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Abstract

Background: Recent developments have meant that network theory is making an important

contribution to the topological study of biological networks, such as protein-protein interaction

(PPI) networks. The identification of differentially expressed genes in DNA array experiments is a

source of information regarding the molecular pathways involved in disease. Thus, considering PPI

analysis and gene expression studies together may provide a better understanding of multifactorial

neurodegenerative diseases such as Multiple Sclerosis (MS) and Alzheimer disease (AD). The aim

of this study was to assess whether the parameters of degree and betweenness, two fundamental

measures in network theory, are properties that differentiate between implicated (seed-proteins)

and non-implicated nodes (neighbors) in MS and AD. We used experimentally validated PPI

information to obtain the neighbors for each seed group and we studied these parameters in four

networks: MS-blood network; MS-brain network; AD-blood network; and AD-brain network.

Results: Specific features of seed-proteins were revealed, whereby they displayed a lower average

degree in both diseases and tissues, and a higher betweenness in AD-brain and MS-blood networks.

Additionally, the heterogeneity of the processes involved indicate that these findings are not

pathway specific but rather that they are spread over different pathways.

Conclusion: Our findings show differential centrality properties of proteins whose gene

expression is impaired in neurodegenerative diseases.

Background
The structural and functional relationships underlying the
organization of living systems imply the need to coordi-

nate molecular interactions, principally those involving
gene expression and protein activity. Although the
genome in each cell of a given organism is virtually the
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same, dynamic changes in gene expression and thus in the
protein content depend on the functional state of the cell
[1]. Genome-wide expression profiles using DNA arrays,
together with the development of bioinformatic
approaches [2], enable both genetic and protein-protein
interaction (PPI) networks to be modeled, thereby help-
ing to understand how biological networks operate [3].

From a systems point of view, the arrangement of molec-
ular networks from gene expression data based on known
interactions permits the understanding of the basic mech-
anisms upon which the complexity and adaptability of a
living cell is founded [4]. This information also helps to
decipher processes involved in illness, for instance the
molecular heterogeneity of cancer [5]. However, and con-
sistent with the model of multifactorial diseases, it is dif-
ficult to find genes that account for direct genotype-
phenotype correlations [6]. Thus, network modeling and
topological analysis at the meso-scale (intermediate level
between local and global features of networks) may pro-
vide additional knowledge about the particular properties
of genes and proteins involved in diseases of multifacto-
rial nature, where the pathogenesis does not depend on
the malfunction of a single gene or protein [7]. In this
case, the analysis of gene, protein and pathway interac-
tions might indicate common properties of good candi-
dates to be targeted by therapy. In addition,
understanding the emergent properties of a system might
help identify new targets that would not be captured by a
molecular approach [8].

Multiple Sclerosis (MS) is a chronic inflammatory and
neurodegenerative disease of the central nervous system
(CNS) [9]. Although its etiology remains elusive, the
interplay between environmental and genetic factors is
ultimately thought to be critical for the development of
the disease. MS is considered as an autoimmune disease
due to the presence of inflammatory infiltrates in the
brain in the absence of infection, and through its associa-
tion with HLA alleles, among other factors [10]. The
chronic inflammatory activity within the CNS is the main
mediator of tissue damage, even in the late neurodegener-
ative stage of the disease that involves widespread demy-
elination and axon loss [11]. In addition to the
autoimmune processes, MS also has a neurodegenerative
component whereby axons and neurons are lost through
unknown processes in the late chronic stages of the dis-
ease. Several lines of evidence suggest that the degenera-
tion of demyelinated axons is the most important factor
in MS neurodegeneration [12]. Thus, MS is a multifacto-
rial disease in which many immune system and CNS path-
ways are involved [13]. Current therapies partially
ameliorate the inflammatory process, but more effective
therapeutic approaches are required to stop disease pro-
gression and prevent neurodegeneration.

Alzheimer's Disease (AD) is the most common neurode-
generative disease and it represents one of the biggest
unmet needs in modern medicine. AD is characterized by
the loss of neurons in conjunction with the presence of
oxidative stress, axonal dystrophy, mature senile plaques
and neurofibrillary tangles [14]. A set of gene mutations
involved in the amyloid beta and tau pathways have been
associated with hereditary AD and, in conjunction with
neuropathological findings, it has been demonstrated
that amyloid and tau are involved in the pathogenesis of
AD. However, current evidence suggests that sporadic AD
is a multifactorial disease in which many pathways are
involved [15,16]. Indeed, recent studies have also identi-
fied molecular abnormalities in the blood of patients with
AD [17]. Because the AD therapies available are sympto-
matic, and considering the epidemic proportions of this
disease in western countries, the development of new
therapies to stop its progress is an important health prior-
ity.

