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A Compressive Sensing and Unmixing Scheme

for Hyperspectral Data Processing

Chengbo Li, Ting Sun, Kevin Kelly, and Yin Zhang

Abstract

Hyperspectral data processing typically demands enormous computational resources in terms of storage, com-

putation and I/O throughputs, especially when real-time processing is desired. In this paper, we investigate a low-

complexity scheme for hyperspectral data compression and reconstruction. In this scheme, compressed hyperspectral

data are acquired directly by a device similar to the single-pixel camera [5] based on the principle of compressive

sensing. To decode the compressed data, we propose a numerical procedure to directly compute the unmixed abundance

fractions of given endmembers, completely bypassing high-complexity tasks involving the hyperspectral data cube

itself. The reconstruction model is to minimize the total variation of the abundance fractions subject to a pre-

processed fidelity equation with a significantly reduced size, and other side constraints. An augmented Lagrangian type

algorithm is developed to solve this model. We conduct extensive numerical experiments to demonstrate the feasibility

and efficiency of the proposed approach, using both synthetic data and hardware-measured data. Experimental and

computational evidences obtained from this study indicate that the proposed scheme has a high potential in real-world

applications.

Index Terms

Hyperspectral imaging, data unmixing, compressive sensing, total variation, augmented Lagrangian method, fast

Walsh-Hadamard transform.

I. INTRODUCTION

Hyperspectral imaging is a crucial technique and a powerful tool to identify and quantify distinct material

substances from (often remotely) observed spectral data. It employs hyperspectral sensors to collect two dimensional

spatial images over many contiguous spectral bands containing the visible, near-infrared, and shortwave infrared

spectral bands [10]. Hyperspectral imaging has a wide range of applications such as terrain classification, mineral
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detection and exploration [13], [14], pharmaceutical counterfeiting [15], environmental monitoring, and military

surveillance [16].

Typically, hyperspectral imaging is of spatially low resolution, in which each pixel, from a given spatial element

of resolution and at a given spectral band, is a mixture of several different material substances, termed endmembers,

each possessing a characteristic hyperspectral signature [11]. Hyperspectral unmixing is to decompose each pixel

spectrum to identify and quantify the relative abundance of each endmember. In the linear mixing model, interactions

among distinct endmembers are assumed to be negligible [12], which is a plausible hypothesis in most cases.

Frequently, the representative endmembers for a given scene are known a priori and their signatures can be obtained

from a spectral library (e.g., ASTER and USGS) or codebook. On the other hand, when endmembers are unknown

but the hyperspectral data is fully accessible, many algorithms exist for determining endmembers in a scene,

including N-FINDR [18], PPI (pixel purity index) [17], VCA (vertex component analysis) [19], SGA (simplex

growing algorithm) [20]; NMF-MVT (nonnegative matrix factorization minimum volume transform) [21], SISAL

(simplex identification via split augmented Lagrangian) [22], MVSA (minimum volume simplex analysis) [24], and

MVES (minimum-volume enclosing simplex) [23].

Because of the their enormous volume, it is particularly difficult to directly process and analyze hyperspectral data

cubes in real time or near real time. On the other hand, hyperspectral data are highly compressible with two-fold

compressibility: 1) each spatial image is compressible, and 2) the entire cube, when treated as a matrix, is of low

rank. To fully exploit such rich compressibility, in this paper we propose a scheme that never requires to explicitly

store or process a hyperspectral cube itself. In this scheme, data are acquired by means of compressive sensing

(CS). The theory of CS shows that a sparse or compressible signal can be recovered from a relatively small number

of linear measurements (see, for example, [1], [2], [3]). In particular, the concept of the single pixel camera [5] can

be extended to the acquisition of compressed hyperspectral data, which will be used in our experiments. The main

novelty of the scheme is in the decoding side where we combine data reconstruction and unmixing into a single

step of much lower complexity. At this point, we assume that the involved endmember signatures are known and

given, from which we then directly compute abundance fractions. In a later study we will extend this approach

to blind unmixing where endmember signatures are not precisely known a priori. For brevity, we will call the

proposed procedure compressive sensing and unmixing or CSU scheme.

