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Abstract

Infants under 7 months of age fail to reach behind an occluding screen to retrieve a desired toy even though they possess
sufficient motor skills to do so. However, even by 3.5 months of age they show surprise if the solidity of the hidden toy is
violated, suggesting that they know that the hidden toy still exists. We describe a connectionist model that learns to
predict the position of objects and to initiate a response towards these objects. The model embodies the dual-route
principle of object information processing characteristic of the cortex. One route develops a spatially invariant surface
feature representation of the object whereas the other route develops a feature blind spatial—temporal representation of
the object. The model provides an account of the developmental lag between infants’ knowledge of hidden objects and
their ability to demonstrate that knowledge in an active retrieval task, in terms of the need to integrate information
across multiple object representations using (associative) connectionist learning algorithms. Finally, the model predicts
the presence of an early dissociation between infants’ ability to use surface features (e.g. colour) and spatial—temporal
features (e.g. position) when reasoning about hidden objects. Evidence supporting this prediction has now been reported.

Newborns possess sophisticated object-oriented percep-
tual skills (Slater, 1995) but the age at which infants are
able to reason about fidden objects remains unclear.
Using manual search to test infants’ understanding of
hidden objects, Piaget concluded that it is not until 7.5—
9 months that infants understand that hidden objects
continue to exist because younger infants do not
successfully reach for an object hidden behind an
occluding screen (Piaget, 1952, 1954). More recent
studies using a violation of expectancy paradigm have
suggested that infants as young as 3.5 months do have
some understanding of hidden objects. These studies rely
on non-search indices such as surprise instead of manual
retrieval to assess infant knowledge (e.g. Baillargeon,
Spelke & Wasserman, 1985; Baillargeon, 1993). Infants
watch an event in which some physical property of a
hidden object is violated (e.g. solidity). Surprise at this
violation (as measured by increased visual inspection of
the event) is interpreted as showing that the infants

know (a) that the hidden object still exists, and (b) that
the hidden object maintains the physical property that
was violated (Baillargeon, 1993). The nature and origins
of this developmental lag between understanding the
continued existence of a hidden object and searching for
it remains a central question of infant cognitive
development.!

The lag cannot be attributed to a delay in manual
control because infants as young as 4.5 months reach for
a moving visible object, and by 6 months can reach
around or remove an occluding obstacle (Von Hofsten,
1980, 1989). Nor can it be attributed to immature

!'Some recent studies have called into question the Baillargeon, Spelke
and Wasserman (1986) findings on methodological grounds (e.g.
Bogartz, Shinskey & Speaker, 1997). Although these studies pose a
serious challenge to the interpretation of the original Baillargeon ez al.
work, numerous other studies (e.g. Baillargeon, 1993) continue to
argue for precocious object knowledge when infants are tested using a
surprise-based measure.
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planning or problem-solving abilities because infants
have been shown to solve problems involving identical
or more complex planning procedures (Baillargeon,
1993; Munakata, McClelland, Johnson & Siegler, 1997).

Clues may be found in recent work on cortical
representation of visual object information. Anatomical,
neurophysiological and psychophysical evidence points
to the existence of two processing routes for visual
object information in the cortex (Ungerleider &
Mishkin, 1982; Van Essen, Anderson & Felleman,
1992; Goodale, 1993; Milner & Goodale, 1995).
Although the exact functionality of the two routes
remains a hotly debated question, it is generally
accepted that they contain radically different kinds of
representations. The dorsal (or parietal) route processes
spatial—-temporal object information, whereas the
ventral (or temporal) route processes object feature
information.

Cells in the dorsal stream encode information
consistent with the presence of multiple spatial repre-
sentations such as location in a continuously updated,
body-centred frame or in a gaze dependent frame
(Hietmen & Perrett, 1993; Rizzolati, Riggio & Sheliglia,
1994). Because objects move and disappear it is
necessary to anticipate their hidden position to act
effectively on them (Hietmen & Perrett, 1993). Although
cells in the parietal cortex appear to be involved in
tracking moving, visible objects, many also continue to
respond during a brief occlusion (Newsome, Wurtz &
Komatsu, 1988). Cells in other parts of the dorsal stream
code the relative motion and size changes that accom-
pany looming (Rizzolati et al., 1994) as well as the
object size, shape and orientation information needed
for accurate reaching and grasping (Jeannerod, 1988).
Some cells associated with visual fixation and reaching
fire independently of whether the target object is desired
or not (Rolls et al., 1979). Thus, some spatial—temporal
components are coded even if an object is undesired and
reaching does not occur.

