
A computation-oriented multimedia data streams
model for content-based information retrieval

Shi-Kuo Chang & Lei Zhao & Shenoda Guirguis &
Rohit Kulkarni

Published online: 20 October 2009
Springer Science + Business Media, LLC 2009

Abstract Multimedia applications nowadays are becoming prevalent. In the past the
relational database model was generalized to the multimedia database model. More recently
the relational database model was generalized to the data streams model, as the technology
advanced and data became bulky and unbounded in size due to the utilization of sensor
networks. In this paper we take one more step of generalization by providing a multimedia
data streams model. The objective is to furnish a formal framework to design multimedia
data streams (MMDS) schema for efficient content based information retrieval. We also
extend the functional dependency theory and the normalization framework to handle
multimedia data streams. Finally we present algorithmic methods of generating continuous
multimedia queries along with examples for illustration.

Keywords Multimedia data streams model . Multimedia dependency theory . Continuous
queries . Content-based information retrieval

1 Introduction

Multimedia databases have been used in many applications for over two decades now. The
internet boom has accelerated this trend, introducing many new applications related to
query processing and content based retrieval. In [6], a normalization framework for

Multimed Tools Appl (2010) 46:399–423
DOI 10.1007/s11042-009-0372-y

S.-K. Chang (*) : S. Guirguis
Department of Computer Science, University of Pittsburgh, Pittsburgh, PA 15260, USA
e-mail: chang@cs.pitt.edu

S. Guirguis
e-mail: shenoda@cs.pitt.edu

L. Zhao
School of Computer Science and Technology, Soochow University, Suzhou 215006, China
e-mail: zhaol@suda.edu.cn

R. Kulkarni
Department of Information Science, University of Pittsburgh, Pittsburgh, PA 15260, USA
e-mail: rok26@pitt.edu

multimedia databases was provided as a generalization to the traditional relational database
model. The data dependency theory was also extended to include dependencies involving
different types of multimedia data. Recently a new research area is being proposed called
human computation [12], which utilizes the ultimate powerful computational units all
humans possesses; i.e. human brain. Starting with CAPTCHA, researchers proposed
multimedia games that are applications utilizing multimedia databases and human
computational power in solving difficult problems [12]. On the other hand the data stream
management concept was first introduced in [8], and later comprehensive stream
management systems were proposed such as STREAM [3], Borealis [2] and Aurora [1].
Several commercial data stream management systems (DSMSs) are now available [11],
[13]. Data streams management systems are expected to be able to handle huge massive
updates of data collected from sensor networks or monitoring applications. In the push-
model for data streams management, data updates arrive with high frequency, while a
certain set of queries (called continuous queries) reside in the data stream server to process
incoming data [1]. In other words, users will first register their continuous queries (CQs),
and data will be pushed into these queries as they arrive. This model is in contrast to the
pull-model for traditional database management. Data streams have many critical and
important applications that range from network monitoring applications, military
applications, to environmental monitoring applications. Data streams became even more
important with the advances of the technology of sensor networks consisting of small
devices that can be spread over a large area to collect time-critical information. As sensor
networks become prevalent, multimedia data streams will also become massive and
unbounded. It is thus critical to provide a framework for multimedia data streams (MMDS)
modeling and performance estimation, based upon which we can provide performance
guarantees such as minimum output rate per query, maximum supported queries per site,
maximum supported streams per site and so on. The multimedia dependency theory should
also be extended to include dependencies among multimedia data streams.

In this paper we provide a multimedia data streams model together with an extended
functional dependency and normalization framework. We first give the formalization of the
multimedia data streams problem. The objective is to furnish a formal framework to design
multimedia data streams (MMDS) schema for content based information retrieval. We also
extend the functional dependency theory and the normalization framework to efficiently
handle multimedia data streams. Finally we present algorithmic methods of generating
continuous multimedia queries, along with examples for further illustration of querying
multimedia data streams in potential critical applications.

The paper is organized as follows. Three motivating examples are presented in Section 2. A
focused review of selected related works are given in Section 3. Section 4 provides the
mathematical model of multimedia data streams. Performance estimates are presented in
Section 5, and a concrete example is explained in detail. Dependency Theory is extended in
Section 6. Algorithms for Multimedia Data Streams Continuous Querying are presented
in Section 7, and illustrative examples are given in Section 8 to demonstrate the application of
these algorithms. Some discussions on further extension of the model, the extended dependency
theory and normalization framework for ontological filtering are given in Section 9.

2 Motivating examples

As motivating examples we present the following three applications — a security system, a
health application, and an aircraft database system.

400 Multimed Tools Appl (2010) 46:399–423

Motivating example 1 — security system A security system usually has video cameras
installed in hidden places in some secured building or store. Typically a guard or two keep
rotating between the captured videos and they interfere when something suspicious or a
threat occurs. However, this security system has two major problems: first, inevitable
human error, and second, if a WANTED person shows up, it is less likely that the security
guard can pay attention, and hence interfere before the crises (as opposed to after the
crises). However, if we have a multimedia data stream management system that receives the
stream of videos (or stream of frames) and has a relation (i.e. a table) with images of all
WANTED criminals, and another relation with images of all weapons. Then one can pre-
register couple of useful continuous queries to automate the task of the guards, and help
them do their job and avoid human errors. Such CQs may include:

1) Tell me whenever you see an object similar to any weapon.
2) Tell me whenever you see a WANTED person.
3) Tell me whenever an object (or more) in several frames within the last 30 seconds

moves in a very “violent” manner.
4) If any of the above, start recording the video on a “Threat” clip for future reference.

Thus, if the guard missed anything, or had to leave his place for whatever reason, the
system can help him. Moreover, new things that he was not able to do, such as identifying
WANTED criminals, is now achievable.

Motivating example 2 — health-care system One of the major data streams applications is
the health monitoring systems, where the patient’s heart rate, body temperature, etc. are
continuously monitored, and a CQ to report when these values go beyond the normal
values. Imagine the case for some diseases when an X-Ray photo needs to be inspected to
show progress or to identify anomalies. This is a multimedia data stream that can be fed to a
multimedia data stream management system with the appropriate continuous queries.

Motivating example 3 — airport security Assume we have a multimedia database with
multimedia objects being still images of object types. And then we have a multimedia
stream of video frames taken by some airport’s security cameras. The images are taken
inside the terminal, and outside as well. So, the input multimedia stream might contain
frames that contain objects. It might be useful to recognize the object type and the location,
to make sure that everything is going accordingly, and there are no violations of the airport
rules. This could be modeled as a multimedia continuous query. The advantage of applying
a multimedia data stream approach is the ability to have up-to-date rules, and allowing
exceptions in emergency cases. Yet the precision and the 24 hours monitoring advantages
are also gained as opposed to relying only on human monitoring.

