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ABSTRACT  19 

Objective: Successive improvements in high density surface electromyography and decomposition 20 

techniques have facilitated an increasing yield in decomposed motor unit (MU) spike times. Though these 21 

advancements enhance the generalizability of findings and promote the application of MU discharge 22 

characteristics to inform the neural control of motor output, limitations remain. Specifically, 1) common 23 

approaches for generating smooth estimates of MU discharge rates introduce artifacts in quantification, 24 

which may bias findings, and 2) discharge characteristics of large MU populations are often difficult to 25 

visualize. Approach: In the present study, we propose support vector regression (SVR) as an improved 26 

approach for generating continuous estimates of discharge rate and compare the fit characteristics of SVR 27 

to traditionally used methods, including Hanning window filtering and polynomial regression. Furthermore, 28 

we introduce ensembles as a method to visualize the discharge characteristics of large MU populations. We 29 

define ensembles as the average discharge profile of a subpopulation of MUs, composed of a time 30 

normalized ensemble average of all units within this subpopulation. Analysis was conducted with MUs 31 

decomposed from the tibialis anterior (N = 2128), medial gastrocnemius (N = 2673), and soleus (N = 1190) 32 

during isometric plantarflexion and dorsiflexion contractions. Main Result: Compared to traditional 33 

approaches, we found SVR to alleviate commonly observed inaccuracies and produce significantly less 34 

absolute fit error in the initial phase of MU discharge and throughout the entire duration of discharge. 35 

Additionally, we found the visualization of MU populations as ensembles to intuitively represent population 36 

discharge characteristics with appropriate accuracy for visualization. Significance: The results and methods 37 

outlined here provide an improved method for generating smooth estimates of MU discharge rate with SVR 38 

and present a unique approach to visualizing MU populations with ensembles. In combination, the use of 39 

SVR and generation of ensembles represent an efficient method for rendering population discharge 40 

characteristics.  41 
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INTRODUCTION 42 

Following its wide adoption into research, the electromyographic signal has been increasingly realized as 43 

a rich source of information regarding supraspinal and spinal mediated mechanisms for motor control. 44 

Specifically, given the tight coupling of action potentials (1:1 discharge) between spinal motor neurons and 45 

the muscle fibers that they innervate, collectively termed the motor unit, electric potentials recorded by both 46 

intramuscular and surface electromyography (EMG) function as a unique window into the central nervous 47 

system (Heckman & Enoka, 2012; Johnson, Thompson, Tysseling, Powers, & Heckman, 2017). Indeed, 48 

EMG signals are comprised of the superimposed action potentials of many motor units (MUs), which allows 49 

for individual MU discharge instances to be estimated with decomposition techniques. (De Luca, Adam, 50 

Wotiz, Gilmore, & Nawab, 2006; Farina, Holobar, Merletti, & Enoka, 2010; Holobar, Minetto, & Farina, 51 

2014; Nawab, Chang, & De Luca, 2010; Rau & Disselhorst-Klug, 1997). These estimated MU discharge 52 

instances can then be used to characterize central nervous system function and garner insights into both 53 

healthy and pathological motor control, an approach bolstered through advancements in high density 54 

surface EMG (HD-sEMG) approaches (Kallenberg & Hermens, 2009; Li et al., 2015; Murphy et al., 2018). 55 

Though the use of HD-sEMG and recent improvements in decomposition approaches have facilitated the 56 

application of estimated MU discharge characteristics to inform physiological understanding, its adoption 57 

into common practice and large scale application have introduced potential pit-falls in data estimation and 58 

visualization. Specifically, successive improvements in decomposition algorithms, HD-sEMG electrode 59 

arrays, and amplifier technology have continued to provide a greater yield in discriminated motor units. 60 

Though this increased MU yield has facilitated a greater confidence in the generalizability of findings and 61 

insight into population MU behavior, large increases in sample sizes often persuade researchers to reduce 62 

the dimensionality of their dataset through averaging, which fails to adequately account for variance, or be 63 

met with difficulties in accurately portraying the qualitative aspects of their data. This limitation will only 64 

magnify as an increasing amount of parameters are found to affect MU discharge patterns and is evident in 65 

recent papers from the field, where adequate qualitative representations of entire datasets are difficult to 66 

achieve and single choice trials are often displayed. A concise and informative methodology for portraying 67 

large sets of MU discharge profiles, or neuronal discharge in the general sense, would vastly improve the 68 

capability of researchers to relay their findings in a consistent and intuitive way.  69 

More importantly, in addition to the difficulties of efficiently visualizing these increasingly large datasets, 70 

the process of extracting physiologically relevant metrics from decomposed MU discharge profiles is often 71 

variable amongst research groups and has considerable potential for biasing findings. Specifically, the 72 

process used to generate smooth estimates of MU discharge rates lacks an agreed upon computational 73 

method and has the potential to substantially influence frequently characterized outcome metrics. 74 
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Commonly employed methods for obtaining smooth estimates of MU discharge rates include filtering of 75 

binary spike trains with a window function, such as the Hanning (Hann) window, or fitting instantaneous 76 

discharge rates with various degrees of lower order polynomial functions (Afsharipour et al., 2020; De 77 

Luca, LeFever, McCue, & Xenakis, 1982a; Gorassini, Yang, Siu, & Bennett, 2002; F. Negro & Farina, 78 

2012). Though commonly used, filtering with the Hanning window introduces undesirable characteristics 79 

at the onset and offset of discharge, which biases the estimated recruitment and derecruitment discharge 80 

rates, and lower order polynomial functions can potentially remove relevant characteristics of MU 81 

discharge (i.e. over-smoothing). Indeed, a recent study demonstrated how fit method (Hanning, Gaussian, 82 

5th-order polynomial) can affect estimates of persistent inward currents (PICs) generated by the paired MU 83 

analysis technique (i.e. ΔF), showing the edge effects of the Hanning window to bias motor unit recruitment 84 

and derecruitment estimates (Hassan et al., 2020). To minimize the introduction of biases in the data 85 

analysis pipeline, a method of generating smooth estimates of MU discharge rates that accurately represent 86 

the end conditions and more effectively balances the tradeoff between noise mitigation and retaining 87 

relevant discharge characteristics is necessary.  88 

To address these problems, we 1) investigated support vector regression (SVR) as a more effective means 89 

of producing smooth continuous estimates of MU discharge rates and 2) propose that large populations of 90 

MUs be quantified and visualized in ensembles, or average traces of MU discharge rates for subpopulations 91 

of MUs separated by a metric of interest (e.g. torque at MU recruitment). Each ensemble represents the 92 

average behavior of motor units within a subpopulation and is composed of a time normalized estimate of 93 

discharge rate for each individual MU, generated through SVR. Support vector regression, with its ability 94 

to independently weight observations (e.g. MU recruitment and derecruitment) and tune hyperparameters 95 

to optimize fit, offers a level of control far superior to traditional fitting schemes (Alex J. Smola & 96 