Cells in the ventral route have complementary
properties to those in the dorsal route. They are sensitive
to the figural and surface properties of objects as well as
finer grained external form and shape information used
to identify objects (Takane, 1992; Milner & Goodale,
1993). Many have large retinal receptive fields.
Although they can process detailed feature information
they lose much of the spatial resolution on the retina,
effectively developing spatially invariant feature repre-
sentations of objects. As information progresses down-
stream away from the retina, more cells respond to
complex feature clusters. These characteristics optimize
the recognition of objects, scenes and individuals with
enduring features rather than transient changes in the
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visual array. Such transformation-invariant representa-
tions could support recognition memory (Milner &
Goodale, 1995). The responsiveness of cells in the
ventral stream can be modulated by the prior occurrence
of a stimulus (Goodale, 1993) suggesting that some kind
of feature memory trace remains.

The dorsal and ventral routes both project into the
frontal lobes (Goodale, 1993). As a whole, the frontal
lobes play a crucial role in learning what responses are
appropriate given an environmental context (Passing-
ham, 1993). They have been closely tied to the
development of planning and underlie the execution of
voluntary actions, particularly in the context of manual
search by human infants (Diamond, 1991).

Voluntary retrieval such as manual search for an
occluded object must involve the integration of
spatial—temporal information concerning the location
of the occluded object with surface feature information
concerning its identity. The surface feature informa-
tion is required to decide whether an object is desired
or not, and spatial-temporal information is required
to direct the response. Furthermore, the cortical
representation of these two types of information must
be sufficiently well developed for accurate integration
to occur. We suggest that early in development only
visible objects offer the degree of representational
precision needed to support an accurate integrated
response because cell activations diminish when a
target is no longer visible.

This suggests an explanation for the developmental
lag in manual retrieval. The lag occurs whenever it is
necessary to integrate two potentially imprecise sources
of information: (i) spatial-temporal information
about the location of the occluded object and (ii)
featural information about the identity of the occluded
object. This explanation predicts that tasks requiring
access to only one imprecise source of information or
tasks that are performed with a visible object will not
result in a developmental lag. In contrast, any task that
calls for the integration of cortically separable repre-
sentations will fail unless performed with a visible
object or with precise cortical representations. This
account does not attribute the lag to any difficulties the
infant might encounter in attempting to remove or
circumvent the occluder in manual retrieval tasks. In
addition, the lag does not depend on the response
modality. Instead, it arises from information proces-
sing considerations associated with voluntary, object-
directed behaviours. Surprise reflex responses, which
may subsequently be manifested by an increased
inspection time or spontaneous visual search beha-
viours, can be elicited by access to only one of the
object representations.
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We constructed a connectionist computational model
to explore this architecture and to investigate its
developmental implications.

The model

Figure 1 shows the model in schematic outline. It
consists of a modular architecture. Each functional
module is enclosed by a dotted line. Some units are
shared by two modules (e.g. the 75 hidden units are
shared by the response integration and trajectory
prediction networks) and serve as a gateway for
information between the modules. In accordance with
the neurological evidence reviewed above, spatial—
temporal information about objects in the world is
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projected onto the retina. The retinal cells corresponding
to the screen’s image have a constant activation of 1.0.

The network experiences four different objects with
correlated features (ie. {—11—-11}, {-111—1},
{I =11 -1}, {1 =1 —11}). All object images are 2 x 2
grid cells large. For each object presentation, an object
moves once back and forth across the retina, either
horizontally or vertically. All horizontal movements across
the retina involve an interim occluding event whereas
vertical movements across the retina can result in either
non-occluding or partially occluding events. Completely
occluded vertical movements are never observed because
the occluder height is identical to the height of the retina.
At any specific time step there are four possible next
positions for the object: up, down, left, or right. Predicting
the next object position can only be resolved by learning to
attend to the trajectory of the object.