In the following paragraphs, we introduce the main contributions, and the notation and organization of this paper.

A. Main Contributions

We propose and conduct a proof-of-concept study on a low-complexity, compressive sensing and unmixing (CSU)

scheme, formulating a unmixing model based on total variation (TV) minimization [4], developing an efficient

algorithm to solve it, and providing experimental and numerical evidence to validate the scheme. This proposed

scheme directly unmixes compressively sensed data, bypassing the high-complexity step of reconstructing the

hyperspectral cube itself. The validity and potential of the proposed CSU scheme are demonstrates by experiments

using both synthetic and hardware-measured data.
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B. Notations

We introduce necessary notations here. Suppose that in a given scene there exist ne significant endmembers,

with spectral signatures wT
i ∈ R

nb , for i = 1, . . . , ne, where nb ≥ ne denotes the number of spectral bands.

Let xi ∈ R
nb represent the hyperspectral data vector at the i-th pixel and hT

i ∈ R
ne represent the abundance

fractions of the endmembers for any i ∈ {1, . . . , np}, where np denotes the number of pixels. Furthermore, let

X = [x1, . . . , xnp
]T ∈ R

np×nb denote a matrix representing the hyperspectral cube, W = [w1, . . . , wne
]T ∈

R
ne×nb the mixing matrix containing the endmember spectral signatures, and H = [h1, . . . , hnp

]T ∈ R
np×ne a

matrix holding the respective abundance fractions. 1s denotes the column vector of all ones with length s. We use

A ∈ R
m×np to denote the measurement matrix in compressive sensing data acquisition, and F ∈ R

m×nb to denote

the observation matrix, where m < np is the number of samples for each spectral band.

C. Organization

The paper is organized as follows. Section II focuses on formulating our unmixing model. Section III introduces

a data preprocessing technique to significant reduce the problem size and thus complexity. Section IV describes a

variable splitting, augmented Lagrangian algorithm for solving the proposed unmixing model. Section V presents

numerical results based on synthetic data. Section VI describes a hardware setup and its implementation to collect

compressed hyperspectral data, presents and analyzes the performance of the CSU scheme on a hardware-measured

dataset. Finally, Section VII gives concluding remarks.

II. PROBLEM FORMULATION

Assuming negligible interactions among endmembers, the hyperspectral vector xi at the i-th pixel can be regarded

as a linear combination of the endmember spectral signatures, and the weights are gathered in a nonnegative

abundance vector hi. Ideally, the components of hi, representing abundance fractions, should sum up to unity; i.e.,

the hyperspectral vectors lie in the convex hull of endmember spectral signatures [19]. In short, the data model has

the form

X = HW, H1ne
= 1np

, and H ≥ 0. (1)

However, in reality the sum-to-unity condition on H does not usually hold due to imprecisions and noise of various

kinds. In our implementation, we imposed this condition on synthetic data, but skipped it for measured data.

Since each column of X represents a 2D image corresponding to a particular spectral band, we can collect the

compressed hyperspectral data F ∈ R
m×nb by randomly sampling all the columns of X using the same measurement

matrix A ∈ R
m×np , where m < np is the number of samples for each column. Mathematically, the data acquisition

model can be described as

AX = F. (2)

Combining (1) and (2), we obtain constraints

AHW = F, H1ne
= 1np

, and H ≥ 0. (3)
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For now, we assume that the endmember spectral signatures in W are known, our goal is to find their abundance

distributions (or fractions) in H , given the measurement matrix A and the compressed hyperspectral data F . In

general, system (3) is not sufficient for determining H , necessitating the use of some prior knowledge about H in

order to find it.