3 A focussed review of related works

There are a massive amount of research on both multimedia databases and data streams. For
multimedia databases, the work [6] is the inspiring work of this paper, as in [6] the
dependency theory was generalized for multimedia databases, and a normalization
framework was proposed. Other approaches in content-based retrieval and algorithms have
also been proposed in the multimedia database literature. The literature of data streams is
focused on performance fine tuning; minimizing response time (as a QoS metric), or

Multimed Tools Appl (2010) 46:399–423 401

improving freshness (as a QoD metric) [15]. Also, scaling with burst arrivals of data and
peak loads gained some attention (known as the problem of load shedding) [17]. Some
work was also proposed for mining data streams [9]. There are indeed many issues and
interesting applications over data stream, such as the representation of infinite stream of
data, continuous queries over data streams, and performance tuning and so on. Since the
literature is vast, rather than giving a superficial review on many papers, we will provide a
focused review by discussing in detail three representative papers that address some
interesting and basic issues on continuous query with substantial achievements. Hopefully
this focused review will enable the reader to gain more insight into the complexities of the
research topics.

Sensor networks and monitoring applications provide increasingly fine-grained data,
which will be encoded as data stream. Such data is huge and largely transient — so much of
it will exist only as streams rather than be permanently recorded in raw form. Moreover,
multimedia applications nowadays proliferated in many fields and gave birth to multimedia
databases. We are interested in modeling multimedia data streams and constructing
continuous multimedia queries over multimedia data streams. So we did a systematic
investigation about data stream and continuous query, and this focused review is concerned
with these issues.

The problem of scheduling multiple heterogeneous CQs (Continuous Queries) in a
DSMS (Data Stream Management System) with the goal of optimizing QoS for end users
and applications is considered in [16]. To quantify such QoS, the authors first used the
traditional metric of response time, which is defined over multiple CQs, including CQs that
contain joins of multiple data streams. The authors also considered slowdown as another
QoS metric, since they believe it to be a more fair metric for heterogeneous workloads, and,
as such, more suitable for a wide range of monitoring applications.

Then this paper develops new scheduling policies that optimize the average-case
performance of a DSMS for response time and for slowdown. Additionally, it proposes
hybrid policies that strike a fine balance between the average-case performance and the
worst-case performance, thus avoiding starvation. Furthermore, this paper extends the
proposed policies to exploit operator sharing in optimized multi-query plans and to handle
multi-stream queries. It also argues an adaptive scheduling mechanism that allows the
proposed policies to react quickly to changes in data distribution. And finally, it evaluates
the proposed policies and their implementation experimentally, which shows that the
scheduling policies in this paper consistently outperform previously proposed policies.

The CQL language and execution engine for general-purpose continuous queries over
data streams and stored relations is presented in [4]. CQL (for continuous query language)
is an instantiation of a precise abstract continuous semantics, and CQL is implemented in
the STREAM prototype data stream management system at Stanford, including the “Linear
Road” benchmark used as examples throughout this paper.

This paper initially defines a precise abstract semantics for continuous queries. This
abstract semantics is based on two data types — streams and relations — and three classes
of operators over these types: operators that produce a relation from a stream (stream-to-
relation), operators that produce a relation from other relations (relation-to-relation), and
operators that produce a stream from a relation (relation-to-stream). The three classes of
operators are “black-box” components of this abstract semantics, which means the abstract
semantics does not depend on the actual behavior of the operators in these classes, but only
on their input and output types.

This paper also describes the structure and implementation of query execution plans for
CQL in the STREAM system, which is available for experimentation over the Internet. For

402 Multimed Tools Appl (2010) 46:399–423

each user, a dedicated server is started on a machine at Stanford and a client is started on the
user’s machine. Through the graphical user interface, users may register streams and
continuous queries and view the streamed (or stored) results. Users may also inspect and
alter query plans and perform visual system monitoring through “introspection”: query
components write statistics (such as throughput, selectivity, etc.) onto a special system
stream. Graphical system monitors obtain their plotted values by registering standard CQL
queries on the special system stream.

The paper [14] begins the discussion of a SQL-based standard for streaming databases. It
discusses some deep model differences that exist between Oracle CQL and StreamBase
StreamSQL. Then it proposes a new and unification model that uncovers these differences.
The key insight of this model is that evaluation of results in both systems is triggered by the
arrival of a batch of tuples. In the Oracle model the batch is defined by like values of a
timestamp. In the StreamBase model, batches are always of size one tuple. By controlling
the batching of tuples and the ordering between these batches, the proposed model can
simulate both models plus many alternatives that neither model can capture. Moreover, this
paper also presents the syntax and semantics of a new operator called SPREAD, a powerful
stream-to-stream operator, and illustrates it using examples.

On the one hand, with the voluminous data streams arriving from data communications
or sensor networks, many interesting applications in this area will emerge. So how to
schedule continuous queries and optimize the performance becomes vital to these
applications. The first paper investigated these issues and got many outstanding results.
The work in this article gives the inspiration to their future works and many other related
researches in this area. However it is necessary to develop policies that are able to balance
the trade-off between different QoS metrics as well as QoD metrics.

On the other hand, many full-blown data stream management systems are proposed in
recent years. It brings a lot of differences among these existed prototypes and products. So
many researchers are devoting themselves to solve the problems on some unified or
standard data stream model and the corresponding continuous query language. The other
two papers are the representative works in this area. These works have the added benefit
that they increase the expressive power of both languages and give the user an easy-to-use
interface to work on data stream. However there are still many remaining problems that
could be investigated on the road to a complete standard.

In conclusion, there are many key issues in the management of data streams, and the
three papers presented in this focused review address only a handful of the topics in this
area. These articles did investigate the data stream model, syntax and semantics of
continuous query language, execution engine for continuous queries over data streams,
scheduling multiple CQs in DSMS, and optimizing QoS for end users and applications. In
addition, multimedia databases have been used for over two decades. Though data stream
model and multimedia database are both well-studied concepts, it is rarely reported that
they have been integrated for the purpose of modeling multimedia data streams to the best
of our knowledge. We anticipate that the growth in the use of smart sensors,
microprocessors, networks, and the World Wide Web will fuel an explosion of demand
for multimedia data stream management systems in the coming decade. And more research
is needed to support the design of such systems.

Our work differs from the papers described above in that we want to provide a
computation-oriented model of multimedia data streams. In addition, the dependency theory
is generalized for multimedia databases, and a normalization framework is proposed so that
query processing can be carried out with respect to this framework. Our preliminary work
was first reported in [10]. In the present paper the computation-oriented model is

Multimed Tools Appl (2010) 46:399–423 403

completely formalized (see Section 4), and substantial results on performance estimation
are obtained (see Section 5). Therefore instead of vaguely formulated bounds, we can now
give a concrete example on performance estimation to show how this is done (see
Section 5.7).

4 A computation-oriented multimedia data streams model

In this section we will give some definitions first, and then we will provide the
mathematical model. In Section 5 we will give a concrete example.