Schölkopf, 2004; Vapnik, 1995). In specific, weighting the end conditions alleviates the biasing effects at 97 

recruitment and derecruitment introduced by the edge effects of the Hanning window while hyperparameter 98 

tuning tempers the unnecessary smoothing introduced by fitting with lower-order polynomial functions.  99 

We hypothesized that: 1) compared to the Hanning window and a 5th and 6th order polynomial, the 100 

capabilities inherent to SVR would facilitate a more accurate representation of estimated MU discharge 101 

rates, and 2) visualizing groups of MU discharge rates as ensembles would provide an intuitive method to 102 

convey findings in a compelling manner, where one figure can visually display the potential findings of an 103 

entire dataset.   104 
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METHODS 105 

Dataset  106 

Participants: Motor unit spike trains were obtained from multiple ongoing human subject studies. This 107 

included twenty-one young participants (F: 5, M: 16; Age: 26.4 ± 1.7) with no known neuromuscular, 108 

musculoskeletal, or cardiovascular impairments. All participants provided written and informed consent 109 

(Northwestern University Institutional Review Board STU00202964) in accordance with the Declaration 110 

of Helsinki. 111 

Overview: Given that a primary goal of this effort was to provide data quantification and visualization 112 

methodologies for studies that employ estimates of smooth MU discharge rates, the contraction profile and 113 

muscles were chosen accordingly. Specifically, to assist in generalizability to future studies, a ramp 114 

contraction, consisting of a linear increase and subsequent decrease in effort, was chosen because it provides 115 

desirable MU recruitment spacing and is commonly used in the field (De Luca, LeFever, McCue, & 116 

Xenakis, 1982b; Farina et al., 2009; Kim, Wilson, Thompson, & Heckman, 2020; Orssatto et al., 2021; 117 

Oya, Riek, & Cresswell, 2009). Similarly, given frequent use of the lower limb in HD-sEMG studies, ramp 118 

contractions were generated through either ankle dorsiflexion or plantarflexion with grid electrodes fixed 119 

atop the skin overlying the tibialis anterior (TA), medial gastrocnemius (MG), and soleus (SOL) muscle 120 

bellies.  121 

Experimental Setup: For each experimental session, participants were seated in a Biodex chair, with their 122 

left foot securely attached to a footplate fixed onto a Systems 4 Dynamometer (Biodex Medical Systems, 123 

Shirley, NY) such that the axis of rotation aligned with the center of rotation of the ankle joint. Throughout 124 

the session a participants’ hips were maintained at approximately 80 degrees of flexion, left knee at 20 125 

degrees flexion, and left ankle at 10 degrees of plantarflexion with thigh and shoulder straps used to 126 

minimize movement. Target torque ramps and visual feedback (i.e. dorsiflexion or plantarflexion torque) 127 

were provided on a television screen via a custom Matlab interface (MATLAB (R2020b), The Mathworks 128 

Inc., Natick, MA). Torque about the ankle was filtered with a 125 ms moving average window before being 129 

provided as visual feedback to the participant. For subsequent analysis, raw torque signals were amplified 130 

(150 ×) and digitized (2048 Hz) using a 16-bit analog-to-digital converter (Quattrocento, OT Bioelettronica, 131 

Turin, IT) and lowpass filtered (50 Hz) with a fifth order Butterworth filter.  132 

Experimental Protocol: Prior to commencement of ramp contractions, participants were asked to generate 133 

maximal voluntary isometric contractions of the plantarflexors and dorsiflexors, with 2 minutes of rest 134 

separating contractions. At least two contractions were performed, and repeated until the peak torque within 135 

the last contraction was no larger than 5% of the previous contraction. We then used the maximum voluntary 136 

torque (MVT) achieved during these contractions to normalize all subsequent ramp contractions. Ramp 137 
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contractions started from rest and consisted of a 10 second linear increase to 30% MVT and a 10 second 138 

decrease back to rest (i.e. 3% MVT/s rise and decay speeds). To mitigate learning effects and ensure smooth 139 

contractions, participants completed a minimum of 6 dorsiflexion and plantarflexion practice ramps. 140 

Following practice trials, each experimental session consisted of 4-12 ramp contractions for each 141 

dorsiflexion and plantarflexion, conducted in random order.  142 

High Density Surface EMG (HD-sEMG): HD-sEMG was collected via 64 channel electrode grids 143 

(GR08MM1305, OT Bioelettronica, Turin, IT) placed atop the skin with adhesive foam (KITAD064, OT 144 

Bioelettronica, Turin, IT) overlying the TA, MG, and SOL muscle bellies. The location of the muscles were 145 

identified via palpation by a clinical exercise physiologist. Prior to electrode placement, the left leg was 146 

shaved and the skin overlying the muscles was abraded with abrasive paste and cleaned with isopropyl 147 

alcohol. Two Ag/AgCl ground electrodes were placed bilaterally on the right and left patella and a moist 148 

band electrode was placed around the right ankle. HD-sEMG signals were acquired with differential 149 

amplification (150 x), digitized (2048 Hz), and bandpass filtered (10-900 Hz) using a 16-bit analog-to-150 

digital converter (Quattrocento, OT Bioelettronica, Turin, IT).  151 

Motor Unit Decomposition: In preparation for decomposition, all surface EMG channels were bandpass 152 

filtered at 20–500 Hz (second‐order, Butterworth) and visually inspected to remove channels with 153 

substantial artifacts, noise, or saturation of the A/D board (typically 2-3 channels). The remaining EMG 154 

channels were decomposed into individual MU spike trains using convolutive blind source separation and 155 

successive sparse deflation improvements (Martinez-Valdes et al., 2017; Francesco Negro, Muceli, 156 

Castronovo, Holobar, & Farina, 2016). The silhouette threshold for decomposition was set to 0.87. To 157 

improve decomposition accuracy and correct spikes that indicated non-physiological MU discharge, 158 

experienced investigators conducted manual editing of the spike trains. Specifically, automatic 159 

decomposition results were improved through iteratively re-estimating the spike train and correcting for 160 

missed spikes or substantial deviations in the discharge profile (Boccia, Martinez-Valdes, Negro, Rainoldi, 161 

& Falla, 2019; Del Vecchio et al., 2020; Hug et al., 2021).  162 

Computational Fitting Methods  163 

To compare support vector regression (SVR) with commonly employed methods, smooth MU discharge 164 

rates were generated with the following computational approaches. For Hanning (Hann) window filtering, 165 

analysis began with decomposed binary spike trains, whereas SVR and polynomial regression was initiated 166 

with discrete estimates of instantaneous discharge rate. To obtain these discrete values, estimated MU 167 

discharge times were obtained from decomposed MU spike trains and used to quantify the inter-spike 168 

interval (ISI), or the time between each consecutive spike. A discrete estimate of instantaneous discharge 169 

rate was then calculated as the reciprocal of the time series ISI for each MU. For all trials, any MU which 170 
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failed to sustain a minimum of 10 consecutive discharges was removed from analysis. This resulted in a 171 

total MU Yield of 2128 for TA, 2673 for MG, and 1190 for SOL.  172 

Hanning (Hann) Window Filtering 173 

The use of the Hanning window to generate smooth discharge rate estimates from decomposed motor unit 174 

spike trains has been a popular computational approach within the field (De Luca et al., 1982a). To obtain 175 

these estimates, a binarized motor unit spike train is filtered with a Hanning window of pre-specified length. 176 