In compressive sensing, regularization by ℓ1 minimization has been widely used. However, it has been empirically

shown that the use of TV regularization is generally more advantageous on image problems since it can better

preserve edges or boundaries in images that are essential characteristics of most images. TV regularization puts

emphasis on sparsity in the gradient map of the image and is suitable when the gradient of the underlying image is

sparse [2]. In our case, we make the reasonable assumption that the gradient of each image composed by abundance

fractions for each endmember is mostly and approximately piecewise constant. Therefore, we propose to recover

the abundance matrix H by solving the following unmixing model:

min
H∈R

np×ne

ne
∑

j=1

TV(Hej) s.t. AHW = F, H1ne
= 1np

, H ≥ 0, (4)

where ej is the j-th standard unit vector in R
np ,

TV(Hej) ,

np
∑

i=1

‖Di(Hej)‖, (5)

‖.‖ is the 2-norm in R
2, and Di ∈ R

2×np denotes the discrete gradient operator at the i-th pixel. Since the unmixing

model directly uses compressed data F , we will call it a compressed unmixing model.

III. SVD PREPROCESSING

The size of the fidelity equation AHW = F in (3) is m × nb where m, although less than np in compressive

sensing, can still be quite large, and nb, the number of spectral bands, typically ranges from hundreds to thousands.

We propose a preprocessing procedure based on singular value decomposition of the observation matrix F to

decrease the size of the fidelity equations from m×nb to m×ne. Since the number of endmembers ne is typically

up to two orders of magnitude smaller than nb, the resulting reduction in complexity is significant, potentially

enabling near-real-time processing speed. The proposed preprocessing procedure is based on the following result.

Proposition 1: Let A ∈ R
m×np and W ∈ R

ne×nb be full-rank, and F ∈ R
m×nb be rank-ne with ne <

min{nb, np, m}. Let F = UeΣeV
T
e be the economy-size singular value decomposition of F where Σe ∈ R

ne×ne

is diagonal and positive definite, Ue ∈ R
m×ne and Ve ∈ R

nb×ne both have orthonormal columns. Assume that

rank(WVe) = ne, then the two linear systems below for H ∈ R
np×ne have the same solution set; i.e., the equivalence

holds

AHW = F ⇐⇒ AHWVe = UeΣe. (6)

Proof: Denote H1 = {H : AHW = F} and H2 = {H : AHWVe = UeΣe}. Given F = UeΣeV
T
e , it is

obvious that H1 ⊆H2. To show H1 = H2, it suffices to verify that dim(H1) = dim(H2).
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Let “vec” denote the operator that stacks the columns of a matrix to form a vector. By well-known properties of

Kronecker product “⊗”, AHW = F is equivalent to

(WT ⊗A) vecH = vecF, (7)

where WT ⊗A ∈ R
(nbm)×(nenp), and

rank(WT ⊗A) = rank(W )rank(A) = nem. (8)

Similarly, AHWVe = UeΣe is equivalent to

((WVe)
T ⊗A) vecH = vec(UeΣe), (9)

where (WVe)
T ⊗A ∈ R

(nem)×(nenp) and, under our assumption rank(WVe) = ne,

rank((WVe)
T ⊗A) = rank(WVe)rank(A) = nem. (10)

Hence, rank(WT⊗A) = rank((WVe)
T⊗A), which implies the solution sets of (7) and (9) have the same dimension;

i.e., dim(H1) = dim(H2). Since H1 ⊆H2, we conclude that H1 = H2.

This proposition ensures that under a mild condition the matrices W and F in the fidelity equation AHW = F

can be replaced, without changing the solution set, by the much smaller matrices WVe and UeΣe, respectively,

potentially leading to multi-order magnitude reductions in equation sizes.

Suppose that F is a observation matrix for a rank-ne hyperspectral data matrix X̂ . Then F = AĤŴ for some

full rank matrices Ĥ ∈ R
np×ne and Ŵ ∈ R

ne×nb . Clearly, the rows of Ŵ span the same space as the columns of

Ve do. Therefore, the condition rank(WVe) = ne is equivalent to rank(WŴT ) = ne, which definitely holds for

W = Ŵ . It will also hold for a random W with high probability. Indeed, the condition rank(WVe) = ne is rather

mild.

In practice, the observation matrix F usually contains model imprecisions or random noise, and hence is unlikely

to be exactly rank ne. In this case, truncating the SVD of F to rank-ne is a sensible strategy, which will not only serve

the dimension reduction purpose, but also a denoising purpose because the SVD truncation annihilates insignificant

singular values of F likely caused by noise. Motivated by these considerations, we propose the following SVD

preprocessing procedure.

