bit
Cut. For floating-point numbers, SZ shows a higher com-
pression ratio than gzip and the proposed method, especially
for the CG. However, we must consider that most SZ com-
pression algorithms require floating-point operations, and it
is difficult to execute a few clock cycles.

4.3 Application Execution Time

4.3.1 Evaluation Set Up

A full-system CMP simulator, GEM5 [18] v21.2, was used.
We modified a detailed network model of GEM5 to accu-
rately simulate each NoC. We have added the feature to
allow an independent setting of the latency to inject pack-
ets into the network and the latency to eject packets from
the network. The source code with these changes is dis-
tributed at https://doi.org/10.5281/zenodo.6460109. Shared
memory 16 or 64-tiled CMP was considered, in which each
processor had private L1 data and instruction caches, while
the unified L2 cache banks were shared by all the proces-
sors. The details are presented in Tables 4 and 5. Four
memory controllers are attached to four corners of the bot-
tom chip. These processors, L2 cache banks, and mem-
ory controllers are interconnected through on-chip routers.
A directory-based cache coherence protocol that uses three
message classes (or virtual channels) is running on the NoC.

The conventional NoC uses no compression to the
NoC, in which each network interface compresses and de-
compresses the packet, only packet compression is per-
formed by the router to hide latency, and decompression is
performed by the network interface, and that with the com-
pression routers proposed here were compared. When data
compression is performed at network interfaces, it was as-
sumed that the existing compression causes a delay of two
cycles for performing (de)compression. Each uncompressed
data packet was set to a 10-flit length. We set the data-packet

Table 4 GEM5 Simulation common parameters.

Processor x86–64
Operating Frequency 3.0 GHz
L1 I/D cache size 32 Kib /128 KiB (line:64B)
L1 cache latency 1 cycle

L2 cache latency 6 cycles

Memory size 2 GB
Memory latency 160 cycles

Router pipeline [RC/CMP1][VSA/CMP2][ST][LT]
Protocol MOESI directory
Control / data packet size 1 flit / 10 flits (no compression)

Table 5 GEM5 Simulation topology parameters.

NoC Topology 4×4 Mesh 8×8 Mesh

of Cores 16 64
L2 cache size 16 MiB (assoc:4) 64 MiB (assoc:4)

Fig. 6 The relative performance of the compression router on a full sys-
tem simulation. (4×4 Mesh topology)

Fig. 7 The relative performance of the compression router on a full sys-
tem simulation. (8×8 Mesh topology)

length to
⌈

10
r

⌉
when the compression ratio is r.

4.3.2 Results

Figures 6, 7, illustrate the application execution time
of each NoC, and the value is relative to the baseline
non-compression NoC (“Uncompressed”). In the figure,
“(De)Compression at NI” is an NoC that (de)compresses
each packet at the network interface, and “Decompression

NIWA et al.: A COMPRESSION ROUTER FOR LOW-LATENCY NETWORK-ON-CHIP
177

at NI” is an NoC that decompresses each packet at the net-
work interface but compresses it at the router (i.e., an alter-
native design of the compression router). This means that
the latency of compression in case “Decompression at NI”
is the same as in case “Compression router”, and the latency
of decompression is the same as in case “(De)Compression
at NI”. It is assumed that a data packet is compressed by
compression ratios of 1.8, 1.6, and 1.4 on CG, FT, and IS,
respectively, based on the results of the compression ratio in
Figs. 4 and 5.

The compression router improves up to 31% of the
execution time compared to the baseline non-compression
NoC in 8×8 mesh topology. In contrast, the NoC that com-
presses a packet at the network interface ((De)Compression
at NI) degrades up to 23% of the application execution time,
and the NoC that hides the latency of only compressions
(Decompression at NI) degrades up to 30%. The effect of
reducing the packet length on the communication latency
is relatively small compared to the negative impact of the
(de)compression overhead(e.g., two cycles) on the commu-
nication latency.

Comparing the ratio of execution time for 4×4 Mesh
and 8×8 Mesh, the trend is similar. This shows that the
compression router is a scalable method that can speed up
the system even when the NoC scale increases. However,
the overhead of (De)Compression at NI is also less notice-
able. This is because as the scale of the network increases,
hop counts to transmit the flit and the associated router delay
increase, and the compression delay ratio becomes smaller.
A similar trend can be seen in Decompression at NI.

