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Abstract—Rational macromodeling via Vector Fitting algo-
rithms is a standard practice in Signal and Power Integrity
analysis and design flows. However, despite the robustness and
reliability of the Vector Fitting scheme, some challenges remain
for those applications requiring models with a very large port
count. Fully coupled signal and/or power distribution networks
may require concurrent modeling of hundreds of simultaneously
coupled ports over extended frequency bands. Direct rational
fitting is impractical for such structures due to a large computa-
tional cost. In this work, we present a compression strategy aimed
at representing the dynamic behavior of the structure through
few carefully selected “basis functions”. We show that model
accuracy can be traded for complexity, with full control over
approximation errors. Application of standard Vector Fitting to
the obtained low-dimensional compressed system leads to the
construction of a global state-space macromodel with significantly
reduced runtime and memory consumption. Several benchmarks
demonstrate the effectiveness of the approach.

I. INTRODUCTION AND MOTIVATION

The importance of Signal and Power Integrity has increased
significantly in the last two decades, due to the growing
miniaturization and faster switching times achieved in digi-
tal and mixed-signal systems. Signal and power degradation
typically arises in interconnect and power delivery networks
where crosstalk, unwanted couplings, and resonances are more
significant. Broadband simulation models are of paramount
importance for system-level analysis, design, and verification.

A typical description of linear interconnect structures is
through frequency-domain scattering responses obtained via
full-wave simulations. The Vector Fitting (VF) algorithm [1]
is a popular technique for casting these sampled scattering
parameters into broadband simulation models for Signal and
Power Integrity assessments. A possible issue of VF is the
poor scalability with the complexity of the structure under
modeling, in terms of model order 𝑁 , which is directly related
to the modeling bandwidth, port count 𝑃 , and number of
frequency samples 𝐿. It can be shown that the number of
required operations per iteration scales as 𝑂(𝑃 2𝐿𝑁2), and
becomes infeasible when the number of ports or the model
order is large.

Recently, it was shown that the VF computational cost can
be significantly reduced by means of QR decomposition [2]
and parallel computing [3]. However, the latter approach
requires availability of high-performance hardware. In this

paper, we propose a new alternative for reducing the compu-
tational cost, based on a compression strategy. This solution
is readily applicable to any version of VF, and makes the
macromodeling of structure with hundreds of ports possible
even on commodity hardware, avoiding the cost of a high-
performance computing cluster.

We define the problem and the main idea of our compression
strategy in Section II. The compression algorithm will be
presented in Section III, followed in Section IV by a pro-
cedure to form the state-space realization of the compressed
macromodel. Numerical results and comparisons on several
benchmark cases will be finally presented in Section V.

II. PROBLEM STATEMENT

We consider a generic 𝑃 -port electrical interconnect struc-
ture characterized through tabulated scattering frequency sam-
ples S𝑙 ∈ C𝑃×𝑃 at frequencies 𝜔𝑙, with 𝑙 = 1, . . . , 𝐿. This
raw data is usually available from field simulations or direct
measurements. The VF algorithm is routinely used to fit these
data samples with a rational model

S(𝑠) = S∞ +
𝑁∑

𝑛=1

R𝑛

𝑠− 𝑝𝑛
, (1)

where 𝑝𝑛 are the poles of the macromodel, R𝑛 are the
associated residue matrices, and S∞ is the direct coupling
term. Standard formulations of the VF algorithm minimize
the global model error

𝐿∑
𝑙=1

∥S(𝚥𝜔𝑙)− S𝑙∥2𝐹 , (2)

where ∥⋅∥𝐹 denotes the Frobenius norm, through an iterative
sequence of linear least squares solutions, see [1].

