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ABSTRACT

Our actions and choices sometimes seem driven by our needs, sometimes by our wants and
sometimes by both. Why sometimes there is association and sometimes dissociation between
needing and wanting remains largely unknown. Needing is related to deprivation of something
biologically significant, and wanting is linked to reward prediction and dopamine and usually has
more power on behavioral activation than need states alone. This paper aims to clarify their
relations using active inference. In this approach needing is related to a deviation from preferred
states that living things tend to occupy in order to reduce their surprise, while wanting, i.e.
reward prediction, is related to precision over policy leading to rewards. Through a series of
simulations, we demonstrate the interplay between needing and wanting systems. Specifically,
our simulations show that when need states increase, the tendency to occupy preferred states is
enhanced independently of wanting (or reward prediction), showing a dissociation between
needing and wanting. Furthermore, the simulations show that when need states increase, the
value of cues that signal reward achievement and the precision of the policies that lead to
preferred states increase, suggesting that need can amplify the value of a reward and its wanting.
Taken together, our model and simulations help clarifying the directional and underlying
influence of need states separately from reward prediction, i.e. wanting, and at the same time
show how this same underlying influence of need amplifies wanting, i.e. increases the precision
of reward cues that lead to the preferred state.

FULL TEXT
1. Introduction

There has been a debate around the question of if people, for instance consumers, are driven by
their needs or their wants (Campbell, 1998). “Needing” is related to a state of deprivation of
something important for life or survival (Bouton, 2016), and increases arousal through
interoceptive salience (Craig, 2003); and not responding to a need might lead to some adverse
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consequences such as physiological or psychological suffering which go beyond mere frustration
(MacGregor 1960; Baumeister & Leary, 1995). “Wanting” is more related to goal achievement
and reward prediction and is more closely related to dopaminergic activity and motivation
(Berridge, 2004). Both have some influence, albeit differently, on the motivational value of
stimuli. Importantly, motivation can have a directional effect and/or activational effect. The
directional effect is linked to choice (preference or action selection) and directs towards or away
from stimuli, while the activational effect is related to action and its initiation, maintenance, and
vigor or effort (Salamone et al., 2018). Notably, wanting is able influence both activational and
directional values of stimuli even in absence of need states: nonhuman animals tend to respond
and “want” food even when satiated (Bouton, 2016), and for humans, cues of M&M or pictures
of cigarettes (for smokers) have been shown to lead to more consumption even after having been
consumed to satiety (Hogarth & Chase, 2011; Watson et al., 2014). On the other hand, needing
seems to control directional motivation, but seems to rely on wanting for the activational part
((Dickinson & Balleine 1994; Balleine, 1992; Berridge, 2004; Berridge, 2018; Wassum et al.,
2011; Salamone et al., 2018).

At the brain level, needing and wanting systems could map to partially different neural
substrates. A recent fMRI meta-analysis compared consistent brain activations during needing
(perception of needed stimuli, i.e. food when hungry) and during wanting (perception of a
reward cue that leads to reward seeking). It showed that needing seems more related to brain
regions implicated in directional motivation/value; whereas wanting seems to be more related to
brain regions implicated in both directional and activational motivation/value, and to mesolimbic
dopaminergic areas (Bosulu et al., 2022). Furthermore, these results suggest that needing is
related to interoceptive predictions and prediction errors as well as cues related to interoceptive
states, such as food cues, possibly computed within the mid-posterior insula (Bosulu, et al.,
2022; Livneh et al., 2020), while wanting is instead related to exteroceptive (e.g., cue- or
reward-related) predictions and prediction errors, with the latter possibly computed within the
ventral tegmental area (VTA) (Schultz et al., 1997; Bosulu, et al., 2022). Hence, needing seems
to be more related to the internal environment, whereas wanting seems to be more related to the
external environment, although this is not necessarily a strict separation as — for example —
wanting could also take into account the internal environment (Berridge, 2004).

However, needing and wanting systems are not segregated but might influence each other
reciprocally. Biological needs, such as those related to states of deprivation of a biologically
significant stimuli or events (Bouton, 2016), seem to influence the rewarding aspect of
biologically relevant stimuli, such as wanting, pleasure and choice. For instance, food is often
more wanted, liked and chosen when hungry. Thus, although it has been shown that motivation
to pursue rewards depends more on expectations (e.g., reward prediction), than on needs states
(Bindra, 1974; Berridge, 2004), need states tend to amplify reward predicting cues that are
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relevant to such need states (Toates, 1994; Berridge, 2004). Need states can also enhance liking
of, and pleasure related to, relevant stimuli that satisfy one's needs (Cabanac, 2017; Berridge &
Kringelbach, 2015; Becker et al., 2019). Moreover, a need state has the capacity to give and to
control the preference/choice or value of a novel food or drink or of a particular choice or action,
in relation to their consequence on the organism (Dickinson & Balleine 1994; Balleine, 1992),
and such need related action happens via a system that could be both dependent (Berridge, 2004;
Berridge, 2018) and independent of dopamine (Wassum et al., 2011 Salamone et al., 2018).
Furthermore, in absence of a reward guiding cue, a need state can (directly) activate relevant
actions (Passingham & Wise, 2012) or explorative behavior (Panksepp, 2004). Overall, tThis
indicates that biological need states are able to influence certain tendencies towards relevant
needed stimuli, hence affecting wanting and goal directed choices (and liking).

To sum up, our previous discussion illustrates that needing and wanting systems could link to
different aspects of motivation (i.e., directional and activational) and to partially different neural
substrates and states (i.e., internal and external) — but at the same time, they might interact in
various ways. Yet, we still lack a comprehensive computational framework that accounts for the
findings reported above and that specifically explains (1) how could internal needs exert a
directional influence on goal-directed behavior and choice, even in absence of wanting and (2)
how could a state of needing amplify wanting (and liking).