To better understand the basis of neurodegenerative dis-
eases, we set out to study the centrality related features of
proteins whose genes were differentially expressed (seed
proteins) in MS and AD with respect to their protein
neighbors. The main features examined were the degree
and the betweenness of these seed proteins and its com-
parison to their neighbors.

Results
The four networks studied here were obtained as indicated
in figure 1, whereby seed-proteins were identified from
DNA array studies on MS and AD, both in blood and CNS
tissue, and the interacting neighbors were derived from an
analysis of the STRING database [18].

The MS network from blood tissue (MS-blood) contains
28 out of the 42 seed-proteins and 177 neighbors were
derived. The 14 seed-proteins that had no links (i.e. there
was no experimental evidence of interactions) were not
included in the network analysis described in Table 1. The
giant component of this network has 180 proteins.
Accordingly, we studied the measurements listed in Table
1 in a network with 205 nodes (Fig. 2): number of nodes
(N), average degree (<k>), clustering coefficient (<C>),
diameter (D) and mean shortest path length (mspl). The
differences in the average degree and the betweenness dis-
tribution between the seed-proteins and their neighbors
are shown in Table 2. The seed-proteins of the MS-blood
network have a lower average degree and betweenness
than neighbors (p < 0.05 in both cases; Table 2). We
assessed whether some of the functional pathways (iden-
tified by Gene Ontology (GO)) were overrepresented in
the gene set corresponding to MS seed-proteins. We found
that 36 GO terms were overrepresented in seed proteins
after false discovery rate (FDR) correction [see additional
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file 1]. Such pathways not only included terms related
with the activity of the immune system but also with
many other cellular process, such as metabolic process,
protein degradation and the response to stress.

The MS network from brain tissue (MS-brain) contains 38
out of 99 seed-proteins (61 seed-proteins had no links)
and 96 neighbors. Thus the network has 134 nodes and its
giant component has 109 proteins (Fig. 3). The seed-pro-
teins of the MS-brain network have a lower average degree
than the neighbor proteins (Table 2), and we found 67
GO terms overrepresented in seed proteins after FDR cor-
rection [see additional file 2]. Again, overrepresented
pathways not only included components of the immune

response but also those involved in synaptic transmission,
neurogenesis and neuron differentiation, among others.

The AD network from blood tissue (AD-blood) contains
20 out of 142 seed-proteins (122 seed-proteins had no
links) and 76 neighbors. Thus the network has 96 nodes
and its giant component has 82 proteins (Fig. 4). The
seed-proteins of the AD-blood network have a lower aver-
age degree than their neighbor proteins (Table 2) and we
found no GO terms overrepresented in seed proteins
when compared to their neighbors after FDR correction
[see additional file 3].

The AD network from brain tissue (AD-brain) contains 25
out of 35 seed-proteins (10 seed-proteins had no links)
and 109 neighbors. Thus the network has 134 nodes and
its giant component has 84 proteins (Fig. 5). The seed-
proteins of the AD-brain network have a lower average
degree and betweenness than their neighbor proteins
(Table 2). We found 18 GO terms that were overrepre-
sented in seed proteins after FDR correction [see addi-
tional file 4], terms that were involved in CNS
development, oxygen transport or complement activa-
tion, among others.

As indicated in Tables 1 and 2, we found seed-proteins
displayed a lower average degree with respect to the
degree of their PPI neighbors in both diseases and in both
tissues. In addition, direct interactions between seed pro-
teins were very low: MS-blood: 1 (total links: 386); MS-
brain: 4 (total links: 231); AD-blood: 2 (total links: 245);
AD-brain: 2 (total links: 191). There were not big differ-
ences in the network measurements (<k>, <C>, D and
mspl) among the four disease networks studied, indicating
certain homogeneity in the architecture of the PPI subnet-
works analyzed in this study (Table 1). With regards the
centrality of seed proteins, our study shows a low corre-
spondence between their degree and betweenness (Table
2), indicating that critical proteins in disease pathogenesis
are not highly connected, but tend to be located in bottle-
neck regions.