The object recognition module generates a spatially
invariant representation of the object by using a
modified version of the unsupervised learning algorithm
developed by Foldiak (Foldiak, 1991, 1996). This
algorithm belongs to the family of competitive learning
algorithms. Initially, a bank of five complex cells is fully
and randomly connected to all feature detectors. The
algorithm exploits the fact that an object tends to be
contiguous with itself at successive temporal intervals.
Thus, two successive images will probably be derived
from the same object. At the end of learning each
complex cell becomes associated with a particular
feature combination wherever it appears on the retina.

Learning is constrained by three parameters: the
learning rate e determining the scale of any weight
changes, the range around 0.0 of initial random weight
values, and the memory 6 determining the proportion of
new activation used to update a complex cell’s activa-
tion. Setting the activations of the losing units in the
competitive phase to a small negative value (—() instead
of 0.0 greatly increased the stability of the representa-
tions under continued training. The following parameter
values were used: 6=0.1, $=0.02, learning rate
€=0.001, and weight range=0.05. The impact on
learning of varying these parameters is discussed in
detail in Mareschal (1997).

The trajectory prediction module uses a partially
recurrent, feedforward network trained with the back-
propagation learning algorithm. All back-propagation
networks in the model used the following parameter
values: learning rate e =0.1 and momentum a=0.3. At
each time step, information about the position of the
object on the retina is extracted from the 100 retinal grid
cells and mapped onto the visual memory layer. The
retinal grid cells with which the object image overlaps
become active (41.0) whereas the other cells remain
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inactive (0.0). The network is trained to predict the next
instantaneous, retinal position of the object. The predic-
tion is output onto a bank of 100 units coding position in
the same way as the inputs into the module. The network
has a target of +1.0 for those units corresponding to the
next object position and 0.0 for all other units.

All units in the visual memory layer have a self-
recurrent connection (fixed at p=0.3). The resulting
spatial distribution of activation across the visual
memory layer takes the form of a comet with a tail that
tapers off in the direction from which the object has
come. The length and distinctiveness of this tail depend
on the velocity of the object. The information in this layer
is then forced through a bottleneck of 75 hidden units to
generate a more compact, internal re-representation of
the object’s spatial-temporal history. As there are no
direct connections from the input to the output, the
network’s ability to predict the next position is a direct
measure of the reliability of its internal object representa-
tion. We interpret the response of the trajectory predic-
tion network as a measure of its sensitivity to spatial—
temporal information about the object.

The output of the response integration network
corresponds to the infant’s ability to coordinate and
use the information it has about object position and
object identity. This network integrates the internal
representations generated by other modules (i.e. the
feature representation at the complex cell level and
spatial-temporal representation in the hidden unit
layer) as required by a retrieval response task. It consists
of a single layered perceptron whose task is to output
the same next position as the prediction network for two
of the objects, and to inhibit any response (all units set
to 0.0) for the other two objects. This reflects the fact
that infants do not retrieve (e.g. reach for) all objects. In
general, infants are not asked or rewarded for search.
The experimental set-up relies on spontaneous search by
the infant. Some objects are desired (e.g. sweet) whereas
others are not desired (e.g. sour). Heightening the
desirability of an object (e.g. by providing the infant
with a prior opportunity to play with the object) has
been shown to elicit more search in manual retrieval
tasks (Harris, 1971). Any voluntary retrieval response
will necessarily require the processing of feature
information (to identify the object as a desired one) as
well as trajectory information (to localize the object).
Related arguments about the need to coordinate ‘what’
and ‘where’ information in object directed tasks have
been presented elsewhere (e.g. Prazdny, 1980; Leslie,
Xu, Tremoulet & Scholl, 1998).

The model embodies the basic architectural con-
straints on visual cortical pathways revealed by con-
temporary neuroscience: an object-recognition network
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that develops spatially invariant feature representations
of objects, a trajectory-prediction network that is blind
to surface features and computes appropriate spatial—
temporal properties even if no actions are undertaken
towards the object, and a response module that
integrates information from the first two networks for
use in voluntary actions. We suggest that surprise can be
modelled by a mismatch between the information stored
in an internal representation and the new information
arriving from the external world. More specifically, in
the trajectory prediction module, surprise occurs when
there is a discrepancy between the predicted reappear-
ance of an object from behind an occluder and its actual
reappearance on the retina. In the object recognition
module, surprise occurs when there is a discrepancy
between the feature representation stored across the
complex units and the new representation produced by
the new image.

Model performance

Object localization

The trajectory prediction network learns very quickly to
predict an object’s next position when it is visible.