The main goal of this paper is to provide a computationally-guided perspective on needing and
wanting, which helps make sense of the fragmented literature on these topics. In the following
sections, we will firstly address the two above questions conceptually, using formal methods
from active inference, information theory and reinforcement learning (Parr et al., 2022; Sutton
and Barto, 2018). Then, we present two simulations that address the functioning of needing and
wanting systems — and their interactions — more formally.

2. Needing and wanting systems and their interactions: a conceptual perspective
2.1 The directional influence of needs on goal-directed behavior and choice

The goal of organisms is to regulate internal states and keep them within certain very limited
boundaries (Barrett, 2017; Sterling & Laughlin, 2015; Friston, 2006). For instance, the average
normal body temperature for humans is generally between 36.1°C (97°F) to 37.2°C (99°F),
which is a very small range compared to the range of possible temperatures in the universe, from
the absolute zero to trillions of degrees. The same is true for levels of glucose or the balance
between water and salt in the body. The main idea is that the number of "states" that make life
possible are really small compared to the very large number of other combinations that wouldn't
sustain life. So, to allow a living organism to remain within its normal physiological boundaries,
natural evolution might have set them as so-called (empirical) priors, which might be conceived
as (possibly genetically encoded) innate preferred states that the organism always strives to
achieve. These preferred states (corresponding to physiological bound) have a greater probability
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to be reached from the point of view of the organism, i.e. are less surprising (Friston, 2010).
Here, the surprise associated with a state, denoted h(y), is the inverse of being probable and
simply means less probable. Anecdotally, for a fish, being out of water would count as a
surprising state. Any self-organizing system must minimize such surprise in order to resist a
natural tendency to disorder (Friston, et al., 2006; Friston, 2010) and in the case of our fish,
death.

Formally, the notion of surprise is closely related to the notion of entropy. Entropy, denoted as H,
is the long-term average of the surprise and (here) it expresses the uncertainty related to which
state must be occupied. If an organism is endowed with a prior about the states to occupy (i.e.,
with one or more preferred states), achieving these high probability states reduces surprise and
its long-term average: entropy (Parr et al., 2022; Friston, 2010). By the same token, higher
probability translates into more preference: living creatures naturally prefer the most probable
states that sustain life. Thus, distancing from those states leads (or equivalently, being in a
surprising state) entails an (informational) cost that living beings strive to minimize.

Importantly, the notion of being in a surprising state (or in other words, being far from preferred
states) links well to the concept of “needing” discussed in the Introduction. In the same way
being in a surprising state entails an (informational) cost, a state of need entails a (biological)
cost if a person does not respond to the need (see MacGregor 1960; Baumeister & Leary, 1995).
When a living organism moves away from its preferred state, it is in a state of "need" - which
amounts to having a tendency to occupy preferred states (again). The state of need can be
represented as:

h (y) =— InP(y|C) Eq.1;

where hn represents the “need-related” surprise of a sensation or state y, which is equal to the

negative log probability of being in (or observing) a state y given the distribution of prior
preferences, denoted as C. Note that for simplicity, in this article we will collapse the notions of
“state” and of “observation that can be obtained in the state”, which are typically distinct in
active inference (and more broadly, in Partially Observable Markov Decision Processes); see the
simulations below.

The perception of a need state translates into a “goal” of reducing surprise by reaching the
preferred states, e.g., states that represent adaptive physiological conditions (Friston, 2010). Such
tendency could activate an action or a policy (i.e., an action pattern or sequence of actions) that
compel creatures to seek out the (valuable) preferred states. Note that the actions or policies that
resolve a state of need could in some cases correspond to (fixed) regulatory actions, such as
autonomic reflexes, as opposed to action courses determined by the circumstances of the external
environment (Sajid et al., 2021). The states that the creature occupies when pursuing a policy
that resolves a need can become valued per se (Friston & Ao, 2012). In other words, when the
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creature pursues a course of actions towards the preferred state, all the intermediate states (here
intended in a broad sense that encompasses situations, actions, stimuli, etc.) can become valued
and needed. For instance, when moving from a state of hunger to a state of satiety, some
intermediary states could be the gustatory stimulus associated to having food and the act of
eating; and such states would become valued, because they are in the path towards the preferred
(satiety) state (Pezzulo et al. 2015). Through this mechanism, a creature would experience the
need for food or the need to eat — and then start to prefer the valued states, stimuli or actions. In
other words, the directional effect of need states on motivation could come from the tendency to
occupy preferred states.

In turn, as noted above, pursuing preferred states reduces “need related entropy” and the surprise
associated with occupying non-preferred states. In this sense, the tendency to occupy preferred
states confers to need states the possibility to influence — and give value to — stimuli or actions
that are either costly states S (hn) that lead to surprise, or in the path towards the preferred state

1(p). In other words, in an environment where there are increasingly costly/surprising states,
any state (stimulus or action) that is in the path to the preferred state will become valued
(needed) because it reduces entropy.

2.2 How needing amplifies wanting

The effect of needing on wanting (and on other phenomena such as pleasure and liking) could be
conceptualized by appealing to the formal notion of precision in active inference.
Mathematically, precision is a term used to express the inverse of the variance of a distribution
which in our context can be seen (loosely speaking) as the inverse of entropy (Friston, 2010;
Holmes 2022) — in the sense that the higher the entropy, the lower the precision. In predictive
coding and active inference, precision acts as a multiplicative weight on prediction errors:
prediction errors that are considered more precise have a greater impact on neural computations
(Parr et al., 2022).