Note that our implementation of the NoC with Com-
pression at NI attempts to compress not only data packets
but also 1-flit control packets. Because a 1-flit control packet
is the shortest, we would bypass compressing such packets
at the network interface to improve the performance. How-
ever, we do not discuss this trade-off because it is beyond
the scope of this study.

Through the full system simulation, we conclude that
latency hiding for compression is essential, and the com-
pression router is suitable for NoCs.

4.4 Network Throughput and Communication Latency

4.4.1 Evaluation Set Up

Our cycle-accurate network simulator written in C++ was
used. A router model consisting of channel buffers, a cross-
bar, a link controller, and control circuits was used to simu-
late the switching fabric. Each node includes a router with a
local processing element (PE).

The packet length was set to 10 or 17 flits when no
data compression was applied. We simulate two synthetic
traffic patterns that determine each source and destination
pair: random uniform and matrix-transpose. These traffic
patterns are commonly used to measure the performance of
interconnection networks, as described in [2]. A node in-
jects packets into the NoC, independently of each other. We

used a 4 × 4 or 8 × 8 two-dimensional mesh with minimal
routing.

This evaluation was performed not only for mesh but
also for random topology. As with the mesh, 16 and 64
nodes were prepared, and the number of links is 31 and 127,
respectively. Additional topologies were also evaluated to
study the effect of different topologies.

As shown in the previous section’s results, the target
compression ratios were set to 1.4, 1.6, and 1.8 in the com-
pression router. The traditional compression NoC, which
compresses the contents at the network interface, has al-
most the same throughput as that in NoC with compression
routers. Thus, the traditional compression NoC in the simu-
lation was omitted; therefore, compression NoC means NoC
with the compression router.

Our results show two important metrics: communica-
tion latency and effective throughput. Latency is the elapsed
time between the generation of a packet at a source host
and its delivery at a destination processing element. The
communication latency in the simulation cycles was mea-
sured. The effective throughput is defined as the maximum
accepted traffic, where the accepted traffic is the flit delivery
rate.

Notice that we omit the case for the compression router
without decompressors because the compression latency at
a network interface does not affect the network throughput
in the simulation.

4.4.2 Results

Figures 8 illustrate the relationship between communica-
tion latency and accepted traffic ratio for 16-node and 64-
node NoCs. The plot of “x1.6” represents the compression
NoC when achieving a compression ratio of 1.6. The com-
pression router with any compression ratio always improves
both effective throughput and communication latency. For
example, when the packet length is 10 flits, the 16-node
compression 4×4 Mesh NoC with a 1.8 compression ratio
outperforms the conventional NoC by 77% of the effective
throughput on uniform random traffic. At the light traffic
load, the compression NoC outperforms up to 41% of the
communication latency, because the reduced packet length
decreases the injection-and-ejection latency.

As the packet size increases, the effective throughput
and communication latency are significantly improved. As
shown in Eq. (2), the effect of data compression on the re-
duction of the injection latency of a packet is proportional to
the packet length when the accepted traffic is low. For exam-
ple, the 16-node 4×4 Mesh compression NoC outperforms
the conventional NoC by 59% and 63% of the effective
throughput when the packet lengths are 10 and 17 flits, re-
spectively, with a 1.8 compression ratio on matrix transpose
traffic. There is no trend or significant difference in the ef-
fective throughput between the uniform random and matrix
transpose traffic. The compression router improves the ef-
fective network throughput and communication latency for
the two different traffic patterns and network sizes.

178
IEICE TRANS. INF. & SYST., VOL.E106–D, NO.2 FEBRUARY 2023

Fig. 8 Communication latency vs. accepted traffic for non-compression and compression NoCs

When compressing on the random topology, the same
trend as for the mesh topology was observed: as the com-
pression ratio increased, the latency decreased and the
throughput increased. On the contrary, overall, the random
topology had a lower upper throughput limit than the mesh
topology. Although the random topology can reduce the hop
count and zero-load latency compared to the mesh topology,
it is more likely to cause congestion owing to the concentra-
tion of traffic when the entire network is overloaded.