However, the hidden unit representations that are
developed persist for some time after the object has
disappeared and allow the network to keep track of the
object even when it is no longer directly perceptible.
Figure 3 shows a graphic representation of the network’s
ability to predict the next position of an occluded object.
The left-hand column shows what is projected onto the
retina once feature information has been removed. The
right-hand column shows the corresponding object
position predicted by the trained trajectory network.
The rows (from top to bottom) correspond to successive
time steps. This network has seen 30 000 presentations of
randomly selected objects moving back and forth in
random directions at a fixed speed.

Both the screen and the object are projected onto the
retina. The network correctly predicts the next position of
the object even when the object is occluded by the screen
and not directly perceptible. At =0, the object is about
to disappear behind the occluding screen. At all
subsequent time steps, the network correctly predicts
that the object will have moved over one position. Note
especially step r=3 for which the direct perceptual
information available to the network is exactly the same
as at =2, in that only the occluding screen is visible. The
network is able to predict the subsequent reappearance of
the object, taking account of how long it has been behind
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Figure 3 Network tracking of an occluded object. The indices O through 5 down the left of the figure index successive time steps.
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Figure 4 Reliability of feature representation across complex cells.

the screen®. Moreover, as found with infants (Muller &
Aslin, 1978), the network’s ability to track an occluded
object depends on the length of the occluding screen: the
longer the screen, the worse the performance.

Feature monitoring

The object recognition network also maintains a repre-
sentation of the features of the object that persist beyond
direct perception. Figure 4 shows the reliability of the
internal feature representation developed across the
complex cells. The reliability is computed as the dot
product between the existing activation across the
complex cells and the new activation pattern produced
by the incoming feature input. It represents how similar
the stored feature representation is to the new feature
representation. Each of the columns represents the
feature reliability as the object moves horizontally
through the 24 positions for which the object image falls
entirely on the retina. Positions 12 and 13 correspond to
the object being fully hidden behind the screen. The white
columns show performance when there are no changes in
features whereas the black columns show the reliability
when the object is surreptitiously changed behind the
screen. When there are no changes, the reliability drops
while the object is behind the screen (since there is no
perceptual evidence with which to assess the internal
representation) but recovers immediately when the object

2Requiring the networks to predict the exact position of the hidden
object makes explicit the richness of the spatial—temporal information
encoded by the hidden units. This family of networks performs equally
well on a task requiring them simply to predict the reappearance of the
object from behind the screen.
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reappears. However, when the object is surreptitiously
changed, there is a delayed recovery in reliability. This
reflects the fact that the new object features are different
from those that are stored in the recognition module’s
internal representations. The rate of recovery is directly
related to the similarity between the new object features
and the original object features. Effectively, delayed
recovery corresponds to a surprise reaction.

Developmental lag in retrieval responses

The model was designed to test the hypothesis that the
developmental lag between voluntary retrieval and
surprise-based indices arises from the difference in the
integration demands of the two tasks. Network
responses when presented with an unoccluded desired
object, an occluded desired object, and an occluded
undesired object are depicted in Figure 5. The reliability
of a module is computed as 1 — (sum-of-squares error of
outputs) averaged over the output units and patterns
involved in the event. Because the networks begin with
random weights, the initial (untrained) output activa-
tions are also random. The initial network response is to
turn off almost all output units. This results in an
immediate increase in reliability (decrease in error) but
it only reflects a blanket inhibition of output activity
(including some cells which should be active). Hence,
this stage of learning does not reflect the acquisition of
position-specific knowledge. To normalize for this, the
plotted reliabilities are linearly scaled to range between
0.0 and 1.0 with the origin of the scale (the baseline)
corresponding to the reliability value obtained when all
output units are turned off. Any increase in reliability
above this origin corresponds to an increase in the
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ability to predict the object’s next position. The baseline
reliability value was 0.863 since on average about 86%
of the units will be silent in producing an accurate
response.

Figure 5(a) shows the average network performance
(n=10) on both the position prediction and retrieval
tasks when presented with an unoccluded, desired
object. We interpret network behaviour by assuming
that a threshold of reliability over and above the
previously mentioned baseline level is required to
control an accurate prediction/response. Consider the
case where this threshold is set to 0.8. At this level, it can
be seen from Figure 5(a) that the network learns very
quickly (within 1000 epochs) not just to predict the
position of the desired object but also to produce an
appropriate retrieval response.