In active inference, there are different precisions associated with different forms of changes in
prediction, such as interoceptive, reward or policy predictions (see Parr et al., 2022). Of
particular relevance here is the precisions of policies, which indexes the confidence that we have
that by following a particular policy we will reach a preferred (goal or reward) state. Crucially,
while we pursue a policy, every cue or information that confirms (reduces uncertainty about the
fact) that a policy will achieve a preferred state enhances policy precision. This is the case for
example if we are following a route that we hope will lead to a given city (or to a restaurant that
we hope is open) and we encounter a traffic sign that indicates that the direction to the city is
correct (or a sign that the restaurant is open).

At the neurophysiological level, policy precision, or the confidence that a policy will lead to
reward, is typically associated with the dopaminergic system in active inference (FitzGerald et
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al., 2015; Parr et al. 2022, Holmes, 2022). Therefore, reward cues that enhance our policy
precision and our confidence that the policy will lead to reward would trigger dopamine bursts,
which will attribute incentive salience to such cues (Berridge, 2007). This is in line with the idea
that dopamine is linked with incentive salience and wanting; but also with reward prediction and
behavioral activation as they typically co-occur (Hamid et al., 2016). Rather, precisions
regarding hedonic contact with the reward (to ask questions such as: is it good?) or the state of
satiety (to ask questions such as: am [ well?) might be mediated by the opioid system (Berridge
& Kringelbach, 2015) and the serotonin system (Parr et al., 2022; Liu et al., 2020; Luo et al.,
2016), respectively.

Interestingly, these systems are interdependent. When one is in a surprising (need) state, the
presence of a cue (e.g., a traffic or restaurant sign) might reduce our uncertainty about
goal/reward achievement by improving policy precision via dopamine system activity (wanting);
the presence of, or contact with, the reward itself might reduce entropy by enhancing precision
through the opioid system (pleasure/liking); while being directly in a preferred state or towards
the preferred state could be related to precision via serotonin (well-being). All of these contexts
serve as information that reduce entropy by signaling the availability of a path to preferred states
(7t(p)), or equivalently away from surprising states (hn), given some prior preference.

The policies discussed so far depend on exteroceptive cues from the environment. As discussed
above, these cues (e.g., cues that signal a reward) can become imbued with incentive salience
and "wanting" (Berridge, 2007) in virtue of the fact that they enhance policy precision. The
increased policy precision that comes from the presence of rewards (or of cues that signal
incoming rewards) means more certainty that the state to which the policy leads will be
rewarding, and it is this certainty that amplifies wanting. This mechanism could function
relatively independent from a state of need. For instance a relatively satiated animal that smells
some food, will be motivated to follow the smell because doing this increases the probability of
finding food. However, its wanting (and the associated dopamine firing) could be amplified if the
animal is in a need state. If the animal that smells food is hungry, it will be motivated to follow
the smell, not just because there is a high probability to secure food, but also because that food
will be very rewarding. That is, the animal will be more certain (i.e., have greater precision) that
it should pursue a policy that leads to the predicted reward. It's in that sense that needing
amplifies wanting. It is also possible to speculate that the hungry animal will likely have more
pleasure while eating food than the satiated one — because it could assign more certainty
(precision) to how good food is when it is hungry.

To summarize, we propose that the wanting mechanism is intrinsically related to the fact that
cues afford some resolution of uncertainty (e.g., about what policy to pursue) and linked to the
dopaminergic system. Indeed, “wanting” depends on external stimuli that act as pavlovian cues
that predict rewards (Berridge, 2018), and the attribution of value to these cues depends on
mesolimbic dopamine reactivity which can be enhanced by physiological states (needs,
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emotions, drugs, etc.) (Berridge, 1996; Berridge, 2004). Furthermore, we propose that the
influence of needing on wanting can be conceptualized as a need-induced enhancement of the
precision of policies and thus of the saliency of the rewards, stimuli or actions that lead to the
preferred state.

2.3 Summary

Our discussion so far has highlighted two important points about needing and wanting systems,
and their interactions. First, need states exert a directional influence on choices separately from
wanting (and reward prediction). In the perspective offered here, need states gain their
underlying (motivational and saliency) effect from the tendency to occupy preferred states. When
a living system moves away from such preferred states towards “costly” states, a state of need is
generated. Being in costly or need states automatically increases the probability of activating
policies that lead to preferred states. Hence, the mere state of deprivation of need has an
underlying directional effect and influences the tendency to reach rewarding or goal states. This
tendency exists irrespective of reward prediction, as conceptualized for example in model-free
reinforcement learning systems, which can be related to wanting (Zhang et al., 2009; Berridge,
2004).

Second, by the same token, the underlying influence of need amplifies wanting, by increasing the
value of reward cues that signal the possibility to reach goal states (hence lowering uncertainty
about goal achievement) and the precision of goal-achieving policies. The simultaneous
circumstance of being in a need (hence surprising) state and encountering a cue that signals that a
goal state is achievable (hence that surprise and uncertainty can be reduced) is the ideal condition
to confer goal-achieving policy with a very high precision. By indicating that there is a path to a
goal or reward state, the cue renders the organism more confident about what to do - and this is
amplified when the gain in reward (or the amount of surprise minimized) is greater, such as when
one is in a need state. This is why need states amplify “wanting” by enhancing the value of cues
and the precision of policies that lead to preferred goal states.