We have chosen to employ a Hanning window with length equivalent to 1 s in duration, though windows 177 

of various durations have previously been employed (De Luca et al., 1982a; Hassan et al., 2020; F. Negro 178 

& Farina, 2012).  179 

Polynomial Regression 180 

Fitting instantaneous discharge rates with a polynomial function is becoming a common practice amongst 181 

the field to provide smooth discharge rate estimates, with a 5th order polynomial commonly used 182 

(Afsharipour et al., 2020; Gorassini et al., 2002). To compare SVR and polynomial regression, we have 183 

chosen to use a 5th and 6th order polynomial function to fit instantaneous discharge rates. Given that a 5th 184 

order polynomial necessitates opposite end conditions, an even degree polynomial should theoretically 185 

better represent the discharge profiles observed during isometric ramp contractions. Furthermore, an even 186 

degree polynomial greater than a 5th order function is likely more desirable (i.e. 6th not 4th order), given the 187 

known smoothing properties. Polynomial regression of the instantaneous discharge rates was accomplished 188 

through employing least squares with the time vector centered at zero and scaled to one standard deviation. 189 

The polynomial coefficients produced by this operation were then used to generate smooth estimates of 190 

discharge rate along a prediction time vector from MU recruitment to derecruitment sampled at 2048 Hz.  191 

Support Vector Regression  192 

Support vector regression was first introduced by Vapnik and colleagues, who outlined the application of 193 

traditional support vector machine classification to a regression problem (Drucker, Burges, Kaufman, 194 

Smola, & Vapnik, 1996; Vapnik, 1995). Like classification with support vector machines, support vector 195 

regression (SVR) employs much of the same principles, including use of kernels to represent data in a 196 

higher dimensional space, a hyperplane separating data points in this higher dimensional space, and a 197 

margin about this hyperplane. In depth discussions on SVR and its algorithmic implementation can be found 198 

elsewhere and will not be included here (Cristianini & Shawe-Taylor, 2000; Alex J Smola & Schölkopf, 199 

1998; Alex J. Smola & Schölkopf, 2004). For ease of translation across research groups, we implemented 200 

SVR with Matlab’s inbuilt function fitrsvm to train an SVR model with L1 soft-margin minimization 201 

(MATLAB (R2020b), The Mathworks Inc., Natick, MA). For each MU, training data included the 202 

instantaneous discharge rate estimates and corresponding time instances. Smooth estimates of discharge 203 
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rate were then generated using Matlab’s inbuilt predict function to generate an estimated discharge rate 204 

along a prediction time vector from MU recruitment to derecruitment sampled at 2048 Hz (MATLAB 205 

(R2020b), The Mathworks Inc., Natick, MA). 206 

Support vector regression contains various parameters that can be tuned to optimize fitting characteristics. 207 

For our purposes, this included the kernel that is employed, the kernel scale factor, epsilon, and the 208 

regularization parameter (Alex J. Smola & Schölkopf, 2004). The kernel and kernel scale factor define the 209 

function employed in expanding dimensionality and was chosen as a radial basis function. Epsilon defines 210 

one-half of the margin, or width about the hyperplane in which no penalty is assigned to the cost function. 211 

The regularization parameter indicates the penalty that is assigned to points outside this margin.   212 

To account for the inherent differences in variability of discharge between muscles, we chose an epsilon 213 

value that was MU specific and scaled based on the discharge variability for that unit. Specifically, we 214 

chose an epsilon value equal to one-eleventh of the interquartile range of the discharge rate, which generates 215 

an approximate epsilon insensitive region (margin) of one quarter of a standard deviation. To ensure 216 

desirable end characteristics, the initial and final five discharge instances were weighted five times greater 217 

than the remainder of discharge instances for a given unit. To optimize the kernel scale and regularization 218 

parameters, we performed a grid search across a range of 0-1000 for both terms and used the values that 219 

most closely replicated the average sum of squared error achieved with the 1 s Hanning window throughout 220 

the middle 80% of discharge. That is, the error seen at the first and last 10% of discharge was not considered 221 

given the known edge effects introduced by filtering with the Hanning window. The 1s Hanning window 222 

was chosen as a comparator, given that this fit is generally believed to retain and accurately portray the 223 

relevant characteristics of MU discharge throughout the middle portion of discharge. This produced a 224 

regularization parameter of 370 and a kernel scale factor of 1.6.  225 

Ensembles 226 

An overview of the construction of ensembles can be seen in Figure 1. For each muscle, all discriminated 227 

MUs across participants (TA: 2128, MG: 2673, SOL: 1190) were separated into ten equally spaced bins 228 

based upon the percent of Maximum Voluntary Torque (MVT) that a MU was recruited at (i.e. 3% MVT 229 

increments for 30% MVT ramps). The MUs within each of these 3% MVT bins were then fit with the three 230 

computational fitting methods. For each fit method, we utilized a time normalization procedure to generate 231 

MUs of a pre-specified length within each ensemble. For SVR and polynomial regression, we adjusted the 232 

sampling rate of the prediction vector such that smooth discharge rate estimates within an ensemble were 233 

vectors of equal length, equivalent to the length of the time vector from average MU recruitment to 234 

derecruitment sampled at 2048 Hz. Similarly, for Hanning window filtering, the smooth discharge rate 235 

estimates generated by the Hanning window were resampled using linear interpolation to generate vectors 236 
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of identical length within a given ensemble. Following this normalization, we then quantified the ensemble 237 

average of all MU fits within each 3% MVT cohort and mapped these traces from the average recruitment 238 

to derecruitment instance of each group to generate the quantized ensemble traces. This was done such that 239 

each ensemble trace represented a true “average”, with the ensemble discharge rate traces representing the 240 

average discharge profile from MU recruitment to MU derecruitment for all units within that cohort.  241 

 242 

Figure 1: Overview of ensemble construction. Populations of estimated motor unit discharge profiles were 243 

subdivided into cohorts based upon a metric of interest (four groups on left), filtered or fit with an estimating 244 

function with the time axis (x-axis) normalized such that motor units within a subdivision align from onset 245 

to offset, and ensemble averaged (four traces on right). (pps: pulses per second; s: second) 246 

To further illuminate the time normalization process, Figure 2 shows the SVR estimates for all TA MUs (N 247 