Discussion
Network theory provides a useful tool to study the com-
plexity of neurodegenerative diseases. Here we report a
novel approach to study PPI networks at the meso-scale
based on the products of genes differentially expressed in
MS and AD. Our approach was to analyze PPI networks
based on seed-protein neighborhoods from the genes that
were differentially expressed in DNA array studies. The
method for growing networks from seed-proteins is criti-
cal for determining their topological properties [19]. For
this reason, the network growth in our study was carried
out by expanding it through experimentally validated pro-
tein interactions. The stability, dynamics and functioning

Retrieval and representation of each disease networkFigure 1
Retrieval and representation of each disease net-
work. The differentially expressed genes in MS or AD using 
blood or brain tissue were obtained from published DNA 
array studies. The corresponding protein (seed-protein) for 
each differentially expressed gene was identified in public 
databases (STRING). The network in which such proteins 
were embedded was built by retrieving the first neighbor of 
each protein in the protein-protein interaction database 
available at the STRING database.



BMC Systems Biology 2008, 2:52 http://www.biomedcentral.com/1752-0509/2/52

Page 4 of 10

(page number not for citation purposes)

of networks are generally characterized by determining
the topology of the map, i.e., the configuration of its
nodes and the connecting edges [20]. For example, net-
works with a scale-free topology are resistant to random
failure but they are vulnerable to targeted attack, specifi-

cally against the most connected nodes. In terms of iden-
tifying common properties among the genes involved in
neurodegenerative disorders, very interesting results were
obtained by carrying out a topological analysis. There

MS-blood networkFigure 2
MS-blood network. Purple nodes indicate the seed-proteins with their name. Orange nodes indicate neighboring proteins 
belonging to the giant component. Green nodes indicate neighbors that do not belong to the giant component. The graphs 
were built using Pajek software and the network files are available as .net files from the authors upon request.

Table 1: Network measurements for the four disease networks.

MS-blood AD-blood MS-brain AD-brain

Symbol Description full giant comp full giant comp full giant comp full giant comp

N number of nodes 205 180 96 82 148 109 134 84

<k> average degree 3.77 4.08 5.1 5.63 3.12 3.59 2.85 3.31

<C> clustering coefficient 0.32 0.35 0.43 0.44 0.26 0.29 0.32 0.35

D diameter - 14 - 12 - 13 - 11

mspl mean shortest path length - 4.76 - 5.5 - 4.6 - 5.41

The number of nodes, average degree (<k>), clustering coefficient (<C>), diameter of the network (D) and mean shortest path length (mspl) are 
shown for the overall networks (full) or for the giant component of each network (by considering only the nodes linked to the bigger subnetwork). 
The four networks analyzed are the MS in blood tissue (MS-blood); AD in blood tissue (AD-blood), MS in brain tissue (MS-brain) and the AD in 
brain tissue (AD-brain).
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were multiple pathways affected by proteins with a low
degree, and half the time with high betweenness.

During the last decade, network studies have been applied
to biological data bearing in mind that the degree of con-
nectivity is a key property of any network, as demon-

strated in yeast [21]. The most common approach to
identify key nodes consists of obtaining networks from
high throughput data and having obtained the network,
searching for the most connected nodes (hubs). The
underlying assumption was that these hubs could be crit-
ical to explain the pathogenesis of diseases. However,
betweenness is another key indicator of centrality that
demonstrates how nodes with a low degree of centrality
may be relevant in a network (i.e. bottleneck effect)
[22,23]. Our study was performed from a novel view-
point, since we analyzed whether degree was any different
respect to the PPI neighbors starting from critical nodes
(in terms of differentially expressed genes). Accordingly,
we found that the degree of seed-proteins was lower than
that of the PPI neighbors, situating seed proteins in
peripheral regions of the network. According to our results
of the GO analysis, such peripheral regions are distributed
among several pathways that could be involved in disease.
Indeed, our results are in agreement with a recent study in
asthma showing that hubs exhibit small changes in gene

Table 2: Connectivity analysis of the disease networks.

Degree<k> Non-zero Degree Betweenness

ADBlood <0.051 <0.051 0.75

ADBrain <0.051 <0.052 <0.052

MSBlood <0.051 0.16 <0.052

MSBrain <0.051 0.4 0.64

Results are displayed as the p value of the Kolmogorov-Smirnov test 
for the four networks analyzed: the MS in blood tissue (MS-blood); 
AD in blood tissue (AD-blood), MS in brain tissue (MS-brain) and the 
AD in brain tissue (AD-brain). Non-zero degree and betweenness 
were calculated after excluding the non-connected (non-zero) nodes.
1 Seed proteins significantly smaller; 2 seed-proteins significantly higher

MS-brain networkFigure 3
MS-brain network. Purple nodes indicate the seed-proteins with their name. Orange nodes indicate neighbors proteins 
belonging to the giant component. Green nodes indicate neighbors that are not included in the giant component.
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expression [24]. Therefore our results support the applica-
tion of strategies other than those previously applied,
whereby only hubs that might compromise the robust-
ness of networks were generally searched [25,26].