In the next sections, we move from the conceptual treatment offered in this section to a formal
implementation of the proposed model of needing and wanting. Subsequently we illustrate the
functioning of the model in two simulations, which illustrate how being in need/costly states
influence the tendency to reach rewarding/preferred state (Simulation 1), and how the
simultaneous presence of a state of need and the presence of a path to the preferred (reward or
goal) state implies low entropy and high precision over which state to occupy (Simulation 2).

3. Methods and Results

3.1 Simulation environment
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Our simulations regard a very simple situation, mimicking the idea of agents that have to remain
within a limited physiological (e.g., food or temperature) bound. For this, we designed a
grid-world environment in which only one state is rewarding/preferred, whereas the number of
surprising/costly states is much greater (See Figure 1). We can draw a parallel between the
grid-world and human physiological states, such as hunger or temperature: the preferred state
corresponds to the optimal interval of sugar level in the bloodstream, or the temperature range
(between 36.1°C (97°F) and 37.2°C (99°F)). In the grid-world, each interval of sugar level, or of
temperature range, is represented as a specific state in which the agent can be (each state
corresponds to a box in Figure 1).

Specifically, we used a 3x3 grid-world containing nine states, eight “costly states” (states 0, 1, 3,
5, 6, 7, 8) and a reward/preferred state (state 2), whose value is initially unknown to the agent.
There are two terminal states (not shown) reachable from states 2 and 5, i.e., states that, once
occupied, cannot be left by the agent. State 2 represents a reward/preferred state that gives a
reward of 1 and state 5 leads to death (which is as costly as the other states, but from which the
agent can never come back).

state 0 state 1 state 2
reward

state 3 state 4 state 5
death

state 6 state 7 state 8

Figure 1. Grid world environment used in our simulations. Each box represents one state in
which the agent can be. These include eight costly states (states 0, 1, 3, 4,5, 6,7, 8) and a
reward state (state 2). The value of these states is initially unknown.

In our simulations below, the only thing that we will vary is the amount of cost associated with
the eight “costly states”. We will do so by assigning to these eight states the same negative
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reward (-1, -2, or -5) representing a significant departure from biological bounds. Note that the
agents that dwell in the simulated environments do not know these values and will have to
compute the expected biological costs, or values by themselves (see below for a description of
the agents that we will use in our simulations).

3.2 Simulation agents

Our simulations will consider two agents: an active inference agent that embodies our
hypotheses about needing and wanting systems and that implements tendencies or prior
preferences over policies; and a reinforcement learning agent that computes reward prediction in
the form of action values (Parr et al., 2022; Sutton and Barto, 2018). Note that at each time step,
the two agents receive an observation about their current state and then they can self-localize in
the grid map; and they can move one step vertically or horizontally, but not diagonally.

Agent 1: active inference agent

Agent 1 is a simplified version of active inference, in which the perceptual part is kept as simple
as possible, by assuming that all the states of the grid world are observable. Technically, this
means that we are dealing with a Markov Decision Process (MDP) and not a Partially
Observable Markov Decision Process (POMDP) as more commonly done in active inference
(see Friston et al., 2009; Friston et al., 2017). This simplifying assumption is motivated by the
fact that our focus in this work is on action selection and not perceptual discrimination.
Furthermore, keeping the perceptual part simple facilitates the comparison with the
reinforcement learning agent (see Agent 2 below) that uses an MDP, too.

The costs and rewards assigned to states translate directly into a prior preference for these states
(denoted below as C), with rewarding states being a-priori more probable than other states. Since
the agent expects to occupy (or to move towards) these a-priori probable states, the prior over
states also translates into priors over actions or action sequences (policies) that achieve such
states. In this simplified setting, action (and policy) selection simply corresponds to inferring a
distribution of states that it prefers to occupy and policies to reach (sequences of) these states. In
other words, the active inference agent tend to select policies that lead it to achieve goal states -
which in Bayesian terms corresponds to maximizing model evidence.

More formally, under the simplifying assumptions discussed above, the active inference agent
strives to maximize a measure of (log) evidence, defined as:

In[P(y)] Eq.2


https://doi.org/10.1101/2022.10.24.513547
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.10.24.513547; this version posted January 30, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

10

where (n denotes a natural logarithm and (P(y) the probability of observing a state (remind that
in our setting, hidden states and observations are the same; hence y = s.) Equivalently, active
inference agents strive to minimize surprise, defined as the negative of the evidence:

-In[P(y)] Eq. 3

Importantly, as remarked above, for active inference agents what is surprising or not surprising
depends on prior preferences (e.g., a fish out of water is in a “surprising” state). In this
perspective, being in a surprising state (i.e., far from prior preferences) is what defines a state of
“need”. To account for needs, we condition the surprise to priors C (prior preferences, i.e.
biological costs or rewards) and we get a need-related surprise:

-In[P(y|O)] Eq. 4

This equation represents the surprise or negative “value” of an observation/state, given the
organism’s prior preferences. In turn, the prior preferences play a role in prioritizing policies,
which correspond to courses of actions that try to reduce current and future (expected) surprise.
When one accounts for policies (1), the expected surprise given the prior preferences is:

— EQ(le[)ln [P(y|O)] Eq.5

The E 001 part means that the probability of states/outcomes is averaged across all policies ().

In active inference, the quantity shown in Eq. 5 E In[P(y|C)] (without the minus sign) is

Q(yIm)
typically called a “pragmatic value” and in this setting, it corresponds to the expected free energy

G(m) (an upper bound on expected surprise):

Gm) = —E, In[POIC)] Eq.6

For completeness, it is important to consider that the quantity shown in Eq. 6 (without the minus
sign —the “pragmatic value”—is only one of the two terms of the expected free energy G(mn) of
active inference ; however, in our setting, the second term (“epistemic value”) is zero, and hence
here we simply ignore it.