After we provide a list of the terminology used, we define some mathematical terms.
The definitions 1 through 6 serve the first part, while the rest of the definitions serve the
second part.

Definition 1 Primary Data Type Primary Data Type is an indivisible data structures. Let T
denote the entire set of data types and let ti denote one type of them.

There are four types of primary data type defined in MMDS. They are : int, float,
timestamp and micon. The anterior three of them are commonly used in traditional data
models and mocon is a different one. Int and float are two basic calculable data types. They
can be calculated under basic arithmetical operators. Timestamp is an extended calculable
type. Usually it is call datetime type. Some operators were defined to calculate the
difference between two values of datetime type and others are used to convert the format of
them in common used data models. Many DBMS of relational data model are critical
samples. They all use these three types.

Micon is not commonly used in traditional data models. But in MMDS, it is a basic type.
The definition of micon is given in Definition 2.

Definition 2 Micon A Micon is a multimedia icon that could be: text (ticon), still image
(icon), audio (earcon), video (vicon).

Definition 3 Data Stream A Data Stream is a constructed data type. It is a huge sequence
of tuples according to a certain schema that keeps arriving to a Data Stream Management
System. Each tuple has a unique identifier for verification and a timestamp for ordering.
Each tuple is composed of properties and each property should be in one of the primary
data type defined in Definition 1.

Definition 4 Multimedia Data Streams A Multimedia data stream (MMDS) is a data stream
that contains at least one Micon as one of its attributes, according to a certain schema.

Definition 5 Operator Operators are some indivisible query operators in database
management systems. Let O denote the entire set of operators and let oi denote one
operator of them.

SQL statements are the most widely used query language in traditional relational
DBMSs. SQL statements can be represented by some primary operators. They are : π, σ,×
and ∞. So that SQL statements can be written as algebra expressions. Followings are brief
definitions of the four primary operators.

Projection(π): The projection operator is a unary operator that is parameterized by a list
L of positive integers, and is denoted . When applied to a k-ary relation R, we require the
elements of L to be in the range 1, ..., k, with no duplicates. The result of applying πL to R

404 Multimed Tools Appl (2010) 46:399–423

is the set of tuples formed by restricting the tuples in R to the attributes in L. For example,
for a 5-ary relation R,

p124R ¼ a; b; dð Þj9c; e : a; b; c; d; eð Þ 2 Rf g:
Selection(σ): The selection operator is a unary operator that is parameterized by a simple

predicate θ, and is denoted σθ.. .When applied to a k-ary relation R, The result of applying σθ
to R is the set of tuples in R that satisfy the predicate θ. For example, for a 5-ary relation R,

s#2< 5R ¼ a; b; c; d; eð Þ 2 Rjb < 5f g:
where we use the notational convention of prefixing attribute indices with the # character to
distinguish them from literals.

Natural Join(∞): In the named algebra, it is often convenient to use a join predicate that
equates like-named attributes of its operands and discards one attribute from each pair of
like-named attributes. This operator is called the natural join and denoted by ∞. Thus the
absence of a predicate below the ∞ symbol does not denote a vacuously satisfied predicate
as one may expect; rather, it denotes a predicate that equates the like-named attributes of the
operands. For example, with relation schemes R(a, b, c, d, e) and S(d, e, f),

R1S ¼ pa;b;c;d;R:e;f sR:d¼S:d R� Sð Þ
Conversion operator(y): Conversion operator is used to process multimedia information.

It can convert information from one form to another. For example, with relation schemes R
(a, b, c, d, e), and a is in type of icon, which means values of a in tuples of R are a set of
images, then

y typeðcarÞðpaðRÞÞ ¼ y typeðcarÞðR:aÞÞ ¼ true=false

if there is a car in the images. It is a powerful operator in multimedia information
processing systems.

Mergence operator(+): Mergence operator is used to merge several streams with the
same structure into one for higher output rate.

For example, there are two streams of S1 and S2,

þ : S1; S2ð Þ ! Sx or þ S1; S2ð Þ ¼ Sx:

Fusion operators can be nested if there are more than two streams wanted to be fused.
For example,

þ S1; S2; S3ð Þ ¼ þ þ S1; S2ð Þ; S3ð Þ ¼ þ Sx; S3ð Þ ¼ Sy:

So the general form of f+ operator should be,

þ S1; S2; :::; S3ð Þ ¼ þ þ :::þ S1; S2ð Þ; :::Þ; Snð Þð

Definition 6 Continuous Query A Continuous Query (CQ) is a constructed operator. It is a
query registered by a user at the MMDSMS that is to be executed— theoretically— forever.
If the CQ includes one or more multimedia operators; conversion or fusion operators — as
defined before — then the CQ is called a multimedia CQ, or m-CQ for short.

Definition 7 Cost of Operator Cost of operator means the total time in terms of processor
time to process a single tuple through an operator while the processor is exclusive. Let ci
denote the cost of oi.

Multimed Tools Appl (2010) 46:399–423 405

Definition 8 Cost of CQ Cost of continuous query means the total time to process a single
tuple through an m-CQ. Let Ci denote the cost of m–CQi.

Definition 9 Output Rate of operator Output rate of operator means the speed of producing
output tuples of an operator while the processor is exclusive. Let ri denote the output rate of
m–CQi. Apparently,

ri ¼ 1

ci
or ci ¼ 1

ri

Definition 10 Output Rate of CQ Output rate of CQ means the speed of producing output
tuples of m-CQ. Let Ri denote the output rate of m–CQi.

The computation-oriented multimedia data stream model (abbr. COMDSM) is illustrated
in Fig. 1. We are now ready to discuss the performance estimation of m-CQ’s.

5 Performance estimation

5.1 A processing model

Figure 2 is the framework of our processing model. The parts with real line frame are input.
The parts with dashed frame are midterm steps. The gray parts are expected results.

In Phase 1, m-CQ’s are the results. In Phase 2, some computational results are what we
need. We can come up with some conclusions and suggestions by the computational results.

5.2 Problem formalization

Given an m-CQ, it is required to compute a bound of performance, such as cost and output
rate. We formalize an m-CQ to a weighted DAG for the convenience of computation.

Figure 3(a) shows an example of m-CQ. Each rectangle represents an operator and each
arrow represents a data stream. s1 to s9 are source data streams and other arrows are

Fig. 1 Computation-oriented multimedia data stream model

406 Multimed Tools Appl (2010) 46:399–423

processed data streams of operators. Actually, there is no difference between these two
kinds of data streams in character technically. A processed data stream of one operator can
also act as a source data stream of another operator. The number marked on each arrow is
the rate of the data stream.

Figure 3(b) shows a corresponding weighted DAG. Each vertex with a centered number
represents an operator. We add the following kinds of vertices to the DAG. Vertices with tag
si mean start points and the vertex with tag T means terminal. A DAG may have more than
one start point for an m-CQ may have more than one source data stream. A DAG has only
one terminal for an m-CQ has only one output data stream.