When the object is occluded the network’s behaviour
is very different (Figure 5(b)). Predictive localization
and retrieval responses are initially equally poor. The
internal representations are not adequately mature to
support any reliable response. However, the reliability of
tracking develops faster than that of retrieval. By 10 000
epochs the prediction response has achieved the requisite
level of reliability whereas the retrieval response does
not achieve this level until approximately 20 000 epochs.
In other words, the network replicates the well-
established finding that infants exhibit a developmental
lag between successful predictive tracking of an occluded
object and successful retrieval of an occluded object.

Of course, the threshold level we have used to
interpret Figures 5(a) and 5(b) is only one among a
range of possible values. Nevertheless, Table 1 shows
that the success/failure of prediction and response at
15 000 epochs remains stable across a range of threshold
levels. In particular, this pattern of results remains stable
within the band 0.725-0.850. Below this range, virtually
no developmental lag is observed between prediction
and response for occluded objects. Above this level, the
lag between prediction and response is not abolished
even after 30 000 epochs.

The output required for retrieval of a desired,
occluded object is identical to that required for
predictive localization. Moreover, both sets of output
units receive exactly the same information from the
hidden units about the spatial—temporal history of the
object. The two modules differ only in that the retrieval
response module must also integrate information com-
ing from the object recognition module. Thus, the
developmental lag in the network arises from the added
task demands of integrating information concerning the
location and identity of an occluded object.

An advantage of modelling is that we can test this
hypothesis directly using a manipulation which would
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Table 1 Reliability levels relative to a threshold criterion
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object

Occluded desired object

Threshold value Prediction Response Prediction Response

5000 epochs
0.975
0.950
0.925
0.900
0.875
0.850

f=1

~

3
R R < Z
e e e e e o e A e i e e 4
<22222222222222222ZZ
Z222222222222222222ZZ

15 000 epochs

=)
2
)
O
KRR HE K KKK <
R KR K K e e e e e
KRR K K K e e 27,2 7,
KRR HRARARKK<2222222222727Z

30 000 epochs

(=]

~

&
e A o A e N o T S e
e e A T o S S
el e e A A S A4
KRR IR KK KK Z222272Z
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respectively. Bold marks threshold values for which a developmental lag arises.
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not be possible with infants. If the lag is due to the need
for information integration concerning the location and
identity of an occluded object, then it should disappear
on a task that does not require such integration.
Undesired objects do not require information integra-
tion because it suffices to attend only to the identity
representation in order to elicit an appropriate response.
An inhibitory output can then be emitted which does not
require any spatial-temporal information. Figure 5(c)
shows the network’s performance when it is presented
with an undesired object. Here, raw reliabilities are
plotted because the correct response is to turn all output
units off. The network learns to inhibit any attempt at
retrieval because it can ignore information from the
spatial—temporal channel even though it is still learning
to predict the object’s position. In summary, inspection
of Figure 5(c) shows as predicted that the developmental
lag disappears on tasks not requiring integration of
information across modules.

Implications of model performance

The model is successful in demonstrating how the
requirement to integrate information across two object
representations in a voluntary retrieval task can lead to
a developmental lag relative to performance on surprise
tasks that only require access to either spatial—temporal
information concerning an occluded object or surface
feature information accessed separately. Early mastery
of surprise tasks that claim to show the coordination of
position and feature information (e.g. Baillargeon,
1993) have — on close scrutiny — provided evidence
only for the use of positional information in conjunction
with size or volume information. Both size and volume
are spatial dimensions that are encoded by the dorsal
route requiring access to only a single cortical route.
Note that early surprise responses can arise from feature
violations, from spatial—temporal violations and even
from both types of violation arising concurrently and
independently, but not from a violation involving the
integration of feature and spatial—temporal information
concerning an occluded object. The model predicts that
infants will show a developmental lag not just on
manual search tasks but also on surprise tasks that
involve such integration.