The expected free energy G(m) is particularly important since it is used for policy selection.
Specifically, active inference agents are equipped with a prior over policies, denoted as P(m).
The greater the expected free energy that policies are expected to minimize in the future, the
greater their prior, i.e.,
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P(n) = o(— G) Eq.7

where o represents the softmax function, bounded between 0 and 1, and enforces normalization
(i.e. ensures that the probability over policies sums to one).

This P(m) is what will be used as prior over policies by the agent 1 in order to select policies
(which, in our simple scenario, reduce simply to actions) and ultimately to minimize surprise.

Agent 2: model-free reinforcement learning

The second agent makes decisions based on prediction of rewards assessed by state-action
values, i.e. each decision will depend on the value of actions given the current states (see Sutton

& Barto, 2018). Here the policies depend on the action values, denoted Qn(s, a), and given by:
s i
Q (s,a) = Eﬁ{Rt|st =s,a = a} = En{EoyrHilst =s,a = a} Eq.8

The equation shows the value or “quality” (Q) of the action (a) in state (s) under a policy ().
The function denoted Qﬂ(s, a) expresses the expected (E) return (R), which is the (expected)

sum of rewards, starting from state (s) and taking the action (a), and thereafter following policy
(). Here the state s for agent 2 is equivalent to the state/observation y of agent 1.

The agent's decision after learning is based on the optimal policy T, i.e. the one that maximizes

the expected return, and therefore the optimal Qn(s, a), noted Q*(s, a) is equal to:

maxaQ(s, a) Eq.9,
where max is related to the action that maximizes Q(s, a).

In sum, the two agents differ in their policy selection mechanism. Agent 1 (active inference) uses
a prior over policies P(m) illustrated in Eq 7, whereas agent 2 (reinforcement learning) uses

action values Q (s, a) illustrated in Eq 9 which, here, amounts to reward prediction. The goal of
our first simulation, illustrated below, is to assess the effects of increasing need states on the
action selection mechanisms of the two agents.

3.3 Simulation 1: Directional aspect of needing separately from reward prediction
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In this simulation, we consider the effects of increasing the costs of the eight “costly states” of
Fig. 1 from -1, to -2 and -5 on action selection of active inference (left panels of Fig. 2) and
reinforcement learning agents (right panels of Fig. 2), respectively. For this, we calculate for
each level of need/cost (i.e. -1, -2, -5) the prior probabilities of policies P(m) that reach each of
the states of the grid-world (Agent 1) and the state-action values that emerge from reinforcement
learning (Agent 2). To calculate the probabilities of policies of Agent 1, we use active inference,
as explained above. Rather, to calculate the action values of Agent 2, we use a standard Q
learning approach and let Agent 2 learn by trial and error, by navigating in the grid map (for
1000 trials).

The results illustrated in Fig. 2 show that increasing the costs of the eight “costly states”
significantly increases the probability assigned to policies that reach the rewarding state in the
active inference agent (Agent 1). This is evident when considering that the probability increases
from (about) 0.5, 0.8 and 1 in the three left rows. However, increasing the costs of the eight
“costly states” does not affect reward prediction in the reinforcement learning agent (Agent 2).
This is evident when considering that the state-action (Q) values assigned by the reinforcement
learning agent to the rewarding state is always 1 in the three right rows (this is because the true
reward provided by the state is 1).

These results help illustrate the idea that costly or need states might exert directional effects and
impact on the probability (or tendency) to reach preferred states, irrespective of reward
prediction. In other words, expected biological costs do not control or constrain values directly,
but directly control probabilities, i.e. policies or tendencies, to be in (or go to) the preferred
states. This directional effect of needs is well captured by active inference agents, which
increases the probability to reach rewarding states when “in need”. Conversely, a reinforcement
learning approach to estimate the reward guaranteed by the preferred state correctly infers the
reward itself but it is not sensitive to the magnitude of the "need" of the organism.
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Figure 2. Effects of biological needs on policy selection under active inference (Agent 1, left
panels) and reinforcement learning (Agent 2, right panels). Note that in the bottom panel of the
RL agent, the value of state 2 is 1 as for its other two panels. The left and right panels show the
results for active inference (Agent 1) and reinforcement learning (Agent 2), respectively. For
active inference agents, the y axis plots priors over policies P(T) to reach each of the states of
the grid-world, whereas for reinforcement learning agents, the y axis plots state-action (Q)
values. The three rows show the effects of setting the costly states (states 0 to 8 except state 2, see
Fig. 1) to -1, -2 and -5, respectively. The results show that increasing biological needs (across
the three rows) increases the probability that Agent 1 selects policies to reach the preferred state
2, but does not increase per se the state-action value assigned by Agent 2 to state 2. This is
consistent with the idea that need (directionally) influence tendencies (i.e. probabilities) more
than reward prediction. See the main text for explanation.
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3.4 Simulation 2: How needing amplifies wanting

Simulation 1 showed that action selection in the active inference agent (Agent 1) is sensitive to
need states. In Simulation 2, we ask if being in a state of greater need amplifies the wanting of
the active inference agent, when a reward is present (note that here we do not consider Agent 2,
as the results of Simulation 1 show that it was not sensitive to the magnitude of the "need").

For this, we consider an active inference agent dwelling in an environment in which the costs
associated with costly states vary from -1, -2 and -5, which correspond to the fact that the agent
faces milder or more severe conditions of "need". We consider (1) the entropy over the states that
it plans to occupy in the future by following its inferred policy and (2) the inverse of the above
entropy, i.e., the precision, which is a measure of certainty about which states to occupy in the
future. We compare two conditions; namely, when there is a reward (i.e. the reward state 2 is
baited with a reward of 1) and when there is no reward (i.e., the reward state 2 has the same cost
as all the other costly states).