Algorithm 1 (SVD Preprocessing):

Input F , W and ne.

Do the following:

compute the rank-ne principal SVD: F ≈ UeΣeV
T
e ;

overwrite data: W ← WVe and F ← UeΣe;

End

Output F and W .
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IV. ALGORITHM

Our computational experience indicates that, at least for the problems we tested so far, to obtain good solutions

it suffices to solve a simplified compressed unmixing model that omits the nonnegativity of H ,

min
H

ne
∑

j=1

TV(Hej) s.t. AHW = F, H1ne
= 1np

. (11)

For simplicity, we will discuss our algorithm for the above model which was actually used in our numerical

experiments. In fact, in our experiments with hardware-measured data, we also omitted the second constraint above

since it would not help in the presence of sizable system imprecisions and noise. It should also be emphasized

that in the compressed unmixing model (11), the matrices W and F are the output from the SVD preprocessing

procedure. In particular, the size of the fidelity equation has been reduced to m×ne from the original size m×nb,

a factor of nb/ne reduction in size.

The main algorithm we proposed here is based on the augmented Lagrangian method framework and a variable

splitting formulation, which is an extension to the algorithm TVAL3 [6]. Wang, Yang, Yin, and Zhang [7] first

introduced the splitting formulation into TV regularization problems, and applied a penalty algorithm to the

formulation. Then Goldstein and Osher [8] added Bregman regularization into the formulation, producing a faster

algorithm since it is equivalent to augmented Lagrangian multiplier method. In 2009, Li, Zhang, and Yin also

employed this set of ideas and developed an efficient TV regularization solver TVAL3.

To separate the discrete gradient operator from the non-differentiable TV term, we introduce splitting variables

vij = Di(Hej) for i = 1, . . . , np and j = 1, . . . , ne. Then (11) is equivalent to

min
H,vij

∑

i,j

‖vij‖ s.t. Di(Hej) = vij , ∀ i, j, AHW = F, H1ne
= 1np

. (12)

The augmented Lagrangian function for (12) can be written as

LA(H, vij) ,
∑

i,j

{

‖vij‖ − λT
ij(Di(Hej)− vij) +

α

2
‖Di(Hej)− vij‖

2
2

}

− (13)

〈Π, AHW − F 〉+
β

2
‖AHW − F‖2F ,−νT (H1ne

− 1np
) +

γ

2
‖H1ne

− 1np
‖22,

where λij , Π, ν are multipliers of appropriate sizes, and α, β, γ > 0 are penalty parameters corresponding to the

three sets of constraints in (12), respectively. For brevity, we have omitted the multipliers in the argument list of

LA.

We apply the augmented Lagrangian method (see Hestenes [25] and Powell [26]) on (12) which minimizes the

augmented Lagrangian function LA for fixed multipliers, then updates the multipliers. Specifically, in our case the

multipliers are updated as follows. For all 1 ≤ i ≤ np and 1 ≤ j ≤ ne,

λij ← λij − α(Di(Hej)− vij), Π ← Π− β(AHW − F ), ν ← ν − γ(H1ne
− 1np

). (14)
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A. Alternation Minimization

To minimize LA(H, vij) efficiently, we employ an alternating minimization scheme; i.e., minimizing LA(H, vij)

with respect to v and H , one at a time, until convergence is achieved. The minimization problem with respect to

vij ’s is separable and has closed-form solutions v∗ij according to the well-known shrinkage formula:

v∗ij = max

{

‖θij‖ −
1

α
, 0

}

θij

‖θij‖
, (15)

where

θij , Di(Hej)−
λij

α
. (16)

On the other hand, minimizing the augmented Lagrangian with respect to H can be excessively costly for large-sale

problems. Fortunately, in the alternating minimization scheme, it it unnecessary to carry out such a minimization step

to a high accuracy. All we need is to sufficiently decrease the augmented Lagrangian function. In our implementation,

we take only one gradient step on H from the current iterate; i.e.,

H ← H − τ G(H), (17)

where G(H) denotes the gradient of LA(H, vij) with respect to H , which can be derived as

G(H) =
∑

i,j

{

−DT
i λije

T
j + αDT

i (DiHej − vij)e
T
j

}

−AT ΠWT +βAT (AHW−F )WT−ν1T
ne

+γ(H1ne
−1np

)1T
ne

.