= 2128) separated into ten ensemble cohorts both before (Figure 2A; non-normalized) and after (Figure 2B; 248 

normalized) normalization. In this figure, the quantized SVR ensemble traces (Figure 2A: black traces) can 249 

be seen to unsurprisingly represent the average onset and offset of discharge across MUs, given that this is 250 

how they were defined. Furthermore, in the time normalized traces, representation of MUs on an identical 251 

timescale from recruitment to derecruitment can be observed. This allows for the ensemble trace to 252 

represent the true average shape of MUs within each ensemble, with distinct modes of discharge mapped 253 
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from onset to offset. The ability of these ensemble traces to represent the average discharge profile of each 254 

MU cohort can be seen with the black traces overlying the non-normalized fits.  255 

 256 

 257 

 258 

Figure 2: Normalization in ensemble construction. Shown above is the ensemble construction process for 259 

all decomposed TA motor units (N = 2128). Units are first separated into ten cohorts based upon their 260 

recruitment threshold, with the color bar indicating the recruitment range of this group normalized to 261 

individual participants’ MVT and the black triangular trace representing the average torque across all trials 262 

and participants. Smoothed estimates of MU discharge rate are then created with support vector regression 263 

(A), and projected onto time vectors of identical length (B). These normalized estimates are then ensemble 264 

averaged to generate the overlying black traces. These ensemble traces in black are shown overlying the 265 

normalized and non-normalized estimates for comparison. (pps: pulses per second; s: second) 266 

Fit Comparison & Ensemble Accuracy  267 

To compare the accuracy of the three computational fitting methods we quantified the residual error, or 268 

absolute deviation between the continuous and discrete discharge rate estimates, for each individual MU. 269 

This was conducted to provide insight into the type of bias introduced by each fit, spanning from MU 270 

recruitment to derecruitment. To observe the qualitative effects of the various fitting schemes, ensemble 271 

figures were constructed for each fit method.  272 
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Simulations 273 

To characterize the accuracy of representing populations of MUs as ensembles, we utilized a Monte Carlo 274 

type simulation. Specifically, we treated the process of creating ensemble traces as a transfer function, 275 

decomposed MU spike trains as inputs, and used outcome metrics for each individual MU and ensemble 276 

trace of discharge rate at recruitment, discharge rate at derecruitment, peak discharge rate, time to peak 277 

discharge rate, and ∆F.  278 

For each iteration, we separated the total MU dataset for the TA into ensemble groups based upon their 279 

torque at recruitment, as before, and iteratively resampled two-thirds of this population. This was conducted 280 

for 100 iterations, with the average population outcome metrics for all units within each ensemble and the 281 

outcome metrics for the ensemble trace used to generate estimated distributions for each metric of interest. 282 

The difference between the estimated distribution of the sampled MU populations and ensemble traces was 283 

then used to garner insight into the ability of the ensemble traces to capture the characteristics of the 284 

populations of MUs within them.  285 

Discharge rate at recruitment and derecruitment were calculated as the discharge rate of the first and last 286 

instance of the smooth SVR fits, respectively. Peak discharge was calculated as the maximum discharge 287 

rate of each MU SVR fit or ensemble trace, with time to peak calculated as the time between MU 288 

recruitment and this peak value.  289 

ΔF is a commonly employed metric used estimate the magnitude of PICs and represents the discharge 290 

hysteresis of a higher threshold MU with respect to a lower threshold unit. To quantify ΔF, we employed a 291 

paired MU analysis technique such that ΔF for a given MU (test unit) represented the change in discharge 292 

rate of a lower threshold unit (reporter unit) between the recruitment and derecruitment of this test unit. 293 

This was conducted for every possible combination of MU pairs within a trial where the reporter unit 294 

exhibited sustained discharge throughout the test units recruitment and derecruitment. To account for the 295 

pairing of a test unit with multiple reporter units, ΔF for a test unit was calculated as the average change in 296 

discharge rate across all possible reporter unit pairs. To allow for full activation of the PIC in the reporter 297 

unit, we excluded any pairs with recruitment time differences <1 s (Bennett, Li, Harvey, & Gorassini, 2001; 298 

Hassan et al., 2020; Powers, Nardelli, & Cope, 2008). Additionally, to avoid saturated reporter units, we 299 

excluded test unit-reporter unit pairs in which the reporter unit discharge range was < 0.5 pps while the test 300 

unit was active (Stephenson & Maluf, 2011). Furthermore, we only included test unit-reporter unit pairs 301 

with rate-rate correlations of r2 > 0.7 to ensure that MU pairs likely received common synaptic drive 302 

(Gorassini et al., 2002; Udina, D'Amico, Bergquist, & Gorassini, 2010; Wilson, Thompson, Miller, & 303 

Heckman, 2015).  304 
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To quantify ΔF for a given ensemble, we conducted a similar process treating each ensemble as either a test 305 

or reporter ensemble. Specifically, all ensemble traces of a lower recruitment torque than a given ensemble 306 

were used as reporter ensembles. ΔF for a test ensemble was then calculated as the average change in 307 

discharge rate across all possible reporter ensembles from test ensemble recruitment to derecruitment.  308 

Statistical Approach 309 

To determine significant differences in fit error between the fitting methods, we employed linear mixed 310 

effects models with either average absolute fit error across the first five discharges of a MU or the entire 311 

duration of MU discharge as a dependent variable, fixed effects of torque recruitment cohort (ensemble), 312 

muscle, and fit method, and random effects of participant and trial nested within participant. P-values were 313 

obtained by likelihood ratio tests of the full model with the effect in question against the model without the 314 

effect in question. For main effects, this included their subsequent interaction terms.  315 

To test for statistically significant differences in discharge characteristics of interest between SVR 316 

ensembles and the MU population characteristics, we used data generated with the Monte Carlo simulation. 317 

Specifically, we employed linear models with dependent variables of the ensemble and sample estimates 318 

for each outcome metrics of interest. For simplicity we only analyzed the TA data set and included a total 319 

of 1000 observations for each method (ensemble or sample estimate) and outcome metric, or 100 iterations 320 

for each of the ten ensemble cohorts. As fixed effects we included torque recruitment cohort (ensemble), 321 

whether the estimate was from the ensemble trace or sample population average, and the interaction 322 

between these factors.    323 

All statistical analysis was performed with R (R Core Team, 2021). Mixed model analysis was achieved 324 

via the lme4 (Bats, Maechler, Bolker, & Walker, 2015) package. To ensure the validity of model fitting, 325 

the assumptions of linearity and normal, homoscedastic residual distributions were confirmed. Estimated 326 

marginal means were employed in pairwise post-hoc testing and achieved with the emmeans package 327 

(Lenth, 2021). Significance was set at α = 0.05 and pairwise and multiple comparisons were corrected using 328 

Tukey’s corrections for multiple comparison.     329 
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RESULTS 330 