5.3 Cost of m-CQ

To calculate the cost of an m-CQ, firstly, we should present the definition of computation
chain which comes from its corresponding weighted DAG.

Definition 11 Computation Chain Given a weighted DAG, corresponding to a certain m-
CQ, a computation chain means a path from one vertex, except for any input source, to
another vertex, except for the terminal, denoted

ok;1; ok;2; :::ok;m
� �

; ok;i 2 O 1 � i � m; k ¼ 1; 2; :::ð Þ:

Fig. 3 Performance estimating model

Fig. 2 Processing model

Multimed Tools Appl (2010) 46:399–423 407

Suppose, an m-CQ has p operators and ok;1; ok;2; :::ok;m
� �

is a computation chain, the
cost of this chain can be figured out by

C ok;1;ok;2;:::ok;mf g ¼
Xm
i¼1

ck; i:

Since

ck; i ¼ p

rk; i
;

therefore

C ok;1;ok;2;:::ok;mf g ¼
Xm
i¼1

p

rk;i
:

Suppose, m–CQi has n different computation chain, the cost of m–CQi is the maximum
cost of all computation chains, denoted as

Ci ¼ max C ok;1;ok;2;:::ok;mf g
� �

1 � k � nð Þ:

The corresponding computation chain is called critical computation chain. An m-CQ
may have more than one critical computation chain.

For example, the cost of the m-CQ in Fig. 3 equals the cost of computation chain {o2,o4,
o5}. So we can get

C¼ 1
r2
þ 1

r4
þ 1

r5

¼ 5
100 þ 5

80 þ 5
100 :

¼ 0:1625 sec

5.4 Output rate

To calculate the output rate of an m-CQ, firstly, we should present the definition of
performance chain which also comes from its corresponding weighted DAG.

Definition 12 Performance Chain Given a weighted DAG, corresponding to a certain m-
CQ, a performance chain means a path from any start point to the terminal, denoted

sx; ok;1; ok; 2; :::ok;m; T
� �

; ok;i 2 O 1 � i � m; k ¼ 1; 2; :::ð Þ:

Two kinds of vertices can be treated as start point.

(1) An input source, if there is no merging operation in the chain.
(2) The last mergence operation, which is the nearest vertex to the terminal in the chain.

Suppose, an m-CQ has p operators and sx; ok;1; ok;2; :::k;m; T
� �

is a performance chain,
the output rate of this chain can be figured out by

R sx ;ok;1;ok;2;:::ok:m;Tf g ¼ min rsx ;
rok;1
p

;
rok;2
p

; :::;
rok;m
p

� �
:

408 Multimed Tools Appl (2010) 46:399–423

Suppose, m–CQi has n different performance chains, the output rate of m–CQi is the
minimum output rate of all performance chains, denoted as

Ri ¼ min R sx ;ok;1;ok;2;:::ok;m;Tf g
� �

1 � k � nð Þ

The corresponding performance chain is called critical performance chain. An m-CQ
may have more than one critical performance chain.

For example, the output rate of the m-CQ in Fig. 3 equals the output rate of performance
chain {s5,o2, o4, o5, T}. So we can get

R ¼ min rs5;
r2
5 ;

r4
5 ;

r5
5

� �
¼ min 30; 20; 16; 20ð Þ
¼ 16tps

5.5 Tradeoff in distributed processing situation

Suppose, an m-CQ has p operators which can be distributed to g(g>1) computing nodes,
the output rate in this situation lies on the assignment of the p operators. The assignment
can be denoted as

A ¼ o1;1; o1;2; :::; o1;d1
� �

; o2;1; o2;2; :::; o2;d2
� �

; :::; og;1; og;2; :::; og;dg
� �� �

for which 8ox1;y1 ; ox2;y2 2 A; ox1;y1 6¼ ox2;y2 iff x1 6¼ x2 or y1 6¼ y2 and
Pg
i¼1

di ¼ p:

Suppose, the performance chain is sx; ox1;y1 ; ox2;y2 ; :::oxm;ym ; T
� �

, then the output rate of
this chain can be figured out by

Rk
sx ;ox1 ;y1 ;ox2 ;y2 ;:::oxm;ym ;Tf g ¼ min rsx ;

rox1;y1
dx1

;
rox2;y2
dx2

; :::;
roxm;ym
dxm

� �
:

Suppose, m–CQi has n different performance chains, the output rate of m–CQi in this
situation is the minimum output rate of all performance chains, denoted as

Ri ¼ min Rk
sx;ox1;y1;ox2;y2;:::oxm;ym ;Tf g

� �
1 � k � nð Þ

Figure 4 shows an example of 2-processor situation. In Fig. 4, o2 and o3 are assigned to
one processor and other three operators are assigned to another processor. The dashed chain
in Fig. 4(a) means a possible critical line and that in Fig. 4(b) means a possible critical full
line.

Now we can get the cost of the weighted DAG in Fig. 4 is

C ¼ 1

r2
þ 1

r4
þ 1

r5
¼ 1

50
þ 1

27
þ 1

33
¼ 0:087 sec;

and the output rate is

R ¼ min rs5;
r2
2
;
r4
3
;
r5
3

� �
¼ min 30; 50; 27; 33ð Þ ¼ 27tps:

Figure 5 shows another example of 2-processor situation. In Fig. 5, o2 and o4 are
assigned to one processor and other three operators are assigned to another processor.

Multimed Tools Appl (2010) 46:399–423 409

Now we can get the cost of the weighted DAG in Fig. 5 is

C ¼ 1

r3
þ 1

r4
þ 1

r5
¼ 1

33
þ 1

40
þ 1

33
¼ 0:085 sec;

and the output rate is

R ¼ minðrs5; r22 ;
r4
2
;
r5
3
Þ ¼ minð30; 50; 40; 33Þ ¼ 30tps:

5.6 Inverse solution

Now we can get the cost of the weighted DAG in Fig. 6(b) is

C ¼ 1

r3
þ 1

r4
þ 1

r5
¼ 1

50
þ 1

80
þ 1

50
¼ 0:0525sec;

and the output rate is

R ¼ min rs5;
r2
2
;
r4
1
;
r5
2

� �
¼ min 60; 50; 80; 50ð Þ ¼ 50tps:

Fig. 5 Example 2 of tradeoff situation

1

2

3

4

5 T

33

50

50

33

27

200

120120

30

40

100

150

150

s1

s2

s3

s4

s5

s6

s7

s8

1

2

3

4

5 T

33

50

50

33

27

200

120120

30

40

100

150

150

s1

s2

s3

s4

s5

s6

s7

s8

(a) Critical Chain (b) Critical Full Chain

Fig. 4 Example 1 of tradeoff situation

410 Multimed Tools Appl (2010) 46:399–423

5.7 A concrete example

Consider the following scheme: Imagine a stream of video frames captured from a certain
security monitoring camera:

video (frame-number, time-stamp, one-frame-of-video-data, location_id).