We calculate the “need related entropy” (or simply entropy) as follows:

H (Y = S(h)) Eq.]10,

when there is no reward, and

H, (¥ =S(h), n(p)) Eq. 11,

when the reward is present and the agent has a potential path towards the preferred state. Here, H
denotes the entropy and it can be calculated on two sets of states. When the reward is available,
the entropy is over the states occupied by the agent while following a policy mt(p) that leads to
the preferred rewarding state (p). Alternatively, when there is no reward, the entropy is over the
states S (hn), or the states S that lead to surprise hn given the prior preferences (i.e., the need

related surprise of Eq. 1).
Y = S(hn) means Y is § (hn) ,andY = S(hn), m(p) simply means Y can be S(hn) or t(p)
The m(p) and S (hn) represent states in different subsets of prior preferences, with the m(p)

representing states that are on the path to the preferred state. These can be viewed as rewarding
(or cues) states or events that lead (transition) to the preferred state if one follows a policy
leading to the preferred state. The S (hn) represent the states that lead to surprise. This

formulation highlights that the (need-related) entropy of an agent that faces costly/surprising
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states S (hn) is reduced when there is a path towards the preferred state t(p). Thus, the inequality
below holds:

H>H Eql2

n np

We calculate the precision as the inverse of the entropy:

P = Hn Eq. 13,
when there is no reward, and

-1
P =H Eq. 14,

np np
when there is a reward and hence a path to the preferred state / rewarded state. Given the
inequality in Eq. 12, when states become more costly, the precision increases, providing that

there is a path towards the preferred / rewarded state, which implies that:

P<P Eq. 15

n np

Given that we are discussing the motivational, i.e. active part, here entropy means (average)
uncertainty over which state to occupy rather than uncertainty over what state is. Similarly,
precision means certainty over what state to occupy. The principle is the same whether applied to
what states to occupy or what policy to follow. The idea is to make it general so it can apply to
incentive salience (wanting) or to hedonic sensation (liking), and also to simpler organisms that
might not have a sophisticated brain.

The results of the simulations of entropy (Eq. 10 and 11) and precision (Eq. 13 and 14) can be
appreciated graphically in Fig 3. These results shown indicate that compared to the case with no
reward, the condition where a reward is present implies a significant decrease of the entropy over
which states the active inference plans to occupy in the path to the reward (Fig. 3, left) and a
significant increase of its precision, which is a measure of certainty about which states to occupy
in the future (Fig. 3, right). This is because the availability of a reward makes the agent more
confident about the states to occupy and the policy to select, whereas in the absence of a reward,
all states are equally costly and the agent has no strong preference about which states to occupy
(i.e., high entropy and low precision). The presence of a reward (which in this simulation is
known by the agent) is a cue that makes it possible to pursue a preferred course of action,
reducing the entropy about the states to occupy and increasing the certainty (precision) about the
states to visit in the path towards the preferred state (and the precision of the relevant policy, not
shown).
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Figure 3. The impact of different need states on the entropy (left plot) and on its inverse, the
precision (right plot), over which state to occupy for an active inference agent, in conditions in
which a reward is available (blue lines) or no reward is available (orange lines).

Furthermore, and interestingly, being in a more costly state amplifies the above effects: with
greater biological needs and a reward available, entropy reduces and confidence increases.
Mathematically, the greater the biological cost of costly (or surprising) states, the lower the
probability assigned to them, the higher the probability assigned to the preferred state - and
ultimately, the lower the entropy over which state to occupy (as all the probability mass will be
on the preferred state). In other words, if the biological cost associated with costly states
increases, the agent becomes more confident about where to go and tends to occupy the preferred
state with higher probability. In this sense, it is the conjoint presence of costly (surprising, need)
states and of preferred (rewarding) states that maximally reduces the agent’s entropy over which
state to occupy (because the probability of reaching the preferred state increases) and increases
its confidence about the path to pursue. To the extent that we associate the above precision (and
confidence) with "wanting", these results show that a state of need amplifies the wanting, when
there is a reward (or a cue) available.

4. Discussion

"Needing" and "wanting" exert significant influence on our decisions and actions. The former is
related to biological costs and the deprivation of something biologically significant, while the
latter is more related to reward prediction and dopamine and can usually exert a stronger
influence on behavior. However, the respective roles of "needing" and "wanting" systems and the
ways they interact are not completely understood. Here, we aimed to provide a
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computationally-guided analysis of the mechanisms of "needing" and "wanting" and their
interactions, from the perspective of active inference theory.

We firstly defined a need state as a "surprising" state in the sense assigned to the term "surprise"
by theories like predictive coding and active inference, in which living creatures strive to remain
within tight physiological boundaries (i.e. preferred states) and are surprised outside them - like a
fish out of water. This perspective suggests that being in a costly or need state may exert a
directional effect on action selection and motivation, because creatures would have an automatic
tendency to select policies that avoid surprises and lead to preferred states. Importantly, this
automatic tendency would be present without any reward or reward cue, which is in keeping with
evidence of driving influences of "needing" without "wanting".

Furthermore, we associated "wanting" to the precision of policies that achieve preferred (goal or
reward) states, consistent with previous work that linked policy precision to incentive salience
and dopaminergic activity (FitzGerald et al 2015, Friston et al., 2017). In this perspective, cues
that signal that there is a path to secure a reward are particularly salient and related to the
"wanting". Needing and wanting systems are however related, as a state of greater need can
amplify wanting: the higher the initial state of need, the greater the wanting of cues related to
reward and of reward itself (and possibly also the greater the pleasure of reward consumption).