Fit Method Comparison  331 

A randomly chosen MU from the MG muscle during a single plantarflexion trial can be seen in Figure 3 332 

with each fit method applied. Qualitatively, polynomial regression has produced estimates that follow the 333 

general trend of the MU discharge profile but fail to portray key attributes of discharge associated with the 334 

activation PICs. This includes an initial high gain phase (PIC activation or acceleration of discharge) 335 

followed by a gain attenuated phase (PIC saturation or post-acceleration discharge rate saturation) 336 

(Heckman & Enoka, 2012). Additionally, on the descending portion of the ramp (~16-18 s) an abrupt 337 

decrease in torque occurs with a corresponding decrease in discharge rate that is not captured by either 338 

polynomial fit. Support vector regression and Hanning window filtering, with the employed parameters, do 339 

appear to follow the discharge profile during this decrease in torque as well as highlight the expected 340 

features introduced by PICs. That said, while these attributes are captured by the Hanning window filtering 341 

approach, this fit appears to underestimate the initial discharge rate of 5.77 pps by a sizable margin (Hann: 342 

3.94 pps, Poly-5: 7.41 pps, Poly-6: 6.72 pps, SVR: 5.73 pps).  343 

344 

Figure 3: Effects of fit method on smoothed estimates of discharge for a single motor unit. A single 345 
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decomposed medial gastrocnemius (MG) motor unit from a plantarflexion trial is shown with its estimated 346 

instantaneous discharge rate (IDR) in pulses per second (pps) and orange. The discharge rate at recruitment 347 

and derecruitment are shown outlined in black. The smooth estimates of discharge rate generated through 348 

each investigated approach are shown in solid lines. This includes A) support vector regression (SVR), B) 349 

Hanning (Hann) window filtering, and C-D) polynomial regression with either a 5th or 6th degree 350 

polynomial. Plantarflexion torque about the ankle is shown in black, normalized to maximum voluntary 351 

torque (MVT).   352 

To highlight the fitting characteristic of each computational approach, Figure 4 shows the absolute fit error 353 

for each method as a function of unit duration. As is observed, the fit error is unequally distributed across 354 

the discharge profile for each fit method, with the various fitting schemes diverging at the onset and offset 355 

of discharge and the polynomial regression fits systemically higher across the unit duration. The inset within 356 

Figure 4 accentuates this divergence at onset, showing the absolute fit error averaged across all units for 357 

the first five instances of all MUs discharge.  358 

 359 

Figure 4: Absolute fit error for each fit method across motor unit duration. The absolute difference between 360 

the estimated discharge rate (ŷ) and instantaneous discharge rate (y) is shown as a function of motor unit 361 

duration from recruitment (0%) to derecruitment (100%) for each fit method in pulses per second (pps). Fit 362 

methods included support vector regression (SVR), Hanning (Hann) window filtering, and polynomial 363 

regression with either a 5th or 6th degree polynomial. Colored dots indicate individual discharge instances 364 

and the solid lines represent a moving average with width corresponding to a 6% unit duration. The inset 365 

displays the absolute error plot as a function of the number of discharges from recruitment, for the first five 366 
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discharges for all motor units (avg. ± SE). This is shown for the tibialis anterior (TA, N = 2128), medial 367 

gastrocnemius (MG, N = 2673), and soleus (SOL, N = 1190).  368 

To further investigate this divergence of fitting schemes, the average fit error for the first five discharges 369 

for each MU can be seen in the top row of Figure 5A with a corresponding probability density function. 370 

We used a linear mixed model and maximum likelihood estimation to predict this fit error within the first 371 

five discharges of a MU (Absolute Error ~ FitMethod*Muscle*Ensemble + (1|PID:Trial)), showing fit 372 

method (χ2(90) = 4082.4, p < 0.001), ensemble cohort (χ2(108) = 1959.5, p < 0.001), and muscle (χ2(80) = 373 

1140.7, p < 0.001) to be significant predictors of this fit error. Additionally, interactions between fit method 374 

and ensemble (χ2(81) = 394.2, p < 0.001), fit method and muscle (χ2(60) = 194.6, p < 0.001), and muscle 375 

and ensemble were observed (χ2(72) = 548.3, p < 0.001). Across all muscles and ensemble cohorts, a main 376 

effect comparison of marginal means yields an estimated decrease in absolute error with SVR when 377 

compared to Hanning (0.584 pps; 95%CI: [0.554, 0.614]), 5th degree polynomial (0.225 pps; 95%CI: 378 

[0.195, 0.256]), and 6th degree polynomial (0.114 pps; 95%CI: [0.083, 0.144]). Significant decreases in 379 

absolute error with SVR were also observed when separated by muscle for the difference between SVR and 380 

Hanning (TA: 0.758 pps [0.714, 0.802]; MG: 0.564 pps [0.521, 0.608]; SOL: 0.430 pps [0.363, 0.496]), 381 

SVR and 5th degree polynomial (TA: 0.297 pps [0.252, 0.341]; MG: 0.197 pps [0.154, 0.241]; SOL: 0.182 382 

pps [0.116, 0.249]), and SVR and 6th degree polynomial (TA: 0.142 pps [0.098, 0.187]; MG: 0.098 pps 383 

[0.055, 0.142]; SOL: 0.100 pps [0.034, 0.167]). 384 

Using average fit error across the entire MU discharge duration (Figure 5B) as the dependent variable in a 385 

linear mixed effects model (Absolute Error ~ FitMethod*Muscle*Ensemble + (1|PID:Trial)), we found fit 386 

method (χ2(90) = 637.1, p < 0.001),  muscle (χ2(80) = 929.9, p < 0.001), and ensemble (χ2(108) = 2605.7, 387 

p < 0.001) to be significant predictors of fit error. Furthermore, we observed an interaction between fit 388 

method and ensemble (χ2(81) = 205.0, p < 0.001) as well as muscle and ensemble (χ2(72) = 397.0, p < 389 

0.001) with a non-significant fit method and muscle interaction (χ2(60) = 15.0, p ~=1).  Across all muscles 390 

and ensemble cohorts, marginal means for the absolute error are estimated as 0.949 pps (95%CI: [0.915, 391 

0.982]) for SVR, 1.052 pps (95%CI: [1.019, 1.086]) for the 5th degree polynomials, 1.021 pps (95%CI: 392 

[0.987, 1.054]) for the 6th degree polynomials, and 0.990 pps (95%CI: [0.957, 1.024]) for the Hanning 393 

window. When separated by muscle, we observed significant decreases in marginal means for absolute 394 

error with SVR when comparing the difference between SVR and 5th degree polynomial (TA: 0.106 pps 395 

