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Abstract

Background: Humans and other organisms are equipped with a set of responses that can prevent damage from

exposure to a multitude of endogenous and environmental stressors. If these stress responses are overwhelmed,

this can result in pathogenesis of diseases, which is reflected by an increased development of, e.g., pulmonary and

cardiac diseases in humans exposed to chronic levels of environmental stress, including inhaled cigarette smoke

(CS). Systems biology data sets (e.g., transcriptomics, phosphoproteomics, metabolomics) could enable

comprehensive investigation of the biological impact of these stressors. However, detailed mechanistic networks

are needed to determine which specific pathways are activated in response to different stressors and to drive the

qualitative and eventually quantitative assessment of these data. A current limiting step in this process is the

availability of detailed mechanistic networks that can be used as an analytical substrate.

Results: We have built a detailed network model that captures the biology underlying the physiological cellular

response to endogenous and exogenous stressors in non-diseased mammalian pulmonary and cardiovascular cells.

The contents of the network model reflect several diverse areas of signaling, including oxidative stress, hypoxia,

shear stress, endoplasmic reticulum stress, and xenobiotic stress, that are elicited in response to common

pulmonary and cardiovascular stressors. We then tested the ability of the network model to identify the

mechanisms that are activated in response to CS, a broad inducer of cellular stress. Using transcriptomic data from

the lungs of mice exposed to CS, the network model identified a robust increase in the oxidative stress response,

largely mediated by the anti-oxidant NRF2 pathways, consistent with previous reports on the impact of CS

exposure in the mammalian lung.

Conclusions: The results presented here describe the construction of a cellular stress network model and its

application towards the analysis of environmental stress using transcriptomic data. The proof-of-principle analysis

described here, coupled with the future development of additional network models covering distinct areas of

biology, will help to further clarify the integrated biological responses elicited by complex environmental stressors

such as CS, in pulmonary and cardiovascular cells.

Background
The human body is constantly exposed to endogenous

(e.g., mitochondrial reactive oxygen species (ROS) gen-

eration, unfolded protein response) and environmental

stress. Stressors such as combustion products (diesel

exhaust, carbon monoxide, nitrogen oxides, cigarette

smoke), particulate matter, ozone, exert a daily challenge

to our body’s cellular defenses, in particular within the

pulmonary and cardiovascular system [1,2]. Lung epithe-

lial cells directly interface with the external environment

and are often the first cells to be exposed to environ-

mental stress [3,4]. While not facing the external envir-

onment directly, cells of the cardiovascular system are

constantly exposed to the stressors that circulate in the
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bloodstream [5-7]. It is therefore not surprising that epi-

demiological studies have linked exposure to environ-

mental stress to increased incidence of cardiovascular

disease over the past decades [8-10]. Thus, further

investigation into the mechanistic underpinnings of the

response to different types of cellular stress is an impor-

tant area of human health research [11-14].

One of the central challenges faced by contemporary

investigators is how to comprehensively assess the biolo-

gical impact of complex processes such as the cellular

stress response at a molecular level, in order to under-

stand their influence on disease susceptibility and pro-

gression. Computational approaches are increasingly

being applied to analyze complex biological systems like

the cellular stress response, including investigations into

the role of key transcription factors such as NRF2 (med-

iating the antioxidative stress response), or identifying

potential mechanisms for how stress can lead to diseases

such as asthma [15,16]. Large scale, systems biology

measurements (e.g., transcriptomics, proteomics, and

metabolomics) can be applied to molecular regulatory

network models in an effort to understand the underly-

ing cellular response to biological insults. The field of

pulmonary and cardiovascular biology has been quick to

adopt systems biology approaches, using transcriptomic

data to investigate the mechanistic basis behind the

development of complex, multi-factorial diseases such as

atherosclerosis and lung cancer [17-20], particularly

with respect to the contribution of CS.

With a view to developing a Systems biology-based

risk assessment approach for tobacco products, we are

building a series of biological network models that

reflect smoking-related molecular changes in the target

tissues of the lung and the cardiovascular system.

Detailed mechanistic networks are needed to drive the

qualitative and eventually quantitative assessment of

product-related data (conventional CS and harm

reduced next generation products) to determine which

pathways are activated in response to such exposures,

and to measure the biological impact on in vitro and in

vivo systems.

Physiological stress responses are diverse, depending

on the type of stressor (chemical or physical), the tissue/

cell types affected, and the duration and/or dose of the

stressor. Therefore, in order to understand the biological

pathways that are affected in response to a particular

stressor in a specific physiological context, the availabil-

ity of comprehensive network models that causally relate

the relevant nodes (biological entities or processes) and

edges (relationships between nodes) are needed to inte-

grate systems biology data with the current knowledge

of biological pathways. Ideally, the impact of environ-

mental stress on all major cellular processes, e.g., prolif-

eration, inflammatory processes, and apoptosis, can be

evaluated by integrating multiple biological network

models and systems biology data sets, using appropriate

computational approaches. We have previously reported

on the construction of a network model describing the

pathways that are known to regulate cell proliferation in

the lung as the first step towards the availability of a

publicly available, integrated model of the major cellular

processes operating in lung and cardiovascular tissues

[21]. However, in order to holistically assess the effects

of environmental and endogenous stressors on pulmon-

ary and cardiovascular cells, as well as to link such

effects to the onset of related diseases, the availability of

detailed mechanistic network models for other major

cellular processes is necessary.

Here we report the construction and testing of a more

detailed network model reflecting the pathways that are

described to operate in response to stress in non-dis-

eased pulmonary and cardiovascular cells. Containing

connectivity support from 428 unique literature sources,

the network model conveys mechanistic detail about the

pathways that are involved in response to several promi-

nent pulmonary and cardiovascular cell stressors,

including exogenous factors (i.e., air pollution, environ-

mental toxicants) and endogenous factors (i.e., respira-

tory chain generated ROS, the unfolded/misfolded

proteins). Model content boundaries were set to con-

strain the coverage of the network model to the stres-

sors and stress responses that can occur in healthy,

non-diseased cells of the pulmonary and cardiovascular

systems. After establishing these content boundaries, we

constructed a literature model of these processes. Next,

we used computational analysis of four transcriptomic

data sets to identify conserved sub-networks that are

activated in response to different stressors, populating

the network model with additional nodes and edges in

the process.