We illustrate the main idea of our compression scheme
through an example. Figure 1 depicts several scattering re-
sponses of a high-speed connector. We see that the various re-
sponses that are depicted look very similar, with only marginal
differences. Of course, these differences may be important, so
they should be preserved in the final macromodel. However,
it is conceivable that all these responses can be represented as
a linear superposition of selected “representative” responses
or, more formally, “basis functions”. We will then look for
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Fig. 1. Various scattering responses of a high-speed connector (top curves:
reflection coefficients, bottom curves: crosstalks).

expansions of the form

𝑆𝑖𝑗(𝑠) ≃
𝜌∑

𝑞=1

𝛼(𝑖,𝑗)
𝑞 𝑤𝑞(𝑠) (3)

with constant coefficients 𝛼(𝑖,𝑗)
𝑞 and frequency-dependent “ba-

sis functions” 𝑤𝑞(𝑠) to be determined. It is clear that if the
number of required basis functions 𝑤𝑞(𝑠) is much smaller than
the total number of responses, 𝜌 ≪ 𝑃 2, we can achieve a
significant computational cost reduction by applying VF to
the few functions 𝑤𝑞(𝑠), rather than to the complete set of 𝑃 2

raw scattering responses.

III. SVD-BASED COMPRESSION

We start with the set of raw scattering samples S𝑙, ∀𝑙. For
each selected frequency 𝜔𝑙, we stack all elements of the scat-
tering matrix into a single row-vector 𝒙𝑙 ∈ C𝑃 2

, constructed
as 𝒙𝑙 = vec(S𝑙)

𝑇 . We recall that the vec() operator stacks
all columns of its matrix element into a single column vector.
More precisely, element (S𝑙)𝑖𝑗 with 1 ≤ 𝑖, 𝑗 ≤ 𝑃 corresponds
to element (𝒙𝑙)𝑘 for 1 ≤ 𝑘 ≤ 𝑃 2 through

𝑘 = 𝑖+ (𝑗 − 1)𝑃
𝑖 = 1 +mod(𝑘 − 1, 𝑃 )
𝑗 = ⌈𝑘/𝑃 ⌉

(4)

where mod(𝑎, 𝑏) returns the remainder of the integer division
𝑎/𝑏 and ⌈𝑐⌉ is the ceil operator that returns the smallest integer
not less than 𝑐. The mapping (𝑖, 𝑗) ↔ 𝑘 in (4) will be used
consistently throughout this paper.

We now collect all vectors 𝒙𝑙 corresponding to different
frequencies 𝜔𝑙 as rows in a matrix X ∈ C𝐿×𝑃 2

X =

⎡
⎢⎣
←− 𝒙1 −→

...
...

...
←− 𝒙𝐿 −→

⎤
⎥⎦ =

⎡
⎣ ↑ ⋅ ⋅ ⋅ ↑
𝒛1 ⋅ ⋅ ⋅ 𝒛𝑃 2

↓ ⋅ ⋅ ⋅ ↓

⎤
⎦ (5)

Each row 𝒙𝑙 of this matrix corresponds to a single frequency
𝜔𝑙, while each column 𝒛𝑘 collects all frequency samples of a
single scattering response (𝒛𝑘)𝑙 = 𝑆𝑖𝑗(𝚥𝜔𝑙).

We make the hypothesis that the 𝑃 2 scattering responses can
be represented as an approximate sum of few basis functions.
This implies that the column span of matrix X can be safely
approximated by projection onto a subspace 𝒲 having a
dimension 𝜌 ≪ 𝑃 2. Several alternatives are available for

constructing this subspace. In this work, we adopt the Singular
Value Decomposition (SVD), since it provides a full control
over the approximation error.

A direct application of SVD to matrix X leads to

X = ŨΣ̃Ṽ
𝐻

= W̃Ṽ
𝐻

(6)

where Ũ and Ṽ are complex unitary matrices collecting the
left and right singular vectors and Σ̃ collects the sorted real
and positive singular values 𝜎𝑞 on its main diagonal. Matrix
W̃ = ŨΣ̃ is orthogonal with each column �̃�𝑞 scaled by the
corresponding singular value, ∥�̃�𝑞∥ = 𝜎𝑞. The 𝑘-th column
of X is thus represented, using (6), as

𝒛𝑘 =
∑
𝑞

𝑣∗𝑘𝑞�̃�𝑞 . (7)

This expression is exact, with no approximation error, if
all singular values/vectors are considered in the expansion.
Each sampled scattering response is thus represented as a
superposition of “basis vectors” �̃�𝑞 , whose norm decreases
uniformly with increasing 𝑞.