The fact that we obtained similar results with regards the
low average degree of seed proteins in two diseases and
two different tissues suggests that this might be a common
property in complex diseases, more relevant than the
issues associated with the techniques applied such as DNA
array technology. However, our approach relies on the
current knowledge of interactions, which depends more
on how much the gene/protein has been studied than on
how many real interactions it participates in. Although it
is more difficult to relate gene expression data from hubs
with that of other genes, this would not bias our analysis
since we focused on whether genes that are differentially

expressed (but not necessarily correlated) have a particu-
lar distribution with regards their neighbors (neighbors
found in a database that includes structural and experi-
mental evidence and not correlation profiles).

We can consider complex diseases as an evolutionary
stage in which the pathogenesis process hijacks the
robustness of the biological pathways. Such an event may
be followed by a cascade of failures in these pathways
[8,27]. In this sense and from a therapeutic point of view,
it may be necessary to target many of the pathways
involved following a systems biology rationale, and based
on the dynamics and topology of the networks involved.
The aim of this therapy would be to drive those pathways
to a non-pathological state or at least, to a less deleterious
state.

AD-blood networkFigure 4
AD-blood network. Purple nodes indicate the seed-proteins with their name. Orange nodes indicate neighbors proteins 
belonging to the giant component. Green nodes indicate neighbors that are not included in the giant component.
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The topological implications of the observed scale-free
properties in biological networks would indicate that the
best therapeutic targets to modify network behavior
would be the genes (or proteins) corresponding to the
hubs in the network. However, our findings suggest that
less extensively connected proteins might be more appro-
priate therapeutic targets than hyper-connected ones, at
least in neurodegenerative diseases. The fact that in both
diseases (MS and AD) and in two different tissues ana-
lyzed (blood and cerebral tissue), seed-proteins are
weakly connected nodes taking part in many different
pathways, strengthens the concept of the multifactorial
pathogenesis of neurodegenerative diseases. Thus, our
results suggest that to modify the disease course we need
to target many genes or proteins in several pathways. In a
previous network analysis in MS we demonstrated that
therapies act on different regions of the gene network that
control T-cell activation, suggesting that a pleiotropic
activity is required in order to modulate the immune
response [28]. In addition, recent network studies in neu-
rodegenerative diseases suggest that several common
pathways are involved in their pathogenesis, reinforcing
the need to interact with several regions of the PPI net-

work [29,30]. Another reason why hubs might not be
good therapeutic targets is because their critical role in the
network modules might prevent them from fluctuating
substantially. For the same reason, we can speculate that
networks would poorly tolerate modifications in hub
behavior without spreading such changes across the net-
work and thereby, inducing significant side effects.

The results we present here indicate that both neurode-
generative diseases (MS and AD) share common charac-
teristics, such as the low degree of seed-proteins and in
two of the four disease networks, a high degree of
betweenness. These findings mainly situate seed-proteins
in peripheral regions of the PPI map (in terms of degree),
involved in different pathways as indicated by the associ-
ated GO terms and the direct interactions, and integrated
into subnetworks of the complete Human proteome net-
work.

Methods
Definitions

Some definitions are introduced to better explain the
development of our topological studies:

AD-brain networkFigure 5
AD-brain network. Purple nodes indicate the seed-proteins with their name. Orange nodes indicate neighbors proteins 
belonging to the giant component. Green nodes indicate neighbors that are not included in the giant component.
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- Seed-proteins: proteins whose genes were differentially
expressed in DNA array studies focused on the specific dis-
ease and on a particular tissue. In this study, the diseases
considered are Multiple Sclerosis (MS) and Alzheimer
Disease (AD) and the tissues are blood and brain.

-MS-blood seed-proteins: proteins whose genes were differ-
entially expressed in DNA array studies of blood from MS
patients [31].

-MS-blood neighbors: nodes selected as a consequence of
adding experimentally validated interactions starting
from seed-proteins.

-MS-blood network: network that includes MS seed-pro-
teins, MS-neighbors and their interactions. Only seed-pro-
teins linked to neighboring proteins were included in the
network analysis (isolated seed-proteins were not
included in the analysis shown in Table 1).

-MS-brain seed-proteins: proteins whose genes were differ-
entially expressed in DNA array studies of brain tissue
from MS patients [32].