Towards a verification of the network model, its

descriptive content has to be assessed for correctness

and relevance; therefore, the network model was evalu-

ated for its ability to detect stress responses to a stressor

that was not used to build the network model. Cigarette

smoke (CS) contains thousands of chemicals that collec-

tively induce complex molecular responses making CS

an ideal test substance. The cellular response to stress

induced by CS has been shown to be largely mediated

by the oxidative-stress responsive transcription factor

NFE2l2 (nuclear factor, erythroid derived 2, like 2;

NRF2) making an NRF2 knockout mouse an ideal sys-

tem to differentiate the response to stress using this net-

work model [22,23]. Therefore, we tested the ability of

the network model to detect cellular stress using tran-

scriptomic data from mouse lung following acute in vivo

CS exposure. In addition, we used the network model to

investigate the response to acute CS exposure in mice
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that were constitutively deficient for NRF2. Our results

suggest that the use of focused biological network mod-

els combined with large scale systems biology data sets

can identify the salient biology underlying complex

stressors like CS.

Results
Network Definition

Network model boundaries

The network model described here was constructed

from content described from two sources, a literature

model describing the relevant mechanisms involved in

the stress response known from published literature,

and a data set derived component, with content derived

from the computational analysis of publicly available

transcriptomic data from stress relevant experiments

performed in pulmonary and cardiovascular cells. In

order to ensure that the network model depicts biologi-

cal mechanisms related to stress response in non-dis-

eased pulmonary and cardiovascular tissues, we applied

a set of rules for selecting network model content. Our

overall goal was to generate a network model that

reflects acute, non-pathological stress responses, and

does not include the adjacent biological processes such

as cell death/apoptosis, tissue damage, or inflammation

which will be addressed in separate models.

Relationships derived from human tissue context were

prioritized, however, if needed, connections derived

from mouse and rat contexts were also used to com-

plete the model (see Table 1 and Materials & Methods,

“Knowledgebase” section). Canonical mechanisms repre-

senting pathways well-established in the literature were

included in the network model even if literature support

explicitly demonstrating the presence of the mechanism

in lung- or cardiovascular-related tissues was not identi-

fied. For example, it was assumed that the same physio-

logical machinery designed to combat metabolically

generated ROS, e.g. the glutathione synthesis pathway,

can operate in most mammalian cell types. However, if

specific lung or cardiovascular contexts for canonical

mechanisms were found in the literature, they were

used. If needed to complete critical relationships within

the network model, other tissue contexts were also con-

sidered, based on our assumption that they would reflect

the response to stress in normal lung and cardiovascular

tissues. For example, while liver contexts were generally

excluded, they were used in the xenobiotic stress build-

ing block (see below for a description of building blocks)

because many central mediators of xenobiotic stress

response (e.g., AHR, PXR) have been extensively studied

in hepatic systems. Additionally, renal contexts were

generally excluded, with the notable exception of the

osmotic stress building block, where renal cells are

widely used as model systems to study osmotic regula-

tion. Likewise, the use of causal relationships with tissue

contexts from immortalized cell lines was limited to

building critical mechanisms in the network model,

when only available from this type of experimental sys-

tem. In fact, causal relationships with tissue contexts

derived from tumors or other diseased tissues were used

at a frequency of only 1%. Since the Cellular Stress Net-

work model is fully referenced, the tissue contexts for

each causal edge are available for examination. Data

derived from experiments with CS exposure were

excluded during initial network building in order to

maintain the ability to verify the network model at a

later stage without bias from circularity.

Following an exhaustive search of the literature, com-

ponents were selected for inclusion in the Cellular Stress

Network model based on the biological mechanisms

known to operate in response to stresses in lung and

cardiovascular contexts, creating the mechanistic biolo-

gical boundaries of the network model. The network

model was constructed in a modular fashion using a

“building block” framework in which the responses to

several key types of stressors were modeled (see Figure

1). These building blocks contain overlapping nodes

that, when joined, create an extensive network model of

the pathways involved in the pulmonary and cardiovas-

cular responses to physiological stress. The building

blocks comprising the network model are:

Xenobiotic stress Includes the role of AHR, Cytochrome

p450 enzymes, and various environmental stressors.

Endoplasmic reticulum (ER) stress Includes the

unfolded protein response and the pathways down-

stream of the three key stress mediators: PERK

(Eif2ak3), ATF6, and IRE1alpha (Ern1). The pro-apopto-

tic arm of the ER stress response was excluded from

Table 1 Summary of relevant statistics describing the

content of the Cellular Stress Network model

Nodes 730

mRNAs 84

Proteins 235

Phosphoproteins 43

Activities 180

Complexes 57

Protein families 18

Biological processes 48

Chemicals/Small molecules 65

Total Edges 1280

Causal Edges 778

Human-derived 545

Mouse-derived 175

Rat-derived 58

Unique PMIDs 428

Schlage et al. BMC Systems Biology 2011, 5:168

http://www.biomedcentral.com/1752-0509/5/168

Page 3 of 15



this network model in anticipation of being included in

a separate network model on cell death related

processes.

Endothelial shear stress Includes the effects of laminar

(atheroprotective) and turbulent (atherogenic) shear

stress on monocyte adhesion, including NF-�B and

nitric oxide pathways.

Hypoxic stress Includes HIF1a activation and targets,

control of transcription, protein synthesis, and crosstalk

with oxidative stress, ER stress, and osmotic stress

response pathways.

Osmotic stress Includes NFAT5, aquaporin, and CFTR

pathways downstream of the hyperosmotic response.

Oxidative stress Includes intracellular free radical man-

agement, cellular responses to endogenous/exogenous

oxidants and anti-oxidants and the glutathione metabo-

lism. Key players of the involved intracellular pathways

are the transcription factors AP-1, NF-�B and NRF2. A

particular focus is on NRF2 as the central mediator of

the cellular oxidative stress response including its

upstream regulators and downstream gene expressions

regulation via the antioxidant response element [24].

Ideally, all nodes and edges of the network model

would be supported by published data from experiments

conducted in non-diseased human, mouse, or rat pul-

monary/cardiovascular tissue. However, in some cases,

the results of the relevant detailed experiments have not

been published. Thus, causal relationships with literature

support coming from the tissues and cell types found in

the normal lung (e.g., bronchial epithelial cells, alveolar

type II cells, etc.) and in cardiovascular tissue (e.g., cor-

onary artery endothelial cells) were prioritized. Approxi-

mately two thirds of the network model reflected lung

and cardiovascular cell biology directly (Figure 2 and

Additional File 1).