The frame-number attribute here becomes the unique identifier of the video frame (a
tuple in the stream).

A possible m-CQ1 could be: Notify me all video frames, received from the security
monitoring cameras, that contain a weapon. Clearly this m-CQ includes the following
operations (or manipulations) over the video multimedia streams:

1) For all frames that go through a conversion operator should be utilized to detect
weapon objects.

2) Merging the streams into one stream since all the streams have the same structure.
3) Selecting the frames for which the values of weapon_type attribute are not null.

The Query Graph G of the m-CQ (or the Computational structure in other words) is
illustrated in Fig. 7(a), and its corresponding weighted DAG is in Fig. 7(b).

1

2

3

4

5 T

100

100

100

100

80

200

120120

30

40

100

150

150

s1

s2

s3

s4

s5

s6

s7

s8

1

2

3

4

5 T

50

50

50

50

80

200

120120

60

80

100

150

150

s1

s2

s3

s4

s’5

s7

s8

(a) Original Solution (b) The Improved Solution

s5

+

s’6

s6 +

30

30

40

40

Fig. 6 Example of inverse solution

(a) (b)

Fig. 7 Illustration of m-CQ1. (a) Query graph (b) Corresponding weighted DAG

Multimed Tools Appl (2010) 46:399–423 411

Now, assuming the output rate of this computational network/structure is R1. As we can
see, {o1, o3, o4} and {o2, o3, o4} are two computation chains and a merging operation o3
precedes o4, it follows that

R1 ¼ min
P2
i¼1

r si;oif g; r4

� �

¼ min
P2
i¼1

min rsi ; roið Þ; r4
� �:

Therefore,

R1 ¼ min min rs1;
r1
3

� �þmin rs2;
r2
3

� �� �
; r43

� �
¼ min 20

3 þ 20
3

� �
; 503

� �
¼ 13:3tps

If we consider a distributed processing situation, let us assume o1 and o2 share one
processor, o4 use one processor exclusively. The corresponding weighted DAG is illustrated
in Fig. 8(a). Now, we can get

R1 ¼ min min rs1;
r1
2

� �þmin rs2;
r2
3

� �� �
; r41

� �
¼ min 20

2 þ 20
2

� �
; 501

� �
¼ 20tps

If assuming all the cameras have the same output rate andwe have a requirement that the output
rate of this m-CQ must be no less than 1 frame/(sec.camera), i.e., if we have n cameras, then

R1 � n tps:

If o1, o2,..., on always share one processor, then it is not hard to see,

Xn
i¼1

r si;oif g � 20tps:

That is, the output rate of o3 has no chance to be above 20 tps, as a result, R1≤20 tps. A
derived DAG is illustrated in Fig. 8(b). In this situation, the m-CQ can support up to 40
cameras with the guarantee of the requested output rate. Two processors are used to process

(a) (b)

Fig. 8 Distributed processing consideration for m-CQ1. (a) A weighted DAG (b) A derived DAG

412 Multimed Tools Appl (2010) 46:399–423

two groups of cameras and each group has up to 20 cameras. Furthermore, the suggested m-
CQ can support up to 50 cameras since the output rate of o4 is 50 tps. It would become the
bottleneck if no more processors were provided.

6 Extended dependency theory

In this section, we extend the multimedia dependency definitions from [6] to generalize to
the multimedia streams case. As in [6], in order to evaluate the similarity between
multimedia objects of two tuples, we need to use tuple-distance functions. The tuple-
distance function summarizes the different distance functions applied to the elements of the
2 tuples under comparison. So, basically, a distance function is applied on corresponding
attributes of the two tuples, then a function that takes these distances as input, will produce
the final distance between the two tuples is called the tuple-distance function. What about
tuples timestamps? Clearly, the notion of sliding windows on data streams can be utilized as
follows for distance functions: if the two tuples belong to the same window then they might
be considered for similarity, otherwise they may not. This way, we bound the calculations
needed. And since the window specifications are set by the user, this way of utilizing the
windows for calculating tuples distances does reflects user best interest. We are ready now
to give some definitions.

Definition 13 MS-similarity Let ϖ be a tuple distance function on a relation R, and t be a
maximum distance threshold, and x and y be two tuples in R, we then say that x is type
MS-similar (Multimedia Stream Similar) to y with respect to ϖ, denoted xffiϖðtÞy iff x and y
belongs to the same window, and ϖ x; yð Þ � t

Definition 14 (type-MS functional dependency) Let R be a relation with attribute set U, and
X, Y⊆U. Xg1(t’)���>Yg2(t’’) is a type-MS functional dependency (MSFD) relation iff for any
two tuples t1 and t2 in R, if t1[X]≅g1(t’) t1[X], then t1[Y]≅g2(t’’) t2[Y], where t’ and t’’ are
similarity thresholds, and ti[X] is the projection of the tuple ti over the set of attributes X,
and similarly is ti[Y].

In English, this definition typically says: there is a type-MS functional dependency
(MSFD) from set of attributes X (under MS-Similarity g1(t’)) and the set of attributes Y
(under MS-Similarity g2(t’’)) if and only if, any two tuples that are MS-similar under g1(t’)
this implies that these very two tuples are also MS-Similar under g2(t’’). It reads that the set
of attributes Y are type-MS functionally dependent on attributes X.

Using these definitions, the set of inference rules presented in [6] still holds for
multimedia data streams case. And similarly the type-M Multi-valued dependency (MMD)
can be generalized to the type-MS Multi-Valued dependency (MSMD) and the also the type-
M join dependency (MJD) to the type-MS Join dependency (MSJD).These set of functional
dependency can be utilized to normalize the schema at design time.

7 Algorithms for multimedia data streams continuous querying

In this section we describe a basic set of functions and algorithms to manipulate and handle
multimedia data streams. First, we define the standard multimedia data stream. To do so, we
focus our discussion below on Video and Image streams, while generalizing the algorithms
to other multimedia data streams, such as audio and hyper text, is trivial.

Multimed Tools Appl (2010) 46:399–423 413

The standard multimedia data stream, irrespective of the source, will have the following
fields

1. Header- denoting start of frame
2. Timestamp
3. SourceID
4. A set of other attributes, and
5. EOF — denoting the end of frame

Note that field 3 above defines the source, as many sources (hardware) can map the
tuples to the same multimedia data stream. Each source produces frames with a certain rate
(frame per second) and different format. A video source will have a series of picture frames
while a still camera source will have just one picture frame. Thus, the basic algorithm will
be the same whether it is dealing with the picture frames or video frames. The second
important attribute of the standard multimedia data stream shown above is the timestamp.
Each frame will have a unique time stamp for that particular video source. There won’t be a
similar timestamp on two frames that belong to the same source but the timestamp can be
same for two frames that belong to different sources. Note that this is different from the
regular data streams. Thus, the unique tuple identifier here is the compound key:
Timestamp and SourceID. This is important when we use the multimedia querying
techniques like the transformational and fusion operators.