(18)

The only remaining issue is to choose the step length τ in (17), for which we adapt a scheme used in [6].

In this scheme, the step size τ is determined by a non-monotone line search scheme [28] to satisfy a so-called

“non-monotone Armijo condition”. We start from an initial step proposed by Barzilai and Borwein [27] for gradient

type method that we will call a BB-step, then use a backtracking technique to search for a step satisfying the

non-monotone Armijo condition. To sum up, the alternating minimization algorithm for minimizing the augmented

Lagrangian function (13), for fixed multipliers, is as follows.

Algorithm 2 (Alternating Minimization):

Input starting point H and all other necessary quantities.

While “inner stopping criteria” are not satisfied,

compute vij by the shrinkage formula (15);

compute the BB step τ (see [27]), and set ρ ∈ (0, 1);

While ”non-monotone Armijo condition” is not satisfied,

Backtracking: τ = ρ τ ;

End

update H by formula (17);

End
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Output H and vij for all i, j.

B. Overall Algorithm

Putting all components together, our algorithm for solving the compressed unmixing model (11) can be summa-

rized as follows.

Algorithm 3 (Compressed Unmixing):

Input data F and W , and penalty parameters α, β, γ > 0.

Preprocess F and W by Algorithm 1;

Initialize multipliers λij , Π, ν, and variable H .

While “outer stopping criteria” are not satisfied,

update variables vij and H by Algorithm 2;

update multipliers λij , Π, ν by formulas in (14);

End

Output H .

The complexity of Algorithm 3 at each iteration is dominated by two matrix multiplications involving WT ⊗A

and its transpose, respectively. In the next two sections, we will demonstrate the effectiveness of the algorithm in

several sets of numerical experiments.

In Algorithm 3, the outer stopping criteria can be specified based on either relative change of variables or the

optimality conditions of the compressed unmixing model (11). While the latter is more rigorous, it is also more

costly. In our experiments, we used relative change of variables in both outer and inner stopping criteria. Specific

parameter settings and initial values used our experiments are given in the next section.

V. EXPERIMENTAL RESULTS: SYNTHETIC DATA

A. Setup of Experiments

To demonstrate the feasibility, practicality and potential of the proposed CSU scheme, We will present numerical

results from applying the proposed CSU scheme to two types of data. In this section, results are obtained on

simulated or synthetic datasets. In the next section, we provide results from a much more realistic simulation where

compressed hyperspectral data were directly measured by a hardware apparatus.

We implemented the CSU scheme in a Matlab code which is still at an early stage of development. All numerical

experiments reported in this paper were performed on a SONY VGN-FZ290 laptop running Windows 7 and

MATLAB R2009b (32-bit), equipped with a 1.5GHz Intel Core 2 Duo CPU T5250 and 2GB of DDR2 memory.
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In both types of experiments, we use randomized Walsh-Hadamard matrices as measurement matrices, A,

considering that they permit fast transformation and easy hardware implementation. A Walsh-Hadamard matrix

is randomized by choosing m random row from it and applying a random permutation to its columns.

In Algorithm 3, the multipliers λij , Π, and ν are always initialized to 0; the backtracking parameter is ρ = 0.6;

the penalty parameters α, β, and γ were selected from a range of 25 to 29, according to estimated noise levels.

Despite of a lack of theoretical guidance, we have found that it is not particularly difficult to choose adequate

values for these penalty parameters since the algorithm is not overly sensitive to such values as long as they fall

into some appropriate but reasonably wide range. It takes a bit experience, and often a few trial-and-error attemps,

to find acceptable penalty parameter values for a given class of problems.