[0.080, 0.132]; MG: 0.103 pps [0.077, 0.128]; SOL: 0.102 pps [0.063, 0.141]), SVR and 6th degree 396 

polynomial (TA: 0.074 pps [0.048, 0.101]; MG: 0.068 pps [0.042, 0.094]; SOL: 0.075 pps [0.035, 0.114]), 397 

and SVR and Hanning (TA: 0.049 pps [0.023, 0.075]; MG: 0.056 pps [0.030, 0.081]; SOL: 0.021 pps 398 

[0.019, 0.060]). 399 
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 400 

Figure 5: Average absolute error across the fit methods. The average absolute difference between the 401 

estimated discharge rate (ŷ) and instantaneous discharge rate (y) is shown for each fit method in pulses per 402 

second (pps) for the first five motor unit discharges (A) and entire duration of discharge (B). Each data 403 

point represents an individual motor unit with the corresponding probability density generated by a gaussian 404 

kernel. Individual colors represent the various fit methods and include support vector regression (SVR), 405 

Hanning (Hann) window filtering, and polynomial regression with either a 5th or 6th degree polynomial. 406 

This is shown for the tibialis anterior (TA, N = 2128, left), medial gastrocnemius (MG, N = 2673, middle), 407 

and soleus (SOL, N = 1190, right).  408 

To illustrate the impact of each fit method on ensemble construction, we display the ensemble traces for 409 

each of the four fit methods applied to all of the TA MUs in Figure 6. The over-smoothing created through 410 

polynomial regression and the biased end conditions of Hanning window filtering are highly evident and 411 

correspond to the fit errors that were observed for each method (Figures 4 & 5).  412 
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 413 

Figure 6: Ensembles for each fit method. Each quadrant represents one of the investigated fitting schemes 414 

and corresponds to A) support vector regression (SVR), B) Hanning (Hann) window filtering, and C-D) 415 

polynomial regression with either a 5th or 6th degree polynomial. Within each quadrant, the top plot depicts 416 

the average torque in black, the cumulative spike train (CST) across all units in green, and the average 417 

moving root mean squared EMG for all trials in dashed purple. Torque is shown as percent of maximum 418 

voluntary torque (MVT), the CSTs are shown in pulses per second (pps), and peak EMG is shown 419 

equivalent to maximum torque. The bottom plot within each quadrant houses the ensembles, color 420 

coordinated in accordance with the color bar, and the CST for reference. The light gray line across plots 421 

indicates the time of peak torque. (Ensemble cohorts: N = 240, 215, 202, 232, 232, 229, 210, 259, 202, 422 

107).  423 
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SVR Ensemble Representative Capacity  424 

To highlight the distinct discharge behavior within and across muscles, we display SVR ensemble plots for 425 

the TA, MG, and SOL in Figure 7. The visualization capacity and information density inherent to ensembles 426 

are easily conveyed here, with distinct differences in discharge characteristics immediately perceptible 427 

between muscles.  428 

 429 

Figure 7: SVR ensembles across muscles. Shown are the ensemble traces for each muscle, generated from 430 

motor unit discharge rates estimated with support vector regression (SVR). For each muscle, the top plot 431 

depicts the average torque in black, the cumulative spike train (CST) across all units in green, and the 432 

average moving root mean squared EMG for all trials in dashed purple. Torque is shown as percent of 433 

maximum voluntary torque (MVT), the CSTs are shown in pulses per second (pps), and peak EMG is 434 

shown equivalent to maximum torque. The bottom plot for each muscle houses the ensembles, color 435 

coordinated in accordance with the color bar, and the CST for reference. The light gray line across plots 436 

indicates the time of peak torque.  (Ensemble cohorts: [TA: N = 240, 215, 202, 232, 232, 229, 210, 259, 437 

202, 107]; [MG: N = 221, 261, 299, 310, 373, 383, 304, 287, 160, 75]; [SOL: N = 154, 146, 142, 171, 136, 438 

150, 110, 97, 54, 30]) 439 

To investigate the ability of the ensembles to portray underlying MU population statistics, we ran a Monte 440 

Carlo simulation and show the results in Figure 8. For each iteration of this simulation, we quantified the 441 

discharge rate at recruitment, derecruitment, and peak, as well as time to peak discharge rate and ΔF for 442 

each ensemble and corresponding population of MUs within that ensemble. To estimate the deviation 443 

between ensemble traces and population averages, we fit a linear model to each outcome metric, with fixed 444 

effects of ensemble cohort (1-10), whether an estimate was from the random sample or an ensemble trace 445 
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(method), and the interaction between these two. Results of these linear models are separated by outcome 446 

metric as follows.  447 

Peak Discharge Rate: We fit a linear model to peak discharge rate using ordinary least squares (Peak DR ~ 448 

Ensemble * Method). The model exhibits substantial explanatory power (R2 = 0.96, F(19, 1980) = 2614.2, 449 

p < 0.001, adj. R2 = 0.96) with significant effects of ensemble (F(9, 1980) = 4851.9, p < 0.001), method 450 

(F(1, 1980) = 5762.7, p < 0.001), and their interactions (F(9, 1980) = 26.68, p < 0.001). Averaging across 451 

all ensemble cohorts, a main effect comparison of marginal means for method yields an estimated decrease 452 

of 0.725 pps (95%CI: [0.706, 0.744]) in the ensemble estimates when compared to the MU population 453 

averages. Separating by ensemble cohort, estimates range from a minimum decrease in the ensemble 454 

estimates of 0.511 pps (95%CI: [0.452, 0.570]) in ensemble three to a decrease of 0.908 pps (95%CI: [0.849, 455 

0.968]) in ensemble nine.   456 

Recruitment & Derecruitment Discharge Rate: We fit a linear model to discharge rate at recruitment and 457 

derecruitment, separately, using ordinary least squares (Estimate ~ Ensemble * Method). The models 458 

exhibit substantial explanatory power for discharge rate at recruitment (R2 = 0.84, F(19, 1980) = 566.2, p 459 

< 0.001, adj. R2 = 0.84) and derecruitment (R2 = 0.92, F(19, 1980) = 1261.6, p < 0.001, adj. R2 = 0.92). For 460 

both models, the fixed effect of ensemble cohort was significant (recruitment: F(9, 1980) = 1195.4, p < 461 

0.001 ; derecruitment: F(9, 1980) = 2663.5, p < 0.001), but the method and interaction terms were not. 462 

Time to Peak: We fit a linear model to the time from recruitment to peak discharge rate using ordinary least 463 

squares (Time to Peak ~ Ensemble * Method). The model exhibits substantial explanatory power (R2 = 464 

0.998, F(19, 1980) = 72029.00, p < 0.001, adj. R2 = 0.998) with significant effects of ensemble (F(9, 1980) 465 

= 151721.00, p < 0.001), method (F(1, 1980) = 1547.77, p < 0.001), and their interactions (F(9, 1980) = 466 

168.25, p < 0.001). Averaging across all ensemble cohorts, a main effect comparison of marginal means 467 

for method yields an estimated increase of 0.160 s (95%CI: [0.152, 0.168]) in the ensemble estimates.  468 