The coefficients 𝑣∗𝑘𝑞 are complex-valued constants. Since
we want to have real expansion coefficient in order to guar-
antee the causality and the realness of each element in the
expansion (3), we slightly modify the SVD by splitting real
and imaginary parts X = X′ + 𝚥X′′ where X′,X′′ ∈ R𝐿×𝑃 2

,
or equivalently

X =
[
I𝐿 𝚥I𝐿

] [X′

X′′

]
(8)

where I𝐿 is the identity matrix of size 𝐿. Then, we perform a
truncated SVD decomposition, where only the first 𝜌 singular
values are retained[

X′

X′′

]
= UΣV𝑇 ≃ ŪΣ̄V̄

𝑇
, (9)

where Ū ∈ R2𝐿×𝜌, Σ̄ ∈ R𝜌×𝜌, V̄ ∈ R𝑃 2×𝜌 with 𝜌 ≪ 𝑟 =
min{2𝐿,𝑃 2} , and V̄ is orthonormal, V̄

𝑇
V̄ = I. Defining

now
W̄ =

[
I𝐿 𝚥I𝐿

]
ŪΣ̄ (10)

we obtain the low-rank approximation

X ≃ X̄ = W̄V̄
𝑇

(11)

Equivalently,

𝒛𝑘 ≃
𝜌∑

𝑞=1

𝑣𝑘𝑞�̄�𝑞 , (12)

which is similar to (7) but has guaranteed real coefficients
𝑣𝑘𝑞. The 𝑞-th column �̄�𝑞 ∈ C𝐿 of W̄, collects all frequency
samples that define the 𝑞-th basis function.

We estimate now the error between the original matrix X
collecting all scattering data and its low-rank approximation
X̄. Using the spectral norm, we have

ℰ2 =
∥∥X̄−X

∥∥ =
∥∥∥[I𝐿 𝚥I𝐿

] [
ŪΣ̄V̄

𝑇 −UΣV𝑇
]∥∥∥

≤ ∥∥[I𝐿 𝚥I𝐿
]∥∥ ∥∥∥ŪΣ̄V̄

𝑇 −UΣV𝑇
∥∥∥

≤
√
2𝜎𝜌+1 , (13)
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Fig. 2. Top: raw scattering responses of a high-speed connector before
compression (red dashed line), its compressed (𝜌 = 30) approximation (blue
dashed line), and its low-rank rational approximation computed by VF (black
line). Bottom: first three vectors �̄�𝑞 (blue dashed lines) in expansion (12)
and corresponding VF approximation (black line).

where the last row follows from standard properties of the
SVD decomposition. We see that the quality of the approxi-
mation is fully controlled by the first neglected singular value
𝜎𝜌+1.

The top panel in Fig. 2 depicts two scattering responses of
the same connector already considered in Fig. 1, together with
the corresponding low-rank approximation. The difference is
hardly visible. Bottom panel reports the first three basis vectors
�̄�𝑞 in the corresponding expansion (12).