4.1 Simulation 1. The need system and its directional effect on behavior and motivation

To illustrate these arguments, we performed two simulations in a grid-world with most states
associated with costs (to mimic a state of need of the organism) and one state associated with a
reward. Simulation 1 illustrates the possible functioning of "needing", by focusing on the action
selection mechanisms of two agents: a simplified active inference agent considers the probability
of policies to go to the preferred state and a reinforcement learning agent that considers action
values and reward predictions (learned using standard Q learning). This simulation shows that
when the active inference agent is in more severe states of needs (i.e., the non-rewarded states of
the grid world are associated with a greater cost), it assigns a greater probability to the policies
that lead to the rewarding state. Hence, in active inference, a state of need can have a directional
influence on behavior, leading the agent towards the preferred states and away from costly or
surprising states. Rather, the reinforcement learning agent correctly estimates the reward
provided by the rewarding state, but this estimate was not sensitive to the agent's need state. This
latter result helps illustrate the idea that the "need" system cannot be reduced to reward
prediction per se.

This simulation therefore illustrates nicely the directional and underlying effect of need states:
need controls directional motivation, because of the tendency of living beings to move towards
preferred states; and such tendency activates policies that lead to the preferred states. In doing so,
states within the trajectory of those policies become preferred (and valued). This tendency is
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mediated by homeostasis or its more general form allostasis (Sterling, 2004; Barrett, 2017;
Holmes, 2022; Demekas et al., 2020), which help animals remain within viable physiological
boundaries (Sterling, 2004; Holmes, 2022). From the active inference perspective, a living
organism continuously strives to reach or remain in its preferred states (which could be
sometimes evolutionarily defined, though homeostatic or allostatic regulation, at the somatic,
autonomic and neuroendocrine levels (Parr et al., 2022; Swanson, 2000)). These preferred states
act as drives or goals that, through homeostasis and allostasis, direct action (Barrett, 2017);
hence the directional effect of need states. Such directional influence, dependent on tendency to
occupy preferred states, is also responsible for the underlying effect through which need states
amplify wanting, pleasure, interoceptive prediction, choice, etc.; by enhancing precision of their
related stimuli (or actions) that are in the path towards the preferred state, in an environment of
costly/surprising states. This leads to Simulation 2 below.

4.2 Simulation 2: The effects of needing on wanting

Simulation 2 illustrates how the simultaneous presence of state of need and of a reward (and a
path to it) can amplify "wanting" in the active inference agent. The simulation shows that the
presence (versus the absence) of (a path to) a reward decreases the entropy of the states that the
active inference agent plans to occupy and increases the associated precision, or the confidence
about occupying these states (and about the policies, not shown in our results). Note that while in
this Simulation 2 we focused on a fully observable environment, previous (companion)
simulations performed in partially observable environments showed coherent results (Friston et
al., 2017). These previous simulations showed that the observation of a contextual cue - namely,
of a cue that reveals reward availability and location to the agent - increases the precision of
policies and that these precision dynamics can be related to dopaminergic activity. In our
Simulation 2, the mechanism is similar (despite the full observability) because the agent is aware
that a reward is present and hence there is a path towards the preferred state that realizes the
agent’s prior preferences. In other words, in both cases, something that signals a viable path to
the reward increases the confidence of the agent in its course of actions.

Importantly, our Simulation 2 also shows that the decrease in entropy over which state to occupy,
and the increase of associated precision, are magnified when the active inference agent is in a
more severe state of need (i.e., when the costs of the non-rewarded states of the grid world are
increased) and there is a path to the preferred state. In other words, the more costly (surprising)
these states are, the more the agent is certain that it needs to go to the preferred state. This
illustrates how need states amplify the wanting (and perhaps also the liking) of stimuli: by
reducing entropy and making the agent more confident about what course of action to select.
Need states have cascading effects also on the stimuli and actions in the path towards goal or
reward states. When in a severe need state, relevant stimuli, reward cues and actions have a
greater role in reducing entropy and increasing the confidence in the selected course of actions
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(Parr et al. 2022, Holmes, 2022). These relevant stimuli, reward cues and actions are therefore
assigned a greater value and a greater “need-generated” salience, which neurophysiologically
could correspond to increased dopaminergic activity, too.

4.3 Relations between our proposal and previous studies

Our proposal is coherent with previous reinforcement learning models of need’s influence on
reward value or on incentive salience. A representative example is the "homeostatic
reinforcement learning" model of Keramati and Gutkin (2014), according to which any
behavioral policy, n, that maximizes the sum of discounted rewards also minimizes the sum of
discounted deviations from a setpoint. In other words, the maximization of a needed reward also
minimizes the deviation caused by such need (Keramati and Gutkin, 2014). This idea is related
to our approach, in that the need state is related to a deviation from a setpoint; however, in
keeping with active inference, the setpoint is modeled as a prior and each deviation from it
implies a "surprise", as explained above.

Another related approach is the computational model of wanting and incentive salience by Zhang
and colleagues (2009). This model introduces a physiological variable, k (representing
dopaminergic state), which changes the value of reward, r, in turn resulting in an amplification of
the wvalue of states, V(s); specifically, the amplified value 1is denoted as

V(st) = ;(rt, k) + YV(St+1)’ with y representing a discount factor, t denotes the time step and
V(St+ 1) denotes the value of the next state. Hence, the value of a reward cue depends on the

combination of the reward value r and the dopaminergic states k. If r can be a proxy of reward
that assigns state values, and £, is influenced by the need states (e.g., hunger or thirst, etc) then r,

which is the function of the combination of r and k, reduces entropy. The state value V(St) can

be enhanced by both the physiological need state k (surprising state) and the value of the reward
1, that signals the path to the preferred state (p). The amplification of reward is a function of the

reward itself and of k, that is: ;(rt, k). Here, the reward is (on) the path to the preferred state.