Cellular stress network model literature component

The Cellular Stress Network model describes physiologi-

cal stressors and the main processes operating in

response to these stressors that occur in non-diseased

lung and cardiovascular tissue. Specifically, this network

model captures the responses to oxidative, endoplasmic

reticulum, hypoxic, osmotic, xenobiotic, and shear stres-

ses. Causal relationships (described in further detail in

this section) describing these processes were added to

the network model from the Selventa Knowledgebase

[25], a unified collection of over 1.5 million elements of

biological knowledge captured from the public literature

and other sources. This network model was constructed

using a computable framework, enabling its application

to the evaluation of cellular stress based on systems

biology data.

The literature component of the Cellular Stress Net-

work model contains 512 nodes and 876 edges. Network

model nodes are biological entities such as mRNA

expressions, protein abundances, or protein activities

(Figure 3). Nodes may also be chemicals or small mole-

cules whose transcriptional signatures may represent

signaling similar to that which the chemical would

induce. Finally, nodes can represent biological processes,

such as “response to oxidative stress” or “laminar shear

stress”. This fine-grained representation allows for biolo-

gical processes to be modeled with a high degree of

mechanistic detail. Edges are relationships between

nodes and may be either non-causal or causal. Non-cau-

sal edges simply connect different forms of a biological

Figure 1 Schematic overview of the modular “building block”

framework used to construct the Cellular Stress Network. A

detailed network model of NRF2 signaling was included in the

Oxidative Stress building block. A few examples of relevant

transcription factors and kinase cascades included in the network

model are shown.

Figure 2 Pie chart summarizing the tissue context origin of

causal edges in the Cellular Stress Network (for details, see

Additional File 1).
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entity, such as its mRNA expression and its protein

abundance, while causal edges are cause-effect relation-

ships between biological entities based on primary litera-

ture data (Figure 4, for details, see Materials and

Methods).

Cellular Stress Network model data set component

Cell stress data sets

Application of Reverse Causal Reasoning (RCR, see

below) to cellular stress transcriptomic data sets that

capture the responses to a diversity of cellular stresses

in lung and cardiovascular cell types was performed to

confirm the activities of nodes already present in the lit-

erature portion of the network model, and also to sup-

plement the literature-derived components of the

network model with unique data set-derived nodes and

edges. Data sets were selected with the goal of including

a balance of mouse and human, in vitro and in vivo

experiments, and a variety of cellular stresses. Data sets

were selected to ensure representation from multiple

building blocks, with oxidative stress as the focus. By

using a variety of data sets which used different experi-

mental stressors, we were able to confirm the literature-

derived components in the network model and also add

data set-derived nodes and edges from a variety of

biological pathways, enhancing the breadth of the net-

work model, in addition to its mechanistic detail.

Furthermore, data sets with 48 hours or less treatment

times were prioritized to best reflect the stress response

mechanisms as they occur in non-diseased tissue. Other

general data set selection criteria included: 1) how well

physiologically-relevant stress in non-diseased lung or

cardiovascular tissue was represented in the experiment,

2) the availability of phenotypic stress endpoint data, 3)

the statistical rigor of the gene expression profiling

experiments, and 4) the relevance of the experimental

context to normal non-diseased lung or cardiovascular

biology. The four data sets selected are summarized in

Table 2. These data sets represent oxidative stress

(Hyperoxia/GSE495 and HOCl/GSE15457), ER stress

(OxPAPC/GSE20060), and hypoxic stress (Hypoxia/

GSE11341). The Hyperoxia and Hypoxia experiments

were performed in whole lung and a specific lung cell

type, while the OxPAPC experiment was performed in a

cardiovascular tissue context. Since the HOCl experi-

ment was not performed in a lung or cardiovascular

context, we assumed that the macrophage cell line used

was generally reflective of the signaling that would

occur in response to stress in lung macrophages as well.

Reverse Causal Reasoning

Reverse Causal Reasoning (RCR) [25] was applied to

identify statistically significant predictions of the activity

states of biological mechanisms ("hypotheses”) that are

consistent with the measurements taken for a given sys-

tems biology data set. RCR on these four data sets iden-

tified upstream hypotheses which can explain the

significant mRNA State Changes in each cell stress tran-

scriptomic data set, enabling a deeper mechanistic

understanding of the biological network perturbed by

the experimental conditions, beyond the mere identifica-

tion of significantly changing mRNAs [26,27]. These

hypotheses represent mechanisms involved in the

response to the various stressors used in the experi-

ments. RCR prediction of activity for a given node using

gene expression data sets requires a minimum of four

observed RNA expression changes that are consistent

with the predicted change in node activity. Thus, one

reason that a network model node may not be predicted

changed in the data sets is that the Knowledgebase con-

tains too few causal connections from the node to

downstream RNA expressions. To address this, we aug-

mented the Selventa Knowledgebase with over 23,000

new statements from the public literature to enhance

the prediction of nodes in the Cellular Stress Network

model. Following this effort, 272 of the 730 nodes in the

final Cellular Stress Network model were eligible for

prediction (containing four or more downstream gene

expression relationships and thus capable of prediction

as a hypothesis) by RCR. As a notable caveat to these

Figure 3 Network model detail. A portion of the network model

surrounding NRF2 (NFE2L2) is shown, including transcriptional

regulation by KEAP1 and downstream expression targets. Activating

direct causal relationships are shown as dark arrows; inhibitory

direct causal relationships are shown as edges ending in a knob.
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Figure 4 The Cellular Stress Network. Highlighted nodes are Reverse Causal Reasoning (RCR) hypotheses, predicted to have increased or

decreased abundance or activity, in the indicated cell stress data sets.