4.5 Hardware Cost and Energy

4.5.1 Evaluation Set Up

First, a conventional five-port virtual-channel (VC) packet
router with a fully four-stage pipelined architecture was im-
plemented. The channel width was set to 64. Each pipeline
stage had a buffer for storing one flit, and a FIFO buffer to
store five flits is provided for each input VC. There were
two VCs.

Second, a compression router based on the VC router
was designed. To ensure that the compression logic works
properly, five links were aggregated and there were 64(×5)
channels on the input and output ports of the local endpoint.
At the input port, additional working buffer space was re-
served for storing up to 11 flits (1 + 5 × 2 cycles). If the

compressor missed the prediction of all the target integer
values (i.e., the case of no compression), an input 10-flits
packet becomes 11-flits length owing to the overhead of the
prefix.

The buffer was used to perform data (de)compression.
The other parameters were the same as those of the conven-
tional VC router.

Using the Synopsys Design Compiler N-2017.09-SP1,
the router was evaluated with a Nangate 45 nm open cell
library. The switching activity of the running router was
captured through a gate-level simulation of the synthesized
router.

4.5.2 Amount of Hardware

Figure 9 illustrates the synthesis results for the network
logic area of each router. “Comp. Router without Decom-
pressor” is the area calculated by replacing the area of the in-
put port with a decompressor in “Comp. Router” with that of
a conventional input port with nothing attached. The com-
pression router we design supports two compression algo-
rithms, the 3-bit FPC and the lossy compression that cuts 2
to 28 bits of the floating-point number. It can dynamically
control how many bits are trimmed in the lossy compres-
sion. The compression router works at 588 MHz and we
confirm that VSA and decompression logic are on a critical

NIWA et al.: A COMPRESSION ROUTER FOR LOW-LATENCY NETWORK-ON-CHIP
179

Fig. 9 Hardware amount for routers.

path in conventional routers and compression routers. In the
case of 32-bit cut, the float data decompression operation
is simplified and the decompression logic is left out of the
critical path. The Bit Cut circuit should be used when the
precision required by the application satisfies the precision
provided by the Bit Cut circuit. The compression router can
support multiple precisions by controlling the multiplexer
with a header flit.

The results show that the additional hardware of the
compression router is not negligible. In addition, most of
them are combinational circuits, indicating that the increase
in buffers is relatively small. However, compared with the
area of CMPs, the amount of hardware required for the
compression router is not very large. For example, under
45 nm CMOS technology, Intel Single-chip Cloud Com-
puter (SCC) [19] has 48 cores on 567mm2, and SPARC64
VIIIfx has eight cores on 22.7mm × 22.6mm. When the
compression router is applied to each core on the CMPs, the
total area of the compression routers would be only a few
percentages on their chip areas. Our evaluation is on the
same 45 nm generation scale, although not exact because we
use different PDKs.

On the other hand, about 79% of the increase in area
from the conventional router is the area of the decompres-
sors. This is due to a large number of decompressors. If the
decompressor is placed on the network interface instead of
the input port of the router, the network interface will have
a reasonable increase in area. If the number of routers is
equal to the number of network interfaces, 57% of the in-
crease in the area of the compression router is the overhead
required to hide the decompression latency. However, as
noted above, the router itself is a relatively small compo-
nent, and whether this is an acceptable trade-off in the over-
all processor depends on the area of the processing element
and cache.

4.5.3 Energy to Transmit a Flit

Figure 10 illustrates the energy consumption required to
transmit a flit to each router. In the figure, “Conv. router”
stands for energy consumption when a 10-flit packet is for-
warded on the conventional router, while “x1.45 (Comp.
Router, INT)” indicates that when the compression router
compresses an input 10-flit packet whose data body is an in-
teger value of 1.45. Because the conventional router does
not perform compression, it outperforms the compression

Fig. 10 Flit transfer energy at routers.

router in terms of energy. The decompression operation re-
quires a more complex operation, that is, identifying each
symbol’s position and rounding for floating-point numbers,
than compression. Thus, the energy at decompression is
higher than that at compression. Another finding is that be-
cause the lossy compression for floating-point numbers sim-
ply discards LSBs, its energy is lower than the compression
for integer numbers.

This increase is relatively small in terms of the overall
chip. For example, in the Intel SCC, routers are only 12.1 W
out of 125 W of power consumption in the fully loaded state,
which is 10% of the total [19]. Therefore, the power increase
in the compression router is expected to be only a few per-
cent of the total chip power.