7.1 Algorithm to sort/group the incoming multimedia data

Below we describe the idea and high level steps of an algorithm to group the incoming
multimedia data.

Step 1 identify the video source from the data stream. The data stream will have certain
bits at fixed places which will help in identifying the video source. This is the first
and the basic step required. Once the video source is identified, the corresponding
algorithm will take over. We can have a separate algorithm for each video source.

Step 2 For video source: check the timestamp of the frame. As explained earlier, each
frame will have a unique timestamp for the respective video source. We can group
a series of frames together based on the particular time stamp. We can define a
time stamp t and group all the frames from t to t+10. The next grouping will begin
from t+11 which will be the new t and this group will again be till t+10. The
grouping is essential in this case since the video frame will have a series of similar
pictures and it will be easy to retrieve if they are divided into groups rather than an
individual frame.

Step 3 For infra-red camera and other sources: check the time stamp of the frame. Since
these sources will consists of only a picture and not a series of continuous pictures,
we can group them accordingly based on their source and their time stamp. If we
group them according to their time stamp, the retrieval can be easily managed. For
example, if we need to check the pictures at a particular time, we can query it with
the time limit T and T+t, and the corresponding query will fetch all the frames
available in that particular time slot irrespective of the camera source. We do not
need to find the source and then query it in that time slot. On the other hand, if we
group them according to their source, we will have to sort them according to their
time slot again. This will however, help us manage large chunks of data
systematically. But again for retrieval, we need to know the video source first.

414 Multimed Tools Appl (2010) 46:399–423

7.2 Algorithm for retrieval

The transformational and fusion operators can be used to retrieve the query response. The
transformational operator is used for content-based retrieval from the incoming multimedia
data streams. Again the algorithm depends on the multimedia stream source. The
transformational operator requires two arguments:

1. The source of the multimedia data stream
2. Time slot for which the data is required, or in other words, the slidingwindow specifications.

These two parameters are essential in locating the frame which might contain the desired
object. Further, we need to use the feature extraction algorithm not only in order to locate
the object, but also its shape, size, color. Content based retrieval (CBR) approach is used to
retrieve desired multimedia objects from a large collection on the basis of some features
(such as color, texture and shape, etc.), specified within the query statement, that can be
automatically extracted from the objects themselves. But major drawback of this method is
that it lacks precision. That is why we early proposed the Multimedia Tool Boxes, which is,
given the tradeoff between precision (QoD) and efficiency (QoS), we assume two sets of
algorithms within the tool box, one that optimizes for QoD while the other optimizes for
QoS. With a light weight QoS and QoD monitoring, with a user specified thresholds, the
system can switch between the two multimedia tool boxes automatically.

7.3 Feature extraction algorithm

As the MMDSMS receives images from the various sources, they will be in digital forms.
Every feature will be represented in a stream of 0 s and 1 s. The essential features needed to
execute CBR queries are:

1. Shape of the object— can be used to identify the object
2. Color
3. Size of the object— which will be relative depending upon the location of the camera

The shape and the size of the object will also help identifying if the object in question is
a real object or just a barrier. We can have a database of known objects and then compare
the incoming data stream with them in order to ‘identify’ the object. Objects which are not
in our database can be marked as ‘UO or Unidentified object’. Initially, we will have a large
number of objects marked as UO but gradually the system will be able to identify the object
based on the user input. Care should be taken to filter out the noise from the incoming data
stream. For example, new edge based feature extraction algorithm for video segmentation
found at http://www.uco.es/~el1sapee/docs/research/IVCP03-1.pdf

7.4 Algorithm for the querying techniques

The retrieval will begin with the querying technique. The transformational and fusion operators
can be sued for this purpose. A transformational operator is applied to any multi-dimensional
source of objects in a specified set of intervals along a dimension. The generalized form of a
transformational operator is for locating an object in a time period t1 to t2 from a source will be

y type object nameð Þ ¼ ð
y type object nameð Þy xyz *ð Þ
sðTÞT>t1 and T< t2
ymedia sources source nameð Þmedia sources

Multimed Tools Appl (2010) 46:399–423 415

http://www.uco.es/~el1sapee/docs/research/IVCP03-1.pdf

If we replace the source with some other media source like the video camera, laser radar,
etc we can query that source in order to find the required object. The corresponding
algorithm for the transformational operator will be

1. locate the media source in the query
2. check the time-slot
3. get the groups of images for that particular time slot from the media source
4. apply the feature extraction algorithm
5. compare the object with the existing objects in the database
6. check the query for additional parameters like color
7. compare it with the objects
8. output the result of the query

Sometimes we may need to compare the results of 2 or more transformational operators.
In such a case, we will apply the algorithm to each of the operators independently and then
compare the results. We may use the existing SQL operators for this as shown below:

1. UNION: This can be used to combine 2 transformational queries coming from different
sources in order to add their results. The syntax can be of the form:

ymotion movingð Þ
sðTÞ timeð Þ
ymedia sources videoð Þmedia sources
UNION
y type vehicleð Þ
sðTÞ timeð Þ
ymedia sources laser radarð Þmedia sources

2. INTERSECT: Similar to UNION but will subtract the results of the 2 queries like

ymotion movingð Þ
sðTÞ timeð Þ
ymedia sources videoð Þmedia sources
INTERSECT
y type vehicleð Þ
sðTÞ timeð Þ
ymedia sources laser radarð Þmedia sources

This query will find the type of the vehicle from the list of moving vehicles
3. EXCEPT: This query will find the ‘type’ of stationary vehicle, if any

y type vehicleð Þ
sðTÞ timeð Þ
ymedia sources laser radarð Þmedia sources
EXCEPT
ymotion movingð Þ
sðTÞ timeð Þ
ymedia sources videoð Þmedia sources

The fusion operator will perform sensor data fusion from heterogeneous data sources to
generate fused objects. Fusion of data from a single sensor in different time periods is also
allowed. It will combine the results of the transformational operators. The fusion parameter
can have arguments and can be applied with respect to type, position and direction.

416 Multimed Tools Appl (2010) 46:399–423

Once we have the data from various sources, we can use the existing fusion operator to
combine the results of the two ormore sources obtained through the transformational operators as

ftype;position;direction

ymotion movingð Þy type Objectð
� �
sxy *ð Þ
sðTÞTmod 10¼0 and T>t1 and T< t2
ymedia sources source 1ð Þmedia sources
:
:
:
y type Objectð Þy xyz *ð Þ
sðTÞT>t1 and T< t2
ymedia sources source nð Þmedia sources

The generalized algorithm combining the transformational and fusion operators will be

1. Locate the transformational operators in the query
2. Apply the transformational algorithm to each of the transformational operator independently
3. Check the parameters of the fusion operator
4. Apply the fusion operator with respect to the parameter specified to the results of the

transformational operators
5. Output the result

8 Illustrative examples of continuous query processing

The examples mentioned below are an extension of the algorithms proposed. They can be
used as a practical application of these algorithms. The logical SQL queries are used in a
database and be used in the multimedia querying techniques.