Table 2 Data sets analyzed by RCR for assessment and augmentation of the Cellular Stress Network model

Data Set Hyperoxia HOCl OxPAPC Hypoxia

Data Set ID GSE495 GSE15457 GSE20060 GSE11341

PubMed ID N/A 19376150 20170901 18469115

Perturbation 100% O2 1.4 mM hypochlorous acid 40 μg/ml oxidized
phospholipid

1% O2

Tissue/Cells Whole lung RAW 267.4 cell line Aortic endothelial
cells

Lung microvascular endothelial
cells

In vivo/in
vitro

In vivo In vitro In vitro In vitro

Species Mouse Mouse Human Human

Timepoint 48 h 6 h 4 h 48 h

Control 0 h 6 h untreated 4 h untreated 0 h

Platform Affymetrix
U74v2

Affymetrix 430_2 Affymetrix
HGU133A

Affymetrix HGU133A

# State
Changes

1122 1618 185 639

Measured
outcome(s)

None Cell viability, RT-PCR, and Western blot analysis of
Nrf2 and Nrf2 target genes

qRT-PCR for
HMOX1, GJA5

Hypoxia-induced marker genes;
Scratch wound assay
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statistics, many of the nodes for which a prediction was

not possible are “connector” nodes such as phosphoryla-

tions and complexes (145 nodes combined), which link

protein activities to one another. For many of the pre-

dicted hypotheses, a corresponding literature-derived

node was already present in the network model. Specifi-

cally, 43/272 (16%), 45/254 (18%), 23/163 (14%) and 30/

246 (12%) RCR predicted HYPs were already nodes in

the literature model for GSE495, GSE20060, GSE15457,

and GSE11341, respectively. For example, RCR predicted

the increased transcriptional activity of NF-�B in 3 out

of the 4 data sets. Because the transcriptional activity of

NF-�B was already in the literature model as a node, its

prediction by RCR serves to verify its importance to the

stress response, but did not add a new node to the net-

work model.

Building block nodes are recapitulated by RCR results

RCR analysis on the four data transcriptomic data sets

predicted the modulated activity or abundance for many

nodes in the oxidative stress building block (Additional

File 2). These include ROS and the transcriptional activ-

ity of NRF2, which are both predicted increased in each

of the oxidative stress data sets (Hyperoxia and HOCl).

Notably, there are also predictions for ER stress nodes

in the ER stress data set (OxPAPC), such as increased

“response to ER stress”, Xbp1 transcriptional activity,

and the activities of several ATF family members

[28,29]. Finally, both the response to hypoxia and

increased HIF1alpha activity hypotheses are predicted in

the hypoxia data set. Hypotheses from the other build-

ing blocks of the Cellular Stress Network model are also

predicted, including xenobiotic metabolism (AHR activ-

ity and the transcriptional signatures of the environmen-

tal contaminants tetrachlorodibenzodioxin, diesel

exhaust, and soot), endothelial shear stress (laminar

shear stress and monocyte adherence), and osmotic

stress (NFAT5 activity, hyperosmotic response).

Although these specific stresses did not have corre-

sponding data sets, these predictions demonstrate the

large degree of overlap between these stress response

pathways.

Additional data set-derived nodes

For gap analysis and network augmentation, we further

investigated those RCR-derived hypotheses from the

four data sets that were not already represented in the

literature network model. Thirty five hypotheses with

clear impact on the response to cellular stress in the

lung or cardiovascular tissues based on literature investi-

gation of their biological roles were added to the net-

work model. A table of these data set-derived

hypotheses that were incorporated into the network

model can be found in Additional File 3. The two-

pronged approach of including both literature- and data

set-derived nodes into the Cellular Stress Network

model ensured that the network model covered a broad

range of stress response pathways. This network model

structure is critical to understanding complex stresses

that can simultaneously activate multiple stress

pathways.

For a complete list of nodes in each building block,

see Additional File 4.

The final Cellular Stress Network model (a combina-

tion of the literature and data set derived components)

contains 730 nodes and 1280 edges (778 of which are

causal edges), and is supported by 428 unique PubMed-

indexed references. This fully referenced Cellular Stress

Network model is comprised of both literature-derived

and data set-derived components (described in the sub-

sequent sections) and provides the greater research

community with the most comprehensive connectivity

map of the molecular mechanisms involved in response

to certain stresses in non-diseased lung and cardiovascu-

lar tissues currently in existence.

Cellular Stress Network model coverage

In total, 130 of the 272 RCR-capable network model

nodes (48%) were predicted in at least one of the four

data sets (Additional Files 5, 6, 7, 8). 83 (31%) were pre-

dicted based on the OxPAPC data set alone, while 72

(26%), 54 (20%) and 49 (18%) were predicted based on

the Hyperoxia, Hypoxia, and HOCl data sets, respec-

tively (Figure 4). These statistics are based on the full

Cellular Stress Network model, including both litera-

ture-derived and data set-derived components. The pre-

sence of these hypotheses as nodes in the Cellular Stress

Network model confirms that this network model is an

accurate representation of the response to various phy-

siological stresses in the lung and cardiovascular tissues.

These hypotheses also confirm the ability of RCR to

predict relevant biological mechanisms based on tran-

scriptomic data from multiple, independent data sets.

Therefore, this network model and the framework used

to create it are well-suited for the evaluation of mechan-

isms involved in the response to cellular stress in the

lung and cardiovascular tissues for a wide variety of

relevant stressors.

Cellular Stress Network model verification

To test the ability of the Cellular Stress Network model

to provide qualitative mechanistic explanations for tran-

scriptomic stress data, we investigated a recently pub-

lished data series, GSE18344, which captures the

transcriptional response to cigarette smoke (CS), as a

prototypic inducer of pleiotropic cellular stress, in

mouse lung [30]. This data series includes data from

both wild type (WT) and NRF2 knockout (NRF2 KO)

animals exposed to ambient air (sham exposure) or CS.

The 1 day CS treatment data were chosen to test the

Cellular Stress Network model; these data represent the
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stress response in non-diseased, naïve tissue that the

network model was designed to evaluate.

Significant mRNA State Changes (SCs) were deter-

mined for three comparisons, (1) WT 1 day CS vs.

sham exposure, (2) NRF2 KO 1 day CS vs. sham expo-

sure, and (3) NRF2 KO 1 day CS vs. WT 1d CS expo-

sure (Figure 5 and Table 3; see also Materials and

Methods). In this analysis, an SC is a statistically signifi-

cant difference in mRNA levels in different experimental

conditions. The first two comparisons represent the

response to 1 day CS exposure in WT and NRF2 KO

mice, respectively. The third comparison represents the

difference in response to CS in NRF2 KO compared to

WT (Figure 5), and enables specific investigation of the

contribution of NRF2 to the cellular response to CS.