Hence, replacing or interpreting the path to the preferred (rewarding) state as m(p) and the
physiological state k as the need state that lead to surprise S (hn), we obtain that the function of

the enhanced reward ;, which is encoded as confidence by dopamine, is related to precision over
policies leading to reward. This is the inverse of need related entropy, i.e. inverse of the function

H (Y =S(h), m®)),

or in other words the function
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This implies that there is a direct correspondence between the model discussed here and Zhang’s
(2009) model. However, the treatment offered here allows a more general treatment as it
expresses needing, wanting and their interactions in terms of information-theoretic quantities,
namely, information and uncertainty.

More broadly, a number of studies show that needing and wanting can occur both together and
separately (see Bosulu et al., 2022; Berridge, 2004). As our Simulation 1 illustrates, needing (in
the sense of a tendency to occupy the preferred states) can occur without wanting (which is more
related to reward achievement and prediction) and can influence a preference for courses of
action that lead to preferred state, even when such influence is not directly linked to reward
prediction (as the results of the reinforcement learning agent show). When needing and wanting
for a stimulus (or action) happen together, need states tend to amplify wanting (Berridge, 2004 ;
Toates, 1994) by increasing precision, or saliency, of wanted cues - as illustrated in Simulation 2.

Furthermore, although here we are mainly concerned with the precision of future states occupied
by the agent, as discussed there are different precisions associated with different forms of
changes in prediction (see Parr et al., 2022). So in principle, a state of need could increase
different forms of precision, or salience, of stimuli or cues that are on the path to a reward and
are typically associated with wanting and “incentive salience” (see Berridge 2004). Furthermore,
a state of need could increase the (precision-mediated) liking and pleasure associated with
stimuli that are available. For instance, for need states to amplify pleasure, the agent must come
into contact with the reward (e.g. have food in the mouth when hungry).

Importantly, a precondition for the amplifying effect of need states on wanting is the presence of
a cue that predicts that the course of actions will lead to a reward. Bosulu and colleagues (2022)
conducted a fMRI meta-analysis on perception of needed stimuli in absence of wanting (i.e.
significant stimuli were shown but the task did not explicitly state that they would be available
after) and found that need states did not seem to sufficiently and consistently activate the
dopaminergic system, which is related to wanting. This might be due to the fact that the stimuli
associated with needing that were used in the studies included in the meta-analysis did not act as
strong cues that the same stimuli would be obtained in the future. It is in this sense that needing
can happen independently of wanting. However, the same study showed consistent activity
within the mid-posterior insula during the perception of needed stimuli (Bosulu et al., 2022),
which might be interpreted as an indication that needing can amplify the precision relative to
interoceptive predictions, even in absence of a “true” reward prediction. The same study
discusses how wanting, which is more related to reward prediction and can generally happen
without needing (Bindra, 1974; Berridge, 2004), can be amplified by internal states other than
the need states, such as emotions, stress, drugs, etc. (Berridge, 1996; Berridge, 2004). This likely
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means that those non-need related internal states can amplify wanting-related precision.
Furthermore, need states are perhaps not the only ones to generate entropy or influence the
reactivity of the dopaminergic system. The activation of the dopaminergic system in relation to a
range of phenomena, such as stress, emotions, etc. can amplify wanting even in absence of need
states (Berridge, 1996; Berridge, 2004). The scope of all these interactions between needing,
wanting, bodily and emotional processing and dopaminergic activity remains to be fully mapped
in future studies.

Our treatment suggests that both states of need and reward cues (related to wanting) influence
behavior, but differently. When the agent is in a state of need, there is an automatic tendency to
resolve it and then the organism could tend to follow preferred policies or state transitions (which
can be at least in part considered to be genetically encoded and related to homeostatic and
allostatic mechanisms) irrespective of cues that signal reward availability. Rather, wanting could
be more related to reward prediction and its associated policies could be triggered by the
availability of reward cues. The above arguments lead to the suggestion that the needing systems
could be more related to internal (prior) policies that are more automatic and wanting could be
more related to learned and external policies, i.e. changes in the environment related to
prediction of reward which can be attained by the behavior, likely related to the somatic motor
system (Swanson, 2000). This might be one of the reasons why wanting has more control over
behavioral activation (Bosulu et al., 2022; Salamone et al., 2018; Berridge, 2004), but at the
same time need can modulate wanting (Berridge, 1996 ; 2004) just as it can modulate liking
(Berridge, 2007), preference (Balleine, 1992), etc. - in a way that here we characterize formally
as a need-related precision.

Yet, as our Simulation 2 showed, needing and wanting systems can act synergistically. For
example, need states increased precision when there is a reward leading to the preferred state. In
that sense, if the reward determined by the need states, i.e. by the prior (internal) policy, is the
same as the reward predicted by a signal of reward which specifies the external policy, then the
precision will be enhanced and needing and wanting will be synchronized.

In sum, this study aimed at providing a conceptual model that defines needing and wanting
systems and their interactions; and to demonstrate some of the peculiarities of these systems with
the aid of simulations based on the framework of active inference. However, the relations
between the relatively abstract notions introduced in this article, such as need-related entropy,
and their biological substrates, remain to be fully clarified and tested empirically. A more
systematic mapping between the information-theoretical notions used here and neurobiological
evidence is an open objective for future research.
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