-MS-brain neighbors: nodes selected as a consequence of
adding experimentally validated interactions starting
from seed-proteins.

-MS-brain network: network that includes MS seed-pro-
teins, MS-neighbors and their interactions.

-AD-blood seed-proteins: proteins whose genes were differ-
entially expressed in DNA array studies of blood from AD
patients [33].

-AD-blood neighbors: nodes selected as a consequence of
adding experimentally validated interactions starting
from AD seed-proteins.

-AD-blood network: network that includes AD seed-pro-
teins, AD-neighbors and their interactions.

-AD-brain seed-proteins: proteins whose genes were differ-
entially expressed in DNA array studies of brain tissue
from AD patients [34].

-AD-brain neighbors: nodes selected as a consequence of
adding experimentally validated interactions starting
from AD seed-proteins.

-AD-brain network: network that includes AD seed-pro-
teins, AD-neighbors and their interactions.

-Disease-networks: the term used to refer to the networks
obtained from MS or AD patients that contain seed-pro-

teins and their neighbors. It is important to note that we
did not consider neighbors as newly proposed proteins
implicated in the disease but rather, they were taken sim-
ply to capture the network context in which seed-proteins
are located.

-Giant component: term used to refer the largest part of a
network whose nodes are connected either directly or
indirectly.

Gene expression data

For the construction and analysis of the MS and AD net-
works, we selected seed proteins from previously pub-
lished studies in blood [31,33] and brain [32,34].

Network modeling

Starting from seed-proteins involved in either MS or AD,
we obtained a PPI network through the interaction of
these proteins with their direct neighbors. A general
scheme of the approach adopted here is presented in Fig-
ure 1. The growth of each network was carried out using
the STRING database [18] and the parameters used to gen-
erate the network in the STRING database were: active pre-
diction method – experiments; confidence score – 0.7-
high confidence; network depth – 2 (only direct neigh-
bors); and an edge scaling factor of 80%. This configura-
tion implies that only the experimental evidence of
interactions with a high level of confidence were extracted
from the database as valid links for each PPI network. A
detailed description of each parameter can be found else-
where [18]. We did not consider either the direction of
each protein interaction or self-interactions. Network files
in Pajek format (.net) of each network are available as
additional files [see additional files 5, 6, 7, 8].

Topological analysis and measurements of centrality

In order to characterize the disease networks (all of them
undirected graphs) and assess the centrality of seed-pro-
teins we applied the following measurements [25,35]
using MATLAB (The Mathworks, MA, United States):

-Degree (k): in an undirected graph, the degree of a vertex
is the number of adjacent links. In this study, it represents
the number of experimentally validated interactions
(links) that connect one protein (node) to its neighbors.

-Average degree (<k>): it represents the mean of all degree
values of nodes in a network.

-Clustering coefficient (<C>): is the average clustering coef-
ficient of nodes where the clustering coefficient of a node
i (Ci) is the proportion of links between the nodes within
the i-neighborhood divided by the number of links that
could possibly exist between them.
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-Mean shortest path length (mspl): is the average of the steps
(number of links) needed to connect every pair of nodes
through their shortest path.

-Diameter (D): is the longest among all shortest paths, i.e.
the minimum number of links that separate the two most
distant nodes in a network.

-Betweenness centrality: measures how often nodes occur
on the shortest paths between other nodes. When com-
bined with the degree, it is a key measure to assess the rel-
evance of the location of nodes within a network (vertices
within a graph).

Gene Ontology

Gene symbol identities corresponding to the four differ-
ent lists of seed-proteins were loaded into the ExPlainTm
2.3 Tool [36], where functional groups of Gene Ontology
Biological Processes (GO-BP) were detected using a p-
value threshold of 0.05 as the classification criteria and
one as the minimal number of genes assigned to a group
(i.e.: number of hits). A FDR multiple hypothesis test
adjustment was further carried out using the Benjamini-
Hochberg (BH) procedure [37] and taking the total
number of GO-BP as those in which at least one protein
of the seed-protein list is included.

Statistical analysis

We used the Kolmogorov-Smirnov test to compare the
distributions of degree and betweenness between seed-
proteins and neighbors for each disease. The level of sig-
nificance was set at p < 0.05.

Abbreviations
PPI: protein-protein interaction; MS: Multiple Sclerosis;
AD: Alzheimer Disease; CNS: Central nervous system; k:
degree; <k>: averaged degree; <C>: clustering coefficient;
D: diameter; mspl: mean shortest path length; GO: Gene
Ontology.
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