B. Test Results on Synthetic Data

In the first test, we generated compressed data according to data acquisition model (3). We selected 4 endmembers

from the ASTER Spectral Library [30]: nontronite, ferroaxinite, trona, and molybdenite, whose spectral signatures

are shown in Figure 2. A total of 211 bands were selected in the range of 0.4 to 2.5 micrometers. The distributions

of abundance fractions corresponding to 4 endmembers were given in Figure 1 with a spatial resolution of 64×64.

Figures 1 and 2 gives the “true” H and W , respectively, from which we generated an observation matrix F = AHW

for some measurement matrix A. In addition, to test the robustness of the CSU scheme, in some experiments we

added zero-mean Gaussian random noise with stand derivation 0.8 to the observation matrix F .

Nontronite Ferroaxinite

Trona Molybdenite

Fig. 1. Synthetic abundance distributions. Fig. 2. Endmember spectral signatures.

In Figure 3, we plot relative errors in computed abundance fractions versus measurement rate of compressed data

on 100 distinct testing points, with or without additive noise. The average elapsed time for these runs is less than

10 seconds. We observe that the CSU scheme attains relative error less than 1% when measurement rate is greater

than 20% in both noisy and noise-free cases. This test empirically validates the convergence of the algorithm and

the feasibility of the proposed CSU scheme, which has inspired us conducting further tests on larger and more

realistic problems.
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Fig. 3. Recoverability for noisy and noise-free cases.

In the second test, we generated a compressed data matrix F by applying the data acquisition model (2) to the

publicly available HYDICE Urban hyperspectral data [31], which contains 163 bands in a range from 0.4 to 2.5

micrometers, after some water absorption bands, each having a 307× 307 resolution. According to the analysis of

this Urban data cube in [9], there are 6 significant endmembers in the scene — road, metal, dirt, grass, tree, and

roof, as is shown in Figure 4. The spectral signatures for these 6 selected endmembers are plotted in Figure 5.

Fig. 4. “Urban” image and endmember selection. Fig. 5. Spectral signatures with water absorption bands abandoned.

Our computed unmixing result from 25% measurements are given in Figure 6, where six subfigures depict the

computed distributions of abundance fractions for the six endmembers, respectively. It took about 215 seconds to

run the algorithm. Qualitatively, we see that features in the original image such as roads, plants, and buildings have
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Road Metal Dirt

Grass Tree Roof

Fig. 6. Computed abundance: solution obtained from 25% of measurements.

been properly segmented by a visual comparison with Figure 4. For example, a hunk of roof marked by number 6

in Figure 4 appears prominently in the lower-right subfigure of Figure 6 for the abundance fractions of roof.

Figure 7 shows the least squares solution from directly solving AHW = F for H with 100% data, which

becomes an overdetermined linear system in this case. Comparing Figure 6 with Figure 7, we observe that the

proposed CSU scheme, using 25% of the data, is capable of keeping important features and most details, even

though the overall quality in computed abundance fractions by the CSU scheme is slightly lower than that of the

least squares solution using 100% of the data.

VI. EXPERIMENTAL RESULTS: HARDWARE-MEASURED DATA

A. Hardware Implementation

This section contains experimental results using hardware-measured data. Figure 8 shows the schematic of a

compressing sensing hyperspectral imaging system based on a digital micro-mirror device (DMD). This system

incorporates a micro-mirror array driven by pseudo-random patterns and one spectrometer. Similar to the single-

pixel camera setup [5], it optically samples incoherent image measurements as dictated by the CS theory; then a

reconstruction algorithm is applied to recover the acquired spatial image as well as spectral information.

The spectrometer (on the right) we employed is a USB4000 by Ocean Optics which features a 3648-element

linear array detector responsive from 200-1100 nm. The spectrometer and DMD (at the top) are synchronized to take

data when the pseudo-random pattern switches. For each such a pattern, the measured data from the spectrometer

is represented as a linear vector with the length of 3648. The target (at the bottom) is illuminated by two 35W
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Road Metal Dirt

Grass Tree Roof

Fig. 7. Estimated abundance: least squares solution.

daylight lamps from 45 degrees on both sides in order to achieve sufficiently uniform illumination.