Because NRF2 is a key mediator of the cellular stress

response in lung and other tissues [22,31,32], it is of

great interest to compare the response to acute CS in

WT and NRF2 KO mouse lungs. Notably, only 21 of

113 (19%) mRNA SCs induced by 1 day CS exposure in

WT mice overlap with those observed in the NRF2 KO

mice (Figure 5). These results are consistent with a cen-

tral role for NRF2 in the lung cellular response to CS.

RCR was performed on the significant mRNA SCs for

each comparison to evaluate the ability of the Cellular

Stress Network model nodes to explain the transcrip-

tomic data (Additional File 9). Overlaying the significant

hypothesis predictions and observed mRNA SCs from

the WT 1 day vs. sham data set onto the network

model (Figure 6) results in coverage of many network

model areas, with a notable concentration of observed

mRNA SCs around the transcriptional activity of NRF2

(taof(Nfe2l2)). Taken together, the significantly predicted

hypotheses that are Cellular Stress Network model

nodes explain 71/81 (88%) and 90/113 (80%) of the

mRNA SCs induced by 1 day CS exposure in WT and

NRF2 KO mice, respectively. The majority of SCs that

were not explained by the Cellular Stress Network were

those whose known upstream expression controllers fell

outside of the network boundaries (e.g., IL18, NPAS1,

TCF3). Future analyses of these data sets together with

networks that describe other areas of CS-influenced

biology such as inflammation, will serve to minimize

these knowledge gaps.

Hypotheses significant in the WT or NRF2 KO 1-d CS

data sets were placed into clusters based on their pat-

tern of prediction in comparisons across all three CS

data sets (Additional File 9). Cluster A is comprised of

network model nodes predicted increased in WT 1-d vs.

sham, and the opposite direction in the NRF2 KO 1-d

vs. WT 1-d comparison, indicating signal dependence

on NRF2. Cluster B is comprised of network model

nodes predicted increased or decreased in the same

direction for both the WT 1-d and NRF2 KO 1-d vs.

sham exposure comparisons, but predicted in the oppo-

site direction for the NRF2 KO 1-d vs. WT 1-d compar-

ison, indicating that the signal is at least partially

dependent on NRF2. Clusters A and B contain many

components of the oxidative stress building block within

Figure 5 Test data set and mRNA State Change overview. (top)

Test data set comparisons. Comparisons of GSE18344 data from 1

day cigarette smoke exposure experiments used to evaluate the

Cellular Stress Network model. (bottom) mRNA State Change (SC)

overlap between WT and NRF2 KO data sets. WT = wildtype mice;

NRF2 KO = NRF2 knockout mice; SCs = mRNA State Changes.

Table 3 Cellular Stress Network coverage statistics for the test data set comparisons based on GSE18344 data

Comparison WT 1d vs sham Nrf2 KO 1d vs sham Nrf2 KO 1d vs WT 1d

State Changes (SCs) 81 113 45

Significant Cellular Stress Network Hypotheses 39 47 23

SCs Explained by Network 67/81 (83%) 75/113 (66%) 40/45 (89%)

SCs Explained by Nfe2l2 29/81 (36%) 20/113 (18%) 31/45 (69%)

SCs Explained by Nfe2l2 or Keap1 37/81 (46%) 27/113 (24%) 36/45 (80%)

SCs = mRNA State Changes; hypotheses - network model nodes predicted to have significantly increased or decreased activity by Reverse Causal Reasoning

(RCR) on the SCs for each test data set comparison.
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the network model, including the oxidant hypotheses

“Hypochlorous acid” and menaquinone ("Menadione”),

as well as NRF2 ("Nfe2L2”) itself and its negative regu-

lator, “Keap1”. Cluster C is comprised of nodes pre-

dicted increased in both WT 1-d vs. sham and NRF2

KO 1-d vs. sham, with no predicted differences in the

NRF2 KO 1-d vs. WT comparison. These nodes come

from a mix of network model building blocks and

include the ER stress-inducer “Tunicamycin” as well as

“ATF6”, a transcription factor activated by the

unfolded protein response [33]. Cluster D is comprised

of nodes predicted up- or down-regulated by CS expo-

sure in WT 1-d and not the NRF2 KO 1-d, but with

no significant difference between WT 1-d and the

NRF2 KO 1-d when directly compared. Cluster E is

comprised of nodes predicted changed in the NRF2

KO 1-d vs. sham comparison only. While clusters A

and B represent elements of the stress response influ-

enced by NRF2, cluster C represents likely NRF2-inde-

pendent components of the stress response. Most of

the network model nodes from the oxidative stress

building block are present in the NRF2-influenced

clusters A and B, consistent with the key role for

NRF2 in the oxidative stress response.

Notably, 29/81 (35%) of SCs induced by 1 day CS

exposure in WT mice can be explained by activation

of NRF2. Expanding this calculation to include KEAP1,

a negative regulator of NRF2 and key mediator of its

activation by oxidative stress [34], explains 37/81 (46%)

of the WT 1 day vs. sham SCs. While the NRF2 KO

mice lack NRF2, 20/113 (18%) SCs induced by CS

exposure can be explained by NRF2, and 27/113 (24%)

explained by NRF2 and KEAP1 network model nodes

together. Some of the genes that can potentially be

controlled by NRF2 can also be controlled by other,

NRF2-independent mechanisms [35-37]. When the 1

day CS exposed NRF2 KO mice are compared to the

WT mice, decreased transcriptional activity of NRF2 is

predicted, consistent with the absence of NRF2 in

these mice.

Figure 6 Cellular Stress Network model colored for the WT 1 day cigarette smoke test data set. Red - node corresponds to observed

increased mRNA SCs; yellow halo - node is predicted by RCR to have increased activity; blue halo - node is predicted to have decreased activity.
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Discussion
The Cellular Stress Network model is a unique resource

The Cellular Stress Network model was designed to be

used as a comprehensive research resource for the

scientific community and as a functional backbone for

computational analysis. As a publicly available research

resource, the network model can be used by investiga-

tors to explore the connectivity of the genes/proteins/

processes involved in different stress responses relevant

to their research programs. Until now, no such single

resource existed for the pulmonary and cardiovascular

research communities. In addition, the network model is

compatible with computational reasoning to analyze sys-

tems biology data.