IV. COMPRESSED MACROMODELING

Once expansion (12) is available, we compute a rational
approximation of each basis vector �̄�𝑞 . We introduce a row-
vector of scalar functions of frequency

𝒘(𝑠) =
(
𝑤1(𝑠) 𝑤2(𝑠) . . . 𝑤𝜌(𝑠)

)
, (14)

with each element assumed in rational form

𝑤𝑞(𝑠) = 𝑤𝑞,∞ +

𝑁𝑤∑
𝑛=1

𝑅𝑞,𝑛

𝑠− 𝑝𝑛
. (15)

The unknown poles 𝑝𝑛, residues 𝑅𝑞,𝑛 and direct coupling
constants 𝑤𝑞,∞ are computed by applying a standard VF run.
Since only 𝜌 independent responses are concurrently fitted
instead ot 𝑃 2, it is expected that the runtime of the VF process
is drastically reduced. This is indeed the case, as we will show
in Section V. We remark that we adopt common poles 𝑝𝑛
for all basis functions in 𝒘(𝑠), since these will be used to
reconstruct the original scattering matrix through (12), thus
obtaining a global rational macromodel in form (1).

A successful fitting process with stable poles is guaranteed
by the realness of the expansion coefficients in (12). If we

post-multiply (11) by V̄, since V̄
𝑇
V̄ = I, we obtain

�̄�𝑞 ≃
𝑃 2∑
𝑘=1

𝑣𝑘𝑞𝒛𝑘 , (16)

which shows that each basis vector can be represented as a
linear combination of the raw scattering responses with real
coefficients. This is sufficient to conclude that if the original
responses are causal, each of the basis functions will be causal.
Therefore, the rational approximation (15) is guaranteed to
have stables poles 𝑝𝑛, see [4].

A state-space realization can be constructed from (15) using
standard techniques. For later convenience, we construct this
realization for the transpose system, which has a Single-Input
Multiple-Output structure, as

𝒘(𝑠)𝑇 ↔
(

A𝑤 B𝑤

C𝑤 D𝑤

)
(17)

with A𝑤 ∈ R𝑁𝑤×𝑁𝑤 , B𝑤 ∈ R𝑁𝑤×1, C𝑤 ∈ R𝜌×𝑁𝑤 , D𝑤 ∈
R𝜌×1. We then define a (reshaped) global rational macromodel
according to the expansion (11), as

X𝑇 (𝑠) = V̄𝒘𝑇 (𝑠) =

= V̄D𝑤 + V̄C𝑤(𝑠I𝑁𝑤
−A𝑤)

−1B𝑤 ,
(18)

where X𝑇 (𝑠) is a column vector of 𝑃 2 rational responses. Fi-
nally, a global rational macromodel for the original scattering
representation is obtained with a simple reshape operation

S(𝑠) = mat(X𝑇 (𝑠)) , (19)

where the mat(⋅) operator reconstructs a 𝑃×𝑃 matrix starting
from the corresponding 𝑃 2×1 vector vec(S). It is easy to show
that a state-space realization of S(𝑠) can be obtained as

A = I𝑃 ⊗A𝑤 , B = I𝑃 ⊗B𝑤 ,
C = Ψ(I𝑃 ⊗C𝑤) , D = Ψ(I𝑃 ⊗D𝑤) ,

(20)

where ⊗ denotes the Kronecker matrix product [5] and

Ψ =
(
(V̄)1 (V̄)2 ⋅ ⋅ ⋅ (V̄)𝑃

)
(21)

with (V̄)𝑗 ∈ R𝑃×𝜌 collecting the 𝑃 rows {𝑗(𝑃 − 1) +
1, . . . , 𝑗𝑃} of matrix V̄. Once the state-space matrices (20)
are available, standard methods [7], [8], [9] can be applied in
order to check and enforce model passivity.

Figure 2 shows that the obtained rational approximation of
both basis functions (bottom panel) and scattering responses
(top panel) is very accurate.