B. A Test on Real Data

In this test, we use compressed hyperspectral data collected by the hardware apparatus described above with the

same type of measurement matrices A as in the previous experiments. Since the light shined on the object was

distributed into over 3600 spectral bands, the intensity was significantly weakened in each channel, a relatively high

level of noise became inevitable in the experiments. In many aspects, this represents a realistic and revealing test

on the concept of the proposed CSU scheme.

Our target image is an image of color wheel, as is shown in Figure 9, which is composed of various intensity

levels of three colors: yellow, cyan, and magenta. We selected 175 uniformly distributed bands in the range of 0.4

to 0.75 micrometers, and resolution at each band was 256 × 256. For convenience, we also chose yellow, cyan,

and magenta as the three endmembers, though different choices are certainly possible. In a separate experiment,

we measured the spectral signatures for the three colors which are plotted in Figure 10. The parameters and initial

values used in this test by Algorithm 3 are the same as those specified in Section V-A.

The abundance fractions corresponding to the three endmembers were computed from 10% measured data, and

are shown in Figure 11. The elapsed time to process the compressed unmixing was about 26 seconds. As we can

see, our model and algorithm detected, quite accurately, the areas corresponding to each color at various levels of

brightness.

Figure 12 gives 4 slices of the computed hyperspectral cube, obtained by multiplying the estimated abundance



13

Fig. 8. Single-pixel camera schematic for hyperspectral data acquisition.

Fig. 9. Target image ”Color wheel”. Fig. 10. Measured spectral signatures of the three endmembers.

matrix H with W , corresponding to four different spectral bands or wavelengths. For comparison, Figure 13 gives

four slices, corresponding to the same four spectral bands as in Figure 12, of a computed hyperspectral cube that

were computed from the same 10% of the measured dataset, one slice at a time, by the 2D TV solver TVAL3 as

would be the case in the reconstruction of 2D images from compressed measurements in a standard CS setting.

In this setting, neither endmember signatures nor abundance fractions was utilized. It is evident that the results

in Figure 12 are much cleaner than those in Figure 13. Apparently, this remarkable superiority of the proposed

CSU scheme is the consequence of two factors: 1) a thorough exploitation of both low-rankness and sparsity in 3D

hyperspectral data, 2) the denoising effects of the SVD preprocessing.
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Fig. 11. Estimated abundance: CS unmixing solution from 10% measurements.
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Fig. 12. Four slices computed by the proposed approach.
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Fig. 13. Four slices computed slice-by-slice by TV minimization.

VII. CONCLUSIONS

This work is a proof-of-concept study on a compressive sensing and unmixing (CSU) scheme for hyperspectral

data processing that does not require forming or storing any full-size data cube. The CSU scheme consists of three

major steps: 1) data acquisition by compressive sensing; 2) data preprocessing by SVD; and (3) data unmixing by

solving a compressed unmixing model with total-variation regularization on abundance fraction distributions.

In this first-stage study, we only consider the situation where the spectral signatures of the endmembers are either

precisely or approximately known. After performing the SVD preprocessing, data sizes to be processed become

much smaller and independent of the number of spectral bands. An efficient algorithm has been constructed for

solving a compressed unmixing model based on the augmented Lagrangian method and alternating minimization.

The proposed CSU scheme has been empirically, and rather convincingly, validated using both synthetic data
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and measured data acquired by a hardware device similar to the single-pixel camera [5]. Our numerical results

clearly demonstrate that compressively acquired data of size ranging from 10% to 25% of the full size can produce

satisfactory results highly agreeable with the “ground truth”. The process speed achieved so far, which can certainly

be further improved, seems to fall within a promising range.

It is certainly desirable to extend the work of this paper to more practical situations where knowledge about

endmember spectral signatures are either very rough, highly incomplete, or even totally missing, leading to the

much more difficult task of compressive sensing and blind unmixing. In particular, the optimization models for this

task become non-convex. However, some recent successes in solving non-convex matrix factorization models, such

as [29] on matrix completion, offer hopes for us to conduct further research along this direction.
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