5. Conclusions

To reduce the communication latency, we proposed a com-
pression router that (de)compresses the contents of an in-
coming packet for NoCs. To hide the (de)compression
overhead from the communication latency, the compression
router performs the (de)compression operation of an incom-
ing packet before completing switch arbitration.

The compression router provided up to x1.8 compres-
sion ratios of communication data of four parallel appli-
cations, conjugate gradients, fast Fourier transform, inte-
ger sort, and traveling salesman problem, on a conventional
CMP. A full-system simulation illustrated that shortening
the packet length improved the execution time of parallel ap-
plications on a CMP up to 31%. The cycle-accurate network
simulation showed that the compression NoC outperformed
up to 41% of the communication latency, and it improved
the effective network throughput by 63% compared to the
conventional NoC.

The disadvantage is an increase in the amount of hard-
ware and the energy of the router. In this context, we also
explored alternative compression router design, off-loading
the decompressor onto a network interface. It decreased the
compression-router area by 57% at the expense of a moder-
ate increase in communication latency.

Acknowledgments

This work was supported by JSPS KAKENHI 19H01106
and VLSI Design and Education Center (VDEC), the Uni-
versity of Tokyo with the collaboration with SYNOPSYS
Corporation.

180
IEICE TRANS. INF. & SYST., VOL.E106–D, NO.2 FEBRUARY 2023

References

[1] L.-S. Peh and W.J. Dally, “A Delay Model and Speculative Ar-
chitecture for Pipelined Routers,” Proceedings of the International
Symposium on High-Performance Computer Architecture (HPCA),
pp.255–266, Jan. 2001.

[2] W.D. Dally and B. Towles, Principles and Practices of Interconnec-
tion Networks, Morgan Kaufmann, 2003.

[3] A.R. Alameldeen and D.A. Wood, “Frequent pattern compression:
A significance-based compression scheme for l2 caches,” Technical
Report 1500, Computer Sciences Dept. UW-Madison, April 2004.

[4] F. Betzel, K. Khatamifard, H. Suresh, D.J. Lilja, J. Sartori, and U.
Karpuzcu, “Approximate communication: Techniques for reducing
communication bottlenecks in large-scale parallel systems,” ACM
Comput. Surv., vol.51, no.1, pp.1:1–1:32, 2018.

[5] M.F. Reza and P. Ampadu, “Approximate communication strate-
gies for energy-efficient and high performance noc: Opportuni-
ties and challenges,” Great Lakes Symposium on VLSI, GLSVLSI,
pp.399–404, 2019.

[6] R. Das, A.K. Mishra, C. Nicopoulos, D. Park, V. Narayanan, R. Iyer,
M.S. Yousif, and C.R. Das, “Performance and power optimization
through data compression in network-on-chip architectures,” Inter-
national Symposium on High-Performance Computer Architecture
(HPCA-14), pp.215–225, 2008.

[7] Y. He, H. Matsutani, H. Sasaki, and H. Nakamura, “Adaptive data
compression on 3d network-on-chips,” IPSJ Online Transactions,
vol.5, pp.13–20, 2012.

[8] N. Niwa, Y. Shikama, H. Amano, and M. Koibuchi, “A case
for low-latency network-on-chip using compression routers,” The
Euromicro International Conference on Parallel, Distributed, and
Network-Based Processing (PDP), 2021.

[9] B. Dickov, M. Pericàs, P.M. Carpenter, N. Navarro, and E. Ayguadé,
“Analyzing performance improvements and energy savings in infini-
band architecture using network compression,” IEEE 26th Interna-
tional Symposium on Computer Architecture and High Performance
Computing, pp.73–80, 2014.

[10] R. Filgueira, D.E. Singh, A. Calderón, and J. Carretero, “Compi:
enhancing mpi based applications performance and scalability using
run-time compression,” European Parallel Virtual Machine/Message
Passing Interface Users’ Group Meeting, vol.5759, pp.207–218,
Springer, 2009.

[11] A.R. Alameldeen and D.A. Wood, “Adaptive cache compression for
high-performance processors,” International Symposium on Com-
puter Architecture (ISCA), pp.212–223, 2004.