Scenario: parking lot (Security system)
Cameras installed: Video, Laser radar
The basic steps in order to find an object or locate an object in a given area according to

the algorithms defined, will be

✓ Query all the cameras situated in the area
✓ Apply the feature extraction algorithm to find the required object
✓ Query the result to find the desired object with the required parameters

& Aim: To find a Blue car(s) at a given time interval t1 and t2

Solution:

y type Carð Þy xyz *ð Þ
sðTÞT>t1 and T< t2
ymedia sources Videoð Þmedia sources
INTERSECT
y color blueð Þy xy *ð Þ
sðTÞT>t1 and T< t2
ymedia sources Videoð Þmedia sources

Multimed Tools Appl (2010) 46:399–423 417

& Aim: To find a moving car(s) at a given time interval t1 and t2

Solution:

ymotion movingð Þy type carð Þ
sxy *ð Þ
sðTÞTmod 10¼0 andT>t1 and T< t2
ymedia sources Videoð Þmedia sources

& Aim: are there any car(s) in the given location which are not similar to the blue cars for
the time period t1 to t2

Solution:

y type carð Þy xyz *ð Þ
sðTÞT>t1 and T< t2
ymedia sources Videoð Þmedia sources
NOT IN
ð
y type Carð Þy xyz *ð Þ
sðTÞT>t1 and T< t2
ymedia sources Videoð Þmedia sources
INTERSECT
y color blueð Þ
y xy *ð Þ
sðTÞT>t1 and T< t2
ymedia sources Videoð Þmedia sources
Þ

& Aim: is there any vehicle which is above the specified speed limit in the parking lot for
a particular time period?

Solution:

y type carð Þy xyz *ð Þ
sðTÞT>t1 and T< t2
ymedia sources Videoð Þmedia sources
where
y parameter speedð Þ > 15

& Aim: To check if there is any WANTED person in the parking lot

Solution:
First of all we will have to get all the objects present in the parking lot, then compare

those objects with the existing database of WANTED persons.

y type objectð Þy xyz *ð Þ
sðTÞT>t1 and T< t2
ymedia sources Videoð Þmedia sources
where
y type objectð Þ ¼ y type objectð Þdatabase

& Aim: To check continuously if there is any vehicle going through the entrance at a
given time interval t1 and t2 (30 times or more per second).

418 Multimed Tools Appl (2010) 46:399–423

Suppose:
The output rate of each camera is 30fps.
The output rate of ψ operation is 20fps.
Solution:

y type carð Þy xyz *ð Þ
�
ymedia sources Video 1ð Þmedia sources
þ
y type carð Þy xyz *ð Þ
ymedia sources Video 2ð Þmedia sourcesÞ
sðTÞT>t1 and T< t2

Scenario: Medical Center (Healthcare System)
Cameras installed: X-ray, Video,
The basic steps in order to find an object or locate an object in a given area according to

the algorithms defined will remain the same,

✓ Query all the cameras situated in the area
✓ Apply the feature extraction algorithm to find the required object
✓ Query the result to find the desired object with the required parameters

& Aim: To detect any presence of foreign body inside the patient’s body

Solution:
We can take the images from the X-Ray and compare them with some standard images

to detect any anomaly.

y type objectð Þy xyz *ð Þ
ymedia sources X� rayð Þmedia sources

where
y type objectð Þ ¼ y type objectð Þdatabase

& Aim: To monitor a person’s behavior

Solution:
Compare the images from the video camera, from different time periods.

y type objectð Þy xyz *ð Þ
sðTÞT>t1 and T< t2
ymedia sources videoð Þmedia sources

where
y type objectð Þ ¼ ð
y type objectð Þy xyz *ð Þ
sðTÞT>t3 and T< t4
ymedia sources videoð Þmedia sourcesÞ

Scenario: Airport Security
Cameras installed: Video

Multimed Tools Appl (2010) 46:399–423 419

The basic steps in order to find an object or locate an object in a given area according to
the algorithms defined will remain the same,

✓ Query all the cameras situated in the area
✓ Apply the feature extraction algorithm to find the required object
✓ Query the result to find the desired object with the required parameters

& Aim: To detect the type of an aircraft

Solution:
We can take the images from the Video camera and compare them with some standard

images to detect any anomaly.

y type aircraftð Þy xyz *ð Þ
ymedia sources Videoð Þmedia sources
where
y type aircraftð Þ ¼ y type aircraftð Þdatabase

& Aim: To detect any unidentified flying object around the airport
Solution:
Compare the images from the video camera, with those in the database and ignore the

images which are already in the database.

y type objectð Þy xyz *ð Þ
ymedia sources Videoð Þmedia sources
where
y type objectð ÞNOT IN

y type aircraftð Þy xyz *ð Þ
�
y type aircraftð ÞdatabaseÞ

If we want to get a video stream with the output rate of at least 30fps, the query may
need modification.

Suppose:
The output rate of each camera is 30 fps.
The output rate of ψ operation is 20 fps.
Solution:

y type objectð Þy xyz *ð Þ
�
ymedia sources Video 1ð Þmedia sources
þ
y type objectð Þy xyz *ð Þ
ymedia sources Video 2ð Þmedia sourcesÞ
where
y type objectð ÞNOT IN

y type aircraftð Þy xyz *ð Þ
� �
y type aircraftð ÞdatabaseÞ

420 Multimed Tools Appl (2010) 46:399–423

& Aim: To find all the flying airplane(s) at a given time interval t1 and t2

Solution:

ymotion movingð Þy type airplaneð Þ
sxy *ð Þ
s Tð ÞTmod 10¼0 andT>t1 and T< t2
ymedia sources Videoð Þmedia sources

9 Discussion

In this paper we presented a computation-oriented model to model multimedia data streams as
a potential tool for many useful applications such as security and health systems as described
in the motivating examples earlier. Based on the proposed model, we provided performance
estimates of the output rate, maximum number of supported streams, and the maximum
number possible queries. We also generalized the multimedia dependency theory to include
those involved in multimedia data streams and provided some algorithms of how to
efficiently query multimedia data streams, along with illustrative examples. We believe this
should provide a new research dimension in the database and the multimedia communities.

Compared to other models, our model is a computation-oriented model. This is the main
difference. With the computation-oriented model we can obtain performance estimates to
deal with QOS and QOD issues, which cannot be easily accomplished in some other
models. Since the focus of this paper is the model for multimedia data stream, many
important features of SigmalQL [5] such as the cluster operator are not discussed in the
present paper. In fact, the query language SigmaQL is as expressive as CQL. All reasonable
query languages should be equally expressive, just like all reasonable programming
languages should be equally expressive. Therefore the issue is not whether one query
language is more expressive than another. The issue is whether a query language can lend
itself easily to performance estimates and therefore performance improvements.