Separating by ensemble cohort, estimates range from a non-significant effect in ensemble four to a 469 

maximum increase of 0.480 pps (95%CI: [0.451, 0.502]) in ensemble one.   470 

ΔF: We fit a linear model to the estimates of ΔF for both the ensemble traces and average values within 471 

each ensemble (ΔF ~ Ensemble * Method) for ensemble cohorts two through ten, due to a lack of test units 472 

for the first ensemble trace. The model exhibits high explanatory power (R2 = 0.75, F(17, 1782) = 314.04, 473 

p < 0.001, adj. R2 = 0.75) with significant effects of ensemble (F(8, 1980) = 382.21, p < 0.001), method 474 

(F(1, 1980) = 798.58, p < 0.001), and their interactions (F(8, 1980) = 185.29, p < 0.001). Averaging across 475 

all ensemble cohorts, a main effect comparison of marginal means for method yields an estimated increase 476 

of 0.361 pps (95%CI: [0.336, 0.386]) in the ensemble estimates.  Separating by ensemble cohort, estimates 477 
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range from a decrease of 0.833 pps (95%CI: [-0.908, -0.758]) in ensemble two, to an increase of 0.890 pps 478 

(95%CI: [0.815, 0.965]) in ensemble six.   479 

 480 

Figure 8: Ensemble accuracy. Shown above are the results of the Monte Carlo simulation, treating the 481 

construction of ensembles as a process. This is shown for five parameters of interest, including discharge 482 

rate at recruitment (A, left), derecruitment (A, right), and peak (B) as well as time from recruitment to peak 483 

discharge rate (C) and ΔF (D). Within each quadrant, the bottom plot depicts the ensemble estimate of a 484 

given parameter against the average of that parameter estimate for all individual motor units. This is 485 

separated into ensemble cohorts according to the color bar with a data point for each iteration (N = 1000). 486 

The dashed red line depicts a theoretical 100% agreement between the ensemble estimates and the 487 

population average for a random sample. The probability density for each ensemble and parameter are 488 

displayed in the top row of each quadrant and follow an identical color scheme. Distributions outlined in 489 

purple on the top row correspond to population averages of the sample with those on the bottom row 490 
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outlined in blue corresponding to the ensemble estimates. Motor units were sampled from the decomposed 491 

population of tibialis anterior units (N = 2128). 492 
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DISCUSSION 493 

The increasingly prevalent implementation of HD-sEMG as a research tool has the potential to bolster 494 

insights into not only basic human and non-human neurophysiology but both healthy motor control and 495 

pathological motor dysfunction. In this paper, we addressed two potential limitations that researchers using 496 

HD-sEMG often encounter. That is, 1) the computational approach used to generate smooth discharge rate 497 

estimates and 2) the process of visualizing the discharge patterns of large populations of decomposed MUs. 498 

To address these potential issues, we suggest support vector regression (SVR) as an improved 499 

computational approach over traditionally used methods and put forth the visualization of large populations 500 

of MUs as ensembles.  501 

Estimating Motor Unit Discharge Rate 502 

In its current state, motor neuron and MU research lacks an agreed upon computational method for creating 503 

smooth continuous estimates of discharge rates. A recent comprehensive tutorial regarding HD-sEMG 504 

expertly detailed the process of extracting neural information from HD-sEMG, including data acquisition, 505 

decomposition, an overview of quantifiable MU properties, and motor unit tracking, but did not extend 506 

commentary on the optimal fit methods for MU analysis techniques (Del Vecchio et al., 2020). Various 507 

computational approaches are routinely employed to generate smooth estimates of discharge rate and have 508 

the potential to introduce artifacts in MU quantification and characterization protocols (Hassan et al., 2020). 509 

Commonly employed approaches include filtering of decomposed MU spike trains with a window function 510 

(i.e. Hanning window) or fitting instantaneous discharge rates with a polynomial function of an arbitrary 511 

degree. Though these methods are historically in wide use, investigation of their biasing effects on MU 512 

discharge estimates is lacking. In this paper we have highlighted these potential effects and proposed an 513 

alternative method, support vector regression, for creating smooth estimates of MU discharge rate.   514 

Support vector regression (SVR), as a computational fitting approach, provides far greater flexibility than 515 

Hanning (Hann) window filtering or polynomial regression and allows for greater optimization of fitting 516 

characteristics. Specifically, much like the principles of support vector machines (Cortes & Vapnik, 1995; 517 

Vapnik, 1995), SVR fits a hyperplane and margin to a collection of training data points, with use of a kernel 518 

function to effectively fit the data points in a higher dimensional space. These characteristics, in addition 519 

to the ability to independently weight observations, facilitates detailed SVR hyperplane optimization and 520 

allows for a collection of data points to be estimated in a highly tunable manner. This is particularly useful 521 

in creating smooth estimates of MU discharge rate when compared to traditional approaches, where edge 522 

effects from filtering with a window or over smoothing through polynomial regression can perceivable 523 

affect data interpretation. Indeed, as can be seen in Figure 3 and Figure 4,  SVR appears to offer a suitable 524 
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middle ground of mitigating noise (i.e. smoothing) while also retaining relevant characteristics of MU 525 

discharge (e.g. discharge rate at recruitment, initial amplification, and rate modulation phases).  526 

The ability of SVR to balance the tradeoff between bias and variance was achieved through the tuning of 527 

parameters for the kernel and the cost functions and allows SVR to generate more accurate estimates. As 528 

shown in Figures 4 and 5, this approach provides more accurate estimates when compared to both filtering 529 

with the Hanning window and regression with a polynomial function. When comparing SVR and Hanning 530 

window filtering, this is most evident in the fit error produced for the first five MU pulses. In these initial 531 

MU pulses, the Hanning fits produced significantly higher deviations across all muscles with an estimated 532 

increase in error over SVR fits of 0.758 pps (95%CI: [0.714, 0.802]) for the TA, 0.564 pps (95%CI: 0.521, 533 

0.608]) for the MG, and 0.430 pps (95%CI: [0.363, 0.496]) for the SOL. When Comparing SVR and 534 

polynomial regression, the over-smoothing effect of the polynomial fits can be seen in Figure 4 and Figure 535 

5, with the polynomials absolute error higher than the SVR estimates for the first five MU pulses in Figure 536 

5A and entire MU duration in Figure 5B. This increase in absolute error was most severe with the 5th degree 537 

polynomial, which produced an average absolute error for the first five instances of discharge that was 538 

0.225 pps (95%CI: [0.195, 0.256]) greater than the error observed with the SVR estimates. This increased 539 

error was also apparent across the entire MU duration with an average absolute error at any given instance 540 

of 1.052 (95%CI: [1.019, 1.086]) for the 5th degree polynomial, 1.021 pps (95%CI: [0.987, 1.054]) for the 541 