One unique aspect of the Cellular Stress Network

model is its specificity with respect to tissue context.

We focused network model connectivity on mechanisms

that operate in a defined set of cell types relevant to car-

diovascular and pulmonary biology. Other common

approaches for building connectivity networks that inte-

grate prior knowledge, e.g., using Kyoto Encyclopedia of

Genes and Genomes (KEGG) maps or protein-protein

interaction databases, generally compile connections

that have been reported in many different tissue types,

sometimes in the context of disease as an added advan-

tage over other common pathway analyses, the edges in

the network model presented are embedded with acces-

sible literature evidence supporting each relationship,

making for a highly transparent network model. Last,

because the edges in the network model described here

are supported by causal relationships directly observed

in published experiments, the network model contains a

unique level of biological transparency.

The Cellular Stress Network model is part of a broader

systems biology initiative. Previously, we reported on the

construction and utility of a network model describing

pathways known to be involved in regulating cell prolifera-

tion in the non-diseased lung (Cell Proliferation Network

model) [21]. Additional biological process network mod-

els, constructed using a similar modular design, can then

be combined with the existing Cell Proliferation and Cel-

lular Stress Network models. Forming an integrated net-

work that covers an unparalleled level of complex

pulmonary and cardiovascular-related biology, this collec-

tion of network models will be an invaluable resource to

the greater research community, aiding in the effort to

understand the underpinning mechanisms. Eventually, this

integrated network will serve as a scaffold for the parallel

analysis of multiple systems biology data types (e.g., phos-

phoproteomics) in combination with transcriptomic data

to assess complex biology.

Other lung-focused stress networks have been gener-

ated using systems biology data (specifically gene

expression profiling), however they differ in their con-

struction methods, content, applications, and explana-

tory power. For example, Freishtat et al. report a 26-

member lung stress network comprised of genes regu-

lated by asthma-relevant challenges or tobacco smoke in

multiple gene expression data sets [16]. A second exam-

ple network used information-theoretic network infer-

ence algorithms to identify NRF2 targets and regulatory

relationships using a large number of mouse lung

microarray data sets [15]. Similar to the Cellular Stress

Network model reported here, these networks are rele-

vant to the stress response in lung tissue and make use

of microarray data for their construction; however, these

networks differ in that they have highly focused applica-

tion and less explanatory power for experimentally

observed gene expression changes. The relatively large

size and comprehensive biological coverage of the Cellu-

lar Stress Network model imparts it with a unique abil-

ity to explain systems biology data and provide

mechanistic detail.

The Cellular Stress Network model captures diverse stress

responses in pulmonary and cardiovascular cells

The daily environmental assaults posed to normal pul-

monary and cardiovascular cells can exert multiple,

complex, and often interconnected stress responses. In

order to unravel the mechanisms behind these inte-

grated responses using systems biology data sets (e.g.,

gene expression profiling), the Cellular Stress Network

model was designed to represent the response to stress

in normal, non-diseased lung and cardiovascular cells.

To focus the network model on this tissue-specific stress

response, we used four data sets representing some of

the stresses that lung and cardiovascular cells are

exposed to. These data sets not only provided a means

to assess the content of the literature-derived portion of

the network model, but perhaps more importantly,

revealed the shared and unique mechanisms that oper-

ate in pulmonary and cardiovascular cells following

exposure to stress. The hypoxia data set aided in ensur-

ing the hypoxia response signaling was comprehensively

captured in the network model. Similarly, the hyperoxia

and HOCl (inducers of oxidative stress [38-40]) data

sets aided in construction and evaluation of the oxida-

tive stress response mechanisms in the network model.

OxPAPC, a pro-inflammatory oxidized phospholipid

that induces both oxidative and ER stress [41], provided

a fourth stress data set to aid network model construc-

tion. These data sets come from a variety of lung and

cardiovascular-relevant tissues from both human and

mouse, as well as both in vivo and in vitro stressors.

The network model construction strategy of using data

sets together with literature-derived tissue-specific and
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canonical pathway mechanisms ensured that the net-

work model provides comprehensive coverage of a

range of physiological and environmental stressors

affecting the lung and cardiovascular system, a critical

aspect of a network model designed to evaluate inte-

grated stress responses.

Several network model nodes were predicted by RCR

to increase or decrease in activity across multiple data

sets. The responses to the different types of stress repre-

sented by the Cellular Stress Network model are inte-

grated - while the stressors and some response pathway

elements are unique, many common signaling pathways

are shared. The structure of the Cellular Stress Network

model as a collection of nodes linked by edges repre-

senting qualitative relationships between the nodes cap-

tures causal connectivity between response pathways for

different stresses. For example, while NRF2 is a key reg-

ulator of the oxidative stress response, it can be acti-

vated by other stressors. ER stress activates NRF2

through phosphorylation by Eif2ak3 (PERK) [42], shear

stress activates it via Klf2 or 15-deoxy-∆(12,14)-prosta-

glandin J2 [43,44], and intermittent hypoxia and xeno-

biotic metabolism stress activate NRF2 through

activation of ROS production [45,46]. Notably, NRF2

activation is predicted by RCR in three of the four data

sets used to guide network model construction:

OxPAPC, hyperoxia, and HOCl. Similarly, the transcrip-

tional activity of the NF-�B complex is activated by

multiple stresses, including oxidative, shear, ER, and

hypoxic stress [47-51], and is predicted to have

increased activity in three of the four data sets: hypoxia,

OxPAPC, and hyperoxia. These points of stress signaling

integration are captured in detail by the network model,

facilitating the application of the network model to the

analysis of complex stressors which may activate multi-

ple signaling pathways.

The Cellular Stress Network model can be used with

systems biology data to identify mechanistic explanations

for complex cellular responses

One of the benefits of using systems biology analyses,

like transcriptomic profiling, is the wealth of data that is

provided following experimental application of a stres-

sor. For contemporary scientists, a modern challenge is

how to transform this biological data into meaningful

mechanistic explanations for the observed biology fol-

lowing experimental stress induction. This is especially

challenging for the cellular stress response, which can

manifest in complex, overlapping signaling responses.