[12] R. Boyapati, J. Huang, P. Majumder, K.H. Yum, and E.J. Kim,
“Approx-noc: A data approximation framework for network-on-
chip architectures,” ACM SIGARCH Computer Architecture News,
vol.45, no.2, pp.666–677, June 2017.

[13] N. Niwa, H. Amano, and M. Koibuchi, “Boosting the perfor-
mance of interconnection networks by selective data compres-
sion,” IEICE Transactions on Information and Systems, vol.E105-D,
no.12, pp.2057–2065, 2022.

[14] Y. Jin, K.H. Yum, and E.J. Kim, “Adaptive data compres-
sion for high-performance low-power on-chip networks,” 2008
41st IEEE/ACM International Symposium on Microarchitecture,
pp.354–363, 2008.

[15] rachit95arora, “A parallelised implementation of genetic algorithms
for the travelling salesman problem using openmp.”
https://github.com/rachit95arora/travelling-salesman-openmp

[16] D. Fujiki, K. Ishii, I. Fujiwara, H. Matsutani, H. Amano, H.
Casanova, and M. Koibuchi, “High-bandwidth low-latency approx-
imate interconnection networks,” International Symposium on High
Performance Computer Architecture (HPCA), pp.469–480, Feb.
2017.

[17] S. Di and F. Cappello, “Fast error-bounded lossy hpc data compres-
sion with sz,” international parallel and distributed processing sym-

posium (ipdps), pp.730–739, 2016.
[18] N. Binkert, B. Beckmann, G. Black, S.K. Reinhardt, A. Saidi, A.

Basu, J. Hestness, D.R. Hower, T. Krishna, S. Sardashti, R. Sen, K.
Sewell, M. Shoaib, N. Vaish, M.D. Hill, and D.A. Wood, “The gem5
Simulator,” ACM SIGARCH Computer Architecture News, vol.39,
no.2, pp.1–7, May 2011.

[19] J. Howard, “A 48-core IA-32 processor with on-die message-passing
and DVFS in 45nm CMOS,” 2010 IEEE Asian Solid-State Circuits
Conference, pp.108–109, Feb. 2010.

Naoya Niwa received the BE and ME de-
grees from Keio University, Yokohama, Japan,
in 2018 and 2020, respectively. He is currently a
Ph.D. student in the Department of Information
and Computer Science, Keio University. His
research interests are Approximate Computing
and Network-on-Chips.

Yoshiya Shikama received the BE and
ME degrees from Keio University, Yokohama,
Japan, in 2020 and 2022, respectively. He
is currently working on development work at
ANRITSU CORPORATION.

Hideharu Amano received Ph.D. degree
from the Department of Electronic Engineering,
Keio University, Japan in 1986. He is currently
a professor in the Department of Information
and Computer Science, Keio University. His re-
search interests include the area of parallel ar-
chitectures and reconfigurable systems.

Michihiro Koibuchi received the BE,
ME and Ph.D. degrees from Keio University,
Yokohama, Japan, in 2000, 2002 and 2003, re-
spectively. Currently, he is a professor in Na-
tional Institute of Informatics and the Grad-
uate University of Advanced Studies, Tokyo,
Japan. His research interests include the areas of
high-performance computing and interconnec-
tion networks. He is a senior member of the
IEICE, IPSJ and IEEE.

http://dx.doi.org/10.1109/hpca.2001.903268
http://dx.doi.org/10.1145/3145812
http://dx.doi.org/10.1145/3299874.3319455
http://dx.doi.org/10.1109/hpca.2008.4658641
http://dx.doi.org/10.2197/ipsjtrans.5.13
http://dx.doi.org/10.1109/pdp52278.2021.00029
http://dx.doi.org/10.1109/sbac-pad.2014.27
http://dx.doi.org/10.1007/978-3-642-03770-2_27
http://dx.doi.org/10.1109/isca.2004.1310776
http://dx.doi.org/10.1145/3140659.3080241
http://dx.doi.org/10.1587/transinf.2022pap0005
http://dx.doi.org/10.1109/micro.2008.4771804
http://dx.doi.org/10.1109/hpca.2017.38
http://dx.doi.org/10.1109/ipdps.2016.11
http://dx.doi.org/10.1109/ipdps.2016.11
http://dx.doi.org/10.1145/2024716.2024718
http://dx.doi.org/10.1109/asscc.2010.5716540