Another consideration is further extensions. Our next goal is to further extend the
multimedia dependency theory to include the ontological dimension. This would allow the
ontological filtering to improve the performance of multimedia stream query processing. At
issue is a suitable ontology that is expressive and yet amenable to transformations in order
to be incorporated into efficient query processing algorithms.

References

1. Abadi DJ, Carney D, Çetintemel U, Cherniack M, Convey C, Lee S, Stonebraker M, Tatbul N, Zdonik S
(2003) Aurora: a newmodel and architecture for data streammanagement. The VLDB Journal 12(2):120–139

2. Abadi D J, Ahmad Y, Balazinska M, Çetintemel U, Cherniack M, Hwang J.-H, Lindner W, Maskey A, Rasin
A, Ryvkina E, Tatbul N, Xing Y, Zdonik S B (2005) The design of the borealis stream processing engine.
CIDR, 277–289

3. Arasu A, Babcock B, Babu S, Datar M, Ito K, Nishizawa I, Rosenstein J, Widom J (2003) Stream: The
Stanford stream data manager (demonstration description). In SIGMOD ’03: Proceedings of the 2003
ACM SIGMOD international conference on Management of data, New York, NY, USA

4. Arasu A, Babu S, Widom J (2006) The CQL continuous query language: semantic foundations and
query execution. The VLDB Journal 15(2):121–142

5. Chang S K, Costagliola G, Jungert E Orciuoli F (2004)“Querying Distributed Multimedia Databases and
Data Sources for Sensor Data Fusion”, IEEE Trans. on Multimedia, Vol. 6, No. 5, 687–702

6. Chang S K, Deufemia V, Polese G (2007) A Normalization Framework for Multimedia Databases. IEEE
Transactions on Knowledge and Data Engineering, 19(12)

Multimed Tools Appl (2010) 46:399–423 421

7. Chang S K, Costagliola G, Jungert E, Camara K (2009) Intelligent Querying Techniques for Sensor Data
Fusion. Chapter from the book Intelligent Techniques for Warehousing and Mining Data Streams,
(Alfredo Cuzzocrea, ed.), IGI Global

8. Chen J, DeWitt D J, Tian F, Wang Y (2000) Niagaracq: a scalable continuous query system for internet
databases. In SIGMOD ’00: Proceedings of the 2000 ACMSIGMOD international conference on
Management of data, pages 379–390. ACM

9. Gaber M, Zaslavsky A, Krishnaswamy S (2005) Mining data streams: a review. SIGMOD Record, 34(2)
10. Girguis S, Kulkarni R, Chang S K (2008)“A Multimedia Data Streams Model for Content-Based

Information Retrieval”, Proceedings of 2008 International Conference on Distributed Multimedia
Systems (DMS2008), Boston, USA, 232–239

11. http://www.coral8.com/, 2004.
12. http://www.cs.cmu.edu/~biglou/research.html, 2008.
13. http://www.streambase.com, 2006.
14. Jain N, Mishra S, Srinivasan A, Gehrke J, Widom J, Balakrishnan H, Çetintemel U, Cherniack M,

Tibbetts R, Zdonik S (2008) Towards a streaming SQL standard. Proc. VLDB Endow. 1(2):1379–1390
15. Sharaf M A, Chrysanthis P K, Labrinidis A, Pruhs K (2008) Algorithms and Metrics for Processing

Multiple Heterogeneous Continuous Queries. ACM Transactions in Database Systems (TODS)
16. Sharaf MA, Chrysanthis PK, Labrinidis A, Pruhs K (2008) Algorithms and metrics for processing

multiple heterogeneous continuous queries. ACM Trans. Database Syst. 33(1):1–44
17. Tatbul N, Zdonik S (2006). Window-aware load shedding for aggregation queries over data streams. In

Proc. of VLDB Conference

Shi-Kuo Chang received the B.S. degree from National Taiwan University in 1965. He received the M.S.
and Ph.D. degrees from the University of California, Berkeley, in 1967 and 1969, respectively. He was a
research scientist at IBM Watson Research Center from 1969 to 1975. From 1975 to 1982 he was Associate
Professor and then Professor at the Department of Information Engineering, University of Illinois at Chicago.
From 1982 to 1986 he was Professor and Chairman of the Department of Electrical and Computer
Engineering, Illinois Institute of Technology. From 1986 to 1991 he was Professor and Chairman of the
Department of Computer Science, University of Pittsburgh. He is currently Professor and Director of Center
for Parallel, Distributed and Intelligent Systems, University of Pittsburgh.

Dr. Chang is a Fellow of IEEE. He was a consultant to IBM, Bell Laboratories, Standard Oil, Honeywell,
Naval Research Laboratory and Siemens. His research interests include distributed multimedia systems,
visual information systems, visual languages and visual computing. Dr. Chang has published over two
hundred and forty papers and wrote or edited twelve books.

422 Multimed Tools Appl (2010) 46:399–423

http://www.coral8.com/
http://www.cs.cmu.edu/~biglou/research.html
http://www.streambase.com

Lei Zhao received the Ph.D. degree in the area of database access control in 2006 from Soochow University,
Suzhou, China. From 1998 to now, he is a faculty of the school of computer science and technology of Soochow
University. He is now an Associate Professor in the field of database technology and parallel computing. His
research interests include database modeling, parallel model of data processing and data mining.

Shenoda Guirguis is a graduate student of the Department of Computer Science, University of Pittsburgh. His
research interests are Sensor Networks, Multimedia Database management, Database Security.

Rohit P. Kulkarni was born in Mumbai, India in 1982. He received the B.Eng degree in Electronics
engineering from the University of Mumbai, Mumbai, India in 2005. He worked for 2 years in India in
various fields like Automation, Database, System administrations for companies like Reliance Industries,
Citigroup, Bloomberg LP before coming to US to pursue MS degree from the School of Information Science,
University of Pittsburgh, in the field of Database Management and Web-Systems. His research interests are
Web-aware data management, Multimedia Database management, Database Security.

Multimed Tools Appl (2010) 46:399–423 423

	A computation-oriented multimedia data streams model for content-based information retrieval
	Abstract
	Introduction
	Motivating examples
	A focussed review of related works
	A computation-oriented multimedia data streams model
	Performance estimation
	A processing model
	Problem formalization
	Cost of m-CQ
	Output rate
	Tradeoff in distributed processing situation
	Inverse solution
	A concrete example

	Extended dependency theory
	Algorithms for multimedia data streams continuous querying
	Algorithm to sort/group the incoming multimedia data
	Algorithm for retrieval
	Feature extraction algorithm
	Algorithm for the querying techniques

	Illustrative examples of continuous query processing
	Discussion
	References