We tested the Cellular Stress Network model by apply-

ing it to the analysis of gene expression profiling data

for the response to acute CS exposure in WT mouse

lung (GSE18344;[30]). The Cellular Stress Network

model explained 88% of the mRNA SCs induced by CS

in WT. Notably, a significant portion of these SCs (46%)

can be explained by the oxidative and electrophilic

stress-activated transcription factor NRF2 or its negative

regulator KEAP1. Our results, consistent with the

reported role of NRF2 in the in vivo lung response to

CS [52], provide additional confidence in the ability of

the Cellular Stress Network model to identify stress

pathways using transcriptomic data.

In addition to NRF2, other elements of the Cellular

Stress Network model predicted to be activated in WT

mice by acute CS exposure include the response to ER

stress and the ER stress response-induced transcription

factors ATF4 and ATF6. Moreover, the oxidative stress

building block network model components “gtpof(Kras)”

and “taof(AP-1 complex)” are predicted activated in

response to CS. These elements are predicted in both

WT and NRF2 KO mice, and are not differential in the

direct comparison of the NRF2 KO to WT mice, sug-

gesting that this response is NRF2-independent. In addi-

tion, these predictions are consistent with previous

reports of CS-induced signaling mechanisms.

CS has been reported to induce ER stress in both dis-

eased and non-diseased lung cells [53,54] as well as in

other cell types [55]. Moreover, CS has been reported to

induce the proteolytic cleavage and activation of ATF6

as well as the increased nuclear expression of ATF4 in

cultured human lung cells in response to acute CS

exposure [53,54]. While ATF4 physically interacts with

NRF2 [56], the prediction of increased ATF4 in both

WT and NRF2 KO mice in response to CS suggests that

NRF2 is not required for ATF4 transcriptional activity.

Similar to the ER stress response, KRAS and AP-1

activation represent portions of the stress response that

are activated by acute CS exposure that are not depen-

dent on NRF2. These oxidative stress response mechan-

isms are predicted activated in both WT and NRF2 KO

mice. AP-1 has been implicated in CS-induced gene

expression in lung [57,58] and in Swiss 3T3 cells [59].

ROS have been demonstrated to activate RAS family

members in a variety of tissues including the lung and

cardiovascular-relevant cell types, fibroblasts and

smooth muscle cells [60-62].

We report here both the construction of a literature-

based network describing cellular stress signaling in the

lung, and the assessment of cellular stress signaling in

this network for several RNA expression data sets. Our

approach for assessing pathway activation utilizes RCR,

where the differential mRNA expression of genes is

used to infer the activity of nodes/pathways in the net-

work based on causal relationships. Several other meth-

odologies for detecting pathway activation using

transcriptomic profiling data as a substrate have been

published previously. One common approach is to gen-

erate interaction (protein-protein, protein-gene)
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networks from publicly available resources (databases,

published experiments, etc.) [63-66]. Using these inter-

action networks, differentially expressed genes from an

experimental test case are then used to identify statisti-

cally enriched pathways or subnetworks. Here, protein

subnetworks are identified on the basis of the structured

expression patterns of their genes (i.e. subnetworks are

identified if the genes encoding the proteins in a subnet-

work are all observed to increase or decrease) in a

stereotyped fashion. In contrast, we use the differentially

expressed genes in the context of prior knowledge-

derived causal relationships between the genes and their

upstream controllers to infer pathway activity.

Conclusions
The cellular response to stress is a key process mediat-

ing adaptation and survival, particularly in tissues like

lung with significant direct environmental exposure. Sys-

tems biology data such as gene expression profiling hold

great promise for the comprehensive assessment of

complex molecular signaling processes like the cellular

response to stress. The non-diseased lung and cardio-

vascular tissue-focused Cellular Stress Network model

described here is a fully referenced mechanistic repre-

sentation of multiple physiological stress response path-

ways, including oxidative stress, ER stress, and the

response to hypoxia. The adaptable and computable

structure of this network model provides a useful frame-

work for assessing and investigating biological impact

from systems biology data. When tested using lung-

derived transcriptomic data from CS-exposed mice, it

explained a large proportion (88%) of the observed sig-

nificant mRNA expression changes, and mechanistically

confirmed the role of NRF2, a known mediator of the

oxidative stress response, as a central contributor to the

CS-induced stress response.

Methods
Knowledgebase

The nodes and edges comprising the Cellular Stress

Network model were added to the model from the Sel-

venta Knowledgebase, a repository containing over 1.5

million nodes (biological concepts and entities) and over

7.5 million edges (connections between nodes). The Sel-

venta Knowledgebase is comprised of causal and non-

causal assertions between biological entities or processes

derived from peer-reviewed scientific literature as well

as other public and proprietary databases. Causal asser-

tions are derived from published literature reporting on

experiments performed in human, mouse, and rat spe-

cies contexts, both in vitro and in vivo. Causal assertions

also capture additional details about the relationship and

tissue context in which the relationship was experimen-

tally observed to occur. Notably, correlative

relationships, particularly from clinical studies, are also

captured in the Knowledgebase. Each causal assertion is

associated with its source information as well as key

information including the species (human, mouse, or

rat) and the tissue or cell line from which the experi-

mental observation was derived. An example causal

assertion is the increased transcriptional activity of Ahr

(aryl-hydrocarbon receptor) causes an increase in the

mRNA expression of Cyp1a1 (cytochrome P450, family

1, subfamily a, polypeptide 1). Causal assertions are

encoded using Biological Expression Language (BEL), an

intuitive language developed at Selventa that provides a

framework for qualitative modeling of biological pro-

cesses. BEL enables the development of computable

pathway models comprised of cause and effect relation-

ships, as well as construction of knowledgebases of bio-

logical relationships suitable for automated reasoning

methods such as Reverse Causal Reasoning (RCR, see

Materials and Methods below). The assembled collec-

tion of these causal assertions is referred to as either the

human or mouse Knowledge Assembly Model (KAM).

The Knowledgebase contains causal relationships

derived from healthy tissues and disease areas such as

inflammation, metabolic diseases, cardiovascular injury,

liver injury, and cancer.

Analysis of transcriptomic data sets

Four previously published cell stress data sets, GSE495

(hyperoxia), GSE15457 (HOCl), GSE20060 (OxPAPC),

and GSE11341 (hypoxia), were used for the construction

of the Cellular Stress Network model (Table 2).