Once the rational approximation (15) is available, we eval-
uate 𝒘(𝑠) at each raw frequency point 𝜔𝑙 and we collect the
results as rows in matrix Ŵ ∈ C𝐿×𝜌, which in turn is used
to reconstruct the samples of the global rational macromodel,
collected in matrix X̂ = ŴV̄

𝑇
. Due to the orthonormality of

the columns of V̄, we have∥∥∥X̄− X̂
∥∥∥
2
=

∥∥∥W̄V̄
𝑇 − ŴV̄

𝑇
∥∥∥
2
=

∥∥∥W̄ − Ŵ
∥∥∥
2
. (22)

This implies that the construction of a global rational model
starting from the rational basis functions is well-behaved, since



TABLE I
SUMMARY OF THE COMPRESSED MACROMODELING RESULTS FOR SEVERAL BENCHMARKS. SEE TEXT FOR DETAILS

test 𝑃 𝐿 𝜌 𝑁𝑤 𝑁 ℰ2 𝛿2 VF(X) [s] SVD [s] VF(W) [s] SpeedUp

1 12 471 17 20 22 0.07 0.102 3.05 0.36 0.5 3.5×
2 24 1001 13 12 12 0.01 0.03 8.6 1.1 0.2 6.6×
3 34 570 40 57 58 0.072 0.096 263.1 1.9 5.1 36.9×
4 41 572 10 11 11 0.05 0.05 18.5 1.82 0.26 8.8×
5 48 690 24 27 28 0.06 0.102 119.6 3.7 1.09 24.9×
6 52 13 3 3 3 0.01 0.01 0.66 0.04 0.07 5.9×
7 56 1001 30 30 30 0.06 0.08 198.46 7.3 1.7 22.0×
8 92 71 22 22 23 0.06 0.106 32.8 1.4 0.1 21.8×
9 245 197 14 99 93 0.07 0.09 12885.2 24.5 1.29 499.2×

10 800 40 8 8 8 0.02 0.05 432.8 34.7 0.97 12.4×

it results in a fitting error that is identical to the fitting error
achieved in the construction of the low-rank system 𝒘(𝑠).

The global approximation error between raw scattering sam-
ples and global rational macromodel can thus be characterized
as

𝛿2 =
∥∥∥X− X̂

∥∥∥
2
≤ ∥∥X− X̄

∥∥
2
+
∥∥∥X̄− X̂

∥∥∥
2

≤
√
2𝜎𝜌+1 +

∥∥∥W̄ − Ŵ
∥∥∥
2
,

(23)

where the individual contributions of SVD truncation and VF
approximation are explicit.

V. RESULTS AND DISCUSSION

We demonstrate the effectiveness of the compressed rational
macromodeling scheme through a rich set of benchmarks,
known via scattering samples available as Touchstone files.
Several combinations of port count 𝑃 and number of available
frequency samples 𝐿 have been tried, in order to test the
scalability of the algorithm in a wide parameter range. All
details are available in Table I.

The number of basis functions 𝜌 has been automatically
determined in order to reach a cumulative compression error
ℰ2 < 0.1. Similarly, the number of poles 𝑁𝑤 of the low-
rank macromodel has been determined in order to achieve a
cumulative VF error

∥∥∥X̄− X̂
∥∥∥
2
< 0.1. The performance of

the compressed scheme is compared to the performance of the
fast VF scheme [2] in its public-domain implementation [6]
applied to the complete set of 𝑃 2 scattering responses, which
required 𝑁 poles to reach the same approximation error
threshold. A total of 3 VF iterations were used for all tests.
The table shows that the compression error ℰ2 and the final
error 𝛿2 are well under control for all cases.

The last columns in the table report the runtime in seconds
for the various steps of the proposed algorithm. Column
“SVD” reports the time required by the SVD compression
part implemented according to [10]. Columns “VF(W)” and
“VF(X)” report the runtime for the low-rank and full VF runs,
respectively. Finally, column “SpeedUp” reports the overall
speedup factor for the computation of the global macromodel
in terms of total runtime. We see a dramatic reduction in
runtime with our proposed scheme.

VI. CONCLUSIONS

We have presented a compressed macromodeling strategy
for the extraction of rational macromodels of interconnect
structures with a large number of ports. The method represents
the full set of scattering responses as a linear combination of
few and automatically selected basis functions, which are fitted
in negligible time. The numerical results show that structures
with a large port count can greatly benefit from the proposed
compression scheme, which produces accurate macromodels
with limited computing resources.
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