Data supporting this prediction have recently become
available. Infants fail to use surface feature information
to individuate and enumerate objects that move behind
and out from a screen (Simon, Hespos & Rochat, 1995;
Xu & Carey, 1996). In these studies, infants watched two
different objects move in and out (one at a time) from
behind an occluder. The screen was subsequently



314 Denis Mareschal, Kim Plunkett and Paul Harris

removed to reveal either one or two objects. Young
infants consistently ignored surface feature information
and relied on spatial-temporal cues when assessing the
number of objects behind the occluder as indexed by
fixation time. Using a similar paradigm to Xu and Carey
(1996), Wilcox (1997, submitted) systematically varied
(one at a time) the features by which pairs of objects
differed when they appeared from behind the occluding
screen. She found that at 4.5 months infants will use
shape and size information to individuate objects, but
only at 7.5 months will they use surface texture
information, and not until 11.5 months do they use
colour to individuate objects. Note that shape is not a
cortically separable object feature as it is processed in
both the dorsal and ventral routes. Thus, an infant
relying on the dorsal representation only can still access
both shape and position information simultaneously.
The age at which surface information (e.g. texture and
colour) is used in conjunction with spatial-temporal
information to monitor the number of hidden objects
behind an occluder corresponds to the age at which
infants begin to succeed at manual retrieval tasks (i.e.
7.5-9.5 months). This confirms the model prediction
that infants should also show a developmental lag on
surprise tasks that involve integration across cortically
separable representations.

As noted earlier, the developmental lag in the model is
not caused simply by the need to integrate spatial—
temporal and featural information. The same integra-
tion demands are present when the network is required
to respond to a desired, visible object. However, no lag
is observed in this condition. Consistent with the model,
infants reach accurately for moving visible objects as
young as 4.5 months of age. In such cases, information
is directly available in the perceptual array.

The developmental lag for occluded objects arises as a
natural consequence of the associative learning process.
Internal object representations developed over the com-
plex cells and the hidden units persist when the object
passes behind the screen, but decay with time. Hence,
activation levels drop when the object is occluded. The
learning algorithm updates network weights in propor-
tion to the sending unit’s activation level. For an identical
error signal, the weight updates are smaller when the
object is hidden given the lower activation of the sending
units. Consequently, it will take longer to arrive at an
equivalent level of learning for hidden compared with
visible objects. This outcome is not unique to the learning
algorithm used in the current model; it will arise in any
learning mechanism that updates weights in proportion
to the sending unit activation, providing a clear example
of how developmental behaviours are constrained by
micro-level mechanisms.
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The model also predicts that infants will show an
ability to respond to a conjunction of spatial—temporal
and surface feature information when faced with
unoccluded objects prior to their ability to use spa-
tial-temporal information only when faced with an
occluded object. Consider again Figures 5(a) and 5 (b).
Even though prediction reliability for occluded objects
develops faster than retrieval reliability for occluded
objects (Figure 5 (b)), prediction reliability for occluded
objects develops slower than retrieval reliability for
unoccluded objects (compare Figures 5(a) and 5(b)).
We know of no empirical data that currently bear on
this prediction and therefore offer it as a way of
falsifying the model. One way to test this prediction
would be to use a procedure initially developed to test
infant memory for visual compounds (Cohen, 1973;
Burnham, Vignes & Thsen, 1988). Infants are habituated
to two objects (e.g. a blue square at location A and a red
square at location B). Infants are then tested with a
stimulus in which the components are identical to those
in the familiarization phase, but the compounds have
been changed (e.g. a red square at location A and a blue
square at location B). The model predicts that infants
would dishabituate to a change in surface—feature/
spatial—-temporal compounds when presented with
objects that are never occluded prior to their ability to
use spatial—temporal information alone when faced with
an occluded object.

Munakata et al. (1997) describe a connectionist
model of infant object permanence behaviours. They
argue that object representations develop gradually
through interactions with an environment. Their model
consists of a single-route network with a layer of hidden
units, trained using back-propagation to predict the
reappearance of an occluded object when a screen moves
away. Although our model is also a connectionist model
(and therefore also argues for graded object representa-
tions that develop through interactions with the
environment) it differs significantly from the Munakata
et al. model in both structure and performance.

The most significant difference is that the model
described in this paper posits a representational dis-
sociation between surface feature information and
spatial—temporal information. This assumption is based
on experimental findings suggesting that a similar
functional dissociation exists in the cortex. The repre-
sentational dissociation is at the heart of our account of
the developmental lag. We suggest that it is the need to
integrate information across the separate representa-
tions (coupled with an associative learning mechanism
in which the connection weights are adjusted in
proportion to the sending unit activation) that produces
a developmental lag between infants’ surprise and



retrieval responses when faced with occluded objects.
Munakata et al. account for the developmental lag by
lowering the learning rate in the reaching portion of
their network and delaying the training of the reaching
module. This leads to the incorrect prediction of a
developmental lag in the presence of visible as well as
invisible objects.