GSE18344 (CS) was used for Cellular Stress Network

model testing. All five data sets were downloaded from

Gene Expression Omnibus (GEO) http://www.ncbi.nlm.

nih.gov/gds. Raw RNA expression data for each data set

were analyzed using the “affy” and “limma” packages of

the Bioconductor suite of microarray analysis tools avail-

able for the R statistical environment [67-70]. Robust

Microarray Analysis (RMA) background correction and

quantile normalization were used to generate microarray

expression values. An overall linear model was fit to the

data for all sample groups, and specific contrasts of

interest were evaluated to generate raw p-values for

each probe set on the expression array [71]. The Benja-

mini-Hochberg False Discovery Rate (FDR) method was

then used to correct for multiple testing effects.

Probe sets were considered to have statistically signifi-

cant changed expression levels in a specific comparison

if they had an adjusted p-value of lower than 0.05 and

an absolute fold change greater than 1.3. An additional

expression abundance filter was applied to three of the

data sets; probe set differences were considered signifi-

cant only if the average expression intensity was above

250. NetAffx version na31 feature annotation files,

Schlage et al. BMC Systems Biology 2011, 5:168

http://www.biomedcentral.com/1752-0509/5/168

Page 12 of 15

http://www.ncbi.nlm.nih.gov/gds
http://www.ncbi.nlm.nih.gov/gds


available from Affymetrix http://www.Affymetrix.com,

were used for mapping of probe sets to genes. In our

analysis, genes represented by multiple probe sets were

considered to have changed if at least one probe set was

observed to change. Gene expression changes that met

these criteria are called “State Changes” and have the

directional qualities of “increased” or “decreased”, i.e.,

they were upregulated or downregulated, respectively in

response to the experimental condition. The number of

State Changes for each data set is listed in Table 2.

Reverse Causal Reasoning (RCR): Automated hypothesis

generation

RCR of the four cell stress transcriptomic data sets was

used to aid in the selection of nodes for the Cellular

Stress Network model. RCR interrogates a Knowledge

Assembly Model to identify upstream controllers of the

RNA State Changes observed in the data set (see [25]

for specific detail on RCR). For the hypoxia and

OxPAPC data sets, the human KAM was used, while

the mouse KAM was used for the HOCl, hyperoxia, and

CS data sets. These potential upstream controllers iden-

tified by RCR are called “hypotheses”, as they are statis-

tically significant potential explanations for the observed

RNA State Changes.

Each hypothesis is scored according to two probabilis-

tic scoring metrics, richness and concordance. Richness

is the probability that the number of observed RNA

State Changes connected to a given hypothesis could

have occurred by chance alone, calculated using the

hypergeometric distribution. Concordance is the prob-

ability that the number of observed RNA State Changes

that match the direction of the hypothesis (e.g.,

increased or decreased activity or abundance of a node)

could have occurred by chance alone, calculated using a

binomial distribution. Hypotheses meeting both richness

and concordance p-value cutoffs of 0.1 were considered

to be statistically (although not necessarily biologically)

significant. For the purposes of network model con-

struction, each scored hypothesis meeting the minimum

statistical cutoffs for richness and concordance was eval-

uated and selected for integration based on its biological

plausibility and relevance to the experimental stress

used to generate the data.

Additional File 10 shows the color key and abbrevia-

tions for the tables in this section, while Additional File

3 shows all of the hypotheses predicted by RCR on the

four data sets that were present in the Cellular Stress

Network model. These hypotheses may also be visua-

lized in Figure 4, which is a schematic diagram of the

Cellular Stress Network model with the hypotheses pre-

dicted in each of the four cellular stress data sets identi-

fied by colored halos around the hypothesis node. The

Cellular Stress Network accompanies this manuscript in.

xls (Additional File 11) and.owl (Additional File 12) for-

mats, and can be viewed using freely available network

visualization software such as Cytoscape http://www.

cytoscape.org/.

Additional material

Additional file 1: Tissue context origins for causal edges in the

Cellular Stress Network. Corresponding tissue context categories are

referenced in Figure 2.

Additional file 2: RCR-predicted hypotheses in the Cell Stress

Network model. Indicates nodes that are RCR-predicted hypotheses

from the four cell stress data sets analyzed (Hypoxia, OxPAPC, Hyperoxia,

and HOCl). The building block(s) in which these nodes are contained is

also shown in the rightmost column. See Additional File 10 for color and

abbreviation key.

Additional file 3: Data set-derived nodes added to the Cellular

Stress Network based on their predictions as hypotheses. See

Additional File 10 for color and abbreviation key.

Additional file 4: Tables showing the nodes contained in each

building block that comprise the Cellular Stress Network.

Additional file 5: Cellular Stress Network model colored for the

HOCl data set. Red - node corresponds to observed increased mRNA;

yellow halo - node is predicted by RCR to have increased activity; blue

halo - node is predicted to have decreased activity.

Additional file 6: Cellular Stress Network model colored for the

hyperoxia data set. Red - node corresponds to observed increased

mRNA; green - node corresponds to observed decreased mRNA; yellow

halo - node is predicted by RCR to have increased activity; blue halo -

node is predicted to have decreased activity.

Additional file 7: Cellular Stress Network model colored for the

hypoxia data set. Red - node corresponds to observed increased mRNA;

green - node corresponds to observed decreased mRNA; yellow halo -

node is predicted by RCR to have increased activity; blue halo - node is

predicted to have decreased activity.

Additional file 8: Cellular Stress Network model colored for the

OxPAPC data set. Red - node corresponds to observed increased

mRNA; green - node corresponds to observed decreased mRNA; yellow

halo - node is predicted by RCR to have increased activity; blue halo -

node is predicted to have decreased activity.

Additional file 9: RCR-predicted Cellular Stress Network model

hypotheses for the test data set comparisons. Hypotheses are

grouped by pattern of prediction across the three test data set

comparisons. See Additional File 10 for color and abbreviation key.

Additional file 10: Color and abbreviation key for hypothesis nodes.

Additional file 11: The Cellular Stress Network,.xls format.

Additional file 12: The Cellular Stress Network,.owl format. This file

can be viewed using freely available network visualization software such

as Cytoscape http://www.cytoscape.org/.
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cigarette smoke; ER: endoplasmic reticulum; FDR: false discovery rate; GEO:
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Causal Reasoning; RMA: Robust Microarray Analysis; RNA: ribonucleic acid;

ROS: reactive oxygen species; SC: State Change; WT: wild-type.
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