The developmental origins of dual-route processing in
the cortex remain a hotly debated issue in the
neurosciences (e.g. Johnson, 1996). The separate path-
ways could constitute hardwired innate constraints on
learning or they could emerge through competition for
learning resources (e.g. Jacobs, Jordan & Barto, 1991).
The current model is uncommitted as to whether the
initial representational dissociation is present at birth or
develops through learning. The critical assumption is
that a cortical dissociation is present prior to the age at
which infants begin to demonstrate knowledge of hidden
objects.

In the current model, the trajectory prediction net-
work is the module that determines the fastest possible
rate of development of the response module. This is
because it is slower to develop than the feature
recognition module. Rueckl, Cave and Kosslyn (1989)
have described a computational model of ‘what’ versus
‘where’ visual processing in which they argue that the
‘what” module (analogous to our feature recognition
module) is the slowest to develop because object identity
is ‘more difficult’ to compute than object location.
However, studies using visual event related potentials
(ERPs) from infants engaged in object-related tasks
suggest that the ventral pathway matures before the
dorsal pathway, implying that the processing of surface
feature information matures before the processing of
spatial—temporal information (Johnson, 1998). Note
that whatever module develops last will not change the
main conclusions of the model concerning the origins of
the developmental lag.

As in any modelling endeavour, a number of
simplifications have been built into the model. The
most important of these relate to the learning environ-
ment of the model. The current model only ever
experiences the occluding screen in the same location.
Testing the model with the screen in a different location
would lead to a breakdown in performance. In contrast
to this, humans can generalize their knowledge of
occlusion in one location to that in another location.
However, humans live in a much richer environment
than the current model. Similarly, an enrichment of the
network’s learning environment (i.e. by giving it
examples of occlusion in different locations) would also
result in appropriate generalization. A second simplifi-
cation is that the network only ever experiences one
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object at a time. Simultaneously processing information
about multiple objects remains a central issue of current
neural network research (e.g. Mozer, 1991; Shastri &
Ajjanagadde, 1993). This is one direction in which future
modelling should be directed.

It is important to note that this model does not
capture the richness of a// the behaviours that fall under
the broad label of ‘object permanence’. Indeed, we have
intentionally avoided using the term object permanence
to avoid confusion with a more mature concept of
object-hood (Harris, 1983) and simple object-directed
behaviours in infancy. This model deals exclusively with
trajectory prediction, feature monitoring and retrieval
responses. Nevertheless, these are constituents of an
object concept on which the infant must build in order
to develop a more mature level of competence.

Finally, it is also worth noting the close match
between the performance of this model and adult
neuropsychological data. There are documented cases
of patients with ventral stream damage but an intact
dorsal stream who suffer from a kind of visual form
agnosia (they are unable to recognize objects based on
shape information alone) and yet are able to reach
accurately and even catch objects (Goodale, Milner,
Jakobson & Carey, 1991; Milner & Goodale, 1995).
After training, the feature recognition module of the
model could be damaged in a way that does not affect its
ability to respond with a targeted reach (Mareschal,
1997). As discussed above, shape (or form) can be
encoded down both pathways so damage of the ventral
stream shape processing does not interfere with shape
processing in the dorsal stream.

In summary, we propose that changes in infant object-
directed behaviours are determined by the developing
reliability of multiple object representations encoding
distinct aspects of visual object information. Connec-
tionist models provide the tools to explore how
neuropsychological organization constrains cognitive
development. Models make explicit predictions that
allow the testing of such neuropsychological accounts of
behaviour. In particular, this model has suggested that
performance on tasks that require the integration of
cortically separable representations in the presence of
occluded objects will be delayed compared with tasks
that do not require such integration. This prediction has
been independently confirmed for colour and texture
information (Wilcox, 1997, submitted). We would
predict that other surface features (such as faces) that
are coded only in the ventral stream but not the dorsal
stream should show similar dissociations. Conversely, a
retrieval response (such as a reach) that was not
modulated by a feature-based decision should occur at
an earlier age than one that was modulated by a
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decision. In this case, spatial-temporal information
would be sufficient to guide the response and no
integration would be needed.
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