6th degree polynomial, and 0.949 pps (95%CI: [0.915, 0.982]) for the SVR fits. Though the differences 542 

between fits is small in magnitude, these values represent the average error at any given instance and will 543 

accumulate across the MU duration. The potential effects of these absolute fit errors on choice outcome 544 

metrics could be substantial and are apparent in the selected example MU in Figure 3. In this example, the 545 

Hanning fit underestimates the initial discharge rate by almost 2 pps and the polynomial functions omit the 546 

abrupt decrease in discharge rate on the descending portion of the ramp. The ramifications of these artifacts 547 

are blatant in Figure 6, where visualization of the ensembles broadcast the fitting characteristics of each fit 548 

method, a key strength of visualizing MU populations as ensembles.  549 

Population Visualization: Ensembles 550 

The increase in MU yield within studies employing modern HD-sEMG technology necessitates an intuitive 551 

approach to displaying the findings of a dataset in an efficient manner. We suggest that large MU datasets 552 

be visualized as ensembles. Ensembles are traces of MU discharge rate that represent the average discharge 553 

profiles of a subpopulation of motor units and can be used to quickly convey the discharge characteristics 554 

of a population of motor units. Here, we have subdivided our MU dataset into ten cohorts based upon torque 555 

at recruitment, to observe changes in discharge profile as a function of recruitment threshold, though an 556 

alternative parameter could have easily been chosen (e.g. discharge rate at recruitment). Depiction of these 557 
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ensembles can efficiently show characteristics of the MU populations discharge rate, including changes 558 

across the subdividing parameter as well as changes following an intervention should ensembles be 559 

constructed for both scenarios.  560 

The capability of ensembles to convey the underlying discharge characteristics of the MU population can 561 

be observed in both Figure 2 and Figure 7. In Figure 2A, the ensemble traces appear to overlay the non-562 

normalized SVR fits and represent the average discharge profile of the underlying TA MUs. This is apparent 563 

across ensemble cohorts, with the lower cohorts easily represented and the higher ensemble cohorts 564 

exhibiting a greater variability in derecruitment that the ensembles capture with the average instance of 565 

derecruitment. In Figure 7, distinct modes of MU discharge rate can be observed for each of the ten 566 

recruitment threshold cohorts across the TA, MG, and SOL muscles. This occurs in accordance with 567 

expected findings and includes an initial acceleration phase, where activation of PICs take place, a gain 568 

attenuation phase (post-acceleration rate saturation) where the PICs are likely saturated, a decay in 569 

discharge rate with decreases in torque, and subsequent hysteresis where the derecruitment discharge rate 570 

is decreased and occurring at lower torque values (Heckman & Enoka, 2012). Interestingly, a semblance of 571 

the “onion-skin” phenomena may also be conveyed with these ensemble plots when subdivided by 572 

recruitment threshold, of which could be used to further investigate this interesting phenomenon (De Luca 573 

& Contessa, 2015; Inglis & Gabriel, 2021; Piotrkiewicz & Türker, 2017).  Additionally, the differences 574 

between muscles (Figure 7) is stark and highlights the ability of these ensemble traces to efficiently convey 575 

differences in discharge rate between groups of MUs. When looking across muscles, the ensembles easily 576 

represent muscle specific changes in discharge rate and display comparable trends observed in literature 577 

(Kim et al., 2020).  578 

To characterize the relationship between the ensembles and underlying population of MUs, we conducted 579 

a simulation where we iteratively resampled our TA MU population, taking two-thirds of the population 580 

each time to generate ensembles. Results of this simulation illuminate the rich density of information 581 

garnered through the ensemble traces. Of note, the ensemble traces appear to represent the recruitment and 582 

derecruitment discharge rate nearly identically (Figure 8A), a key feature woven into their construction, 583 

while systemically under-estimating the peak discharge rate (Figure 8B). This under-estimation can likely 584 

be attributed to the aligning process, where instances of recruitment and derecruitment are aligned rather 585 

than the instance of peak discharge. Though the instances of peak discharge rate across MUs within a given 586 

ensemble are likely similar, there is a slight smoothing effect as peaks are misaligned. Across all ensembles 587 

this is estimated as an approximate attenuation of 0.725 pps (95%CI: [0.706, 0.744]).  Furthermore, though 588 

the time to peak discharge rate of the ensemble traces appear to closely track that of the MU population 589 

(Figure 8C), they are not identical. Across all ensembles, a delay of 0.160 s (95%CI: [0.152, 0.168]) is 590 
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estimated and should be considered when employing ensemble traces for quantification. Similarly, 591 

considering the quantification of ΔF across the population or through the ensemble traces, the ensembles 592 

produce estimates approximately 0.361 pps (95%CI: [0.336, 0.386]) higher across all ensembles (Figure 593 

8D).  594 

Though the ensemble estimates of peak discharge rate, time to this peak, and ΔF are significantly different 595 

than the underlying MU population tested here, their magnitudes and intended purpose must be considered. 596 

Explicitly, these deviations must be interpreted with the understanding that the ensembles are designed as 597 

a visualization tool to supplement the proper analysis and reporting of population statistics. With the proper 598 

analysis and reporting of population statistics, ensemble traces can be employed to quickly convey changes 599 

in discharge profile across the population with a level of accuracy sufficient for visualization purposes. 600 

Indeed, depending on scale, qualitative considerations such as line thickness can easily obscure the 601 

visualization of time to peak discharge by more than 160 ms.  With this in mind, visualization of ensembles 602 

allow for researchers to supplement their quantitative findings and portray MU discharge characteristics of 603 

an entire dataset in an intuitive manner where the various modes of MU discharge are observed.  604 

Further Considerations  605 

On a fundamental level, the visualization of ensemble traces are meant to portray average discharge 606 

characteristics of MU populations as an input-output function. Here we have chosen an input of torque at 607 

recruitment and isolated ten cohorts of MUs, though this can conceivably be expanded to a variety of 608 

neuronal discharge recordings and types of input variables. For example, the discharge patterns of cortical 609 

neurons within the auditory cortex could be separated by the frequency of auditory stimulation and 610 

visualized in a similar manner to what was conducted here (Bitterman, Mukamel, Malach, Fried, & Nelken, 611 

2008; Montgomery & Wehr, 2010). Additionally, the modulation of biceps brachii MUs during isometric 612 

elbow flexion ramps, subdivided by various degrees of deltoid activation, in individuals with chronic 613 

hemiparetic stroke could be used in a similar fashion to construct ensemble traces. This would supply 614 

unique insight into the prevalent coupling of shoulder abduction with elbow, wrist, and finger flexion post 615 

stroke (Dewald & Beer, 2001; Dewald, Pope, Given, Buchanan, & Rymer, 1995). More closely related to 616 

the paper at hand, we could have separated MUs into groups of equal sample sizes based on their torque at 617 

recruitment and gauged insight into recruitment spacing at the cost of insight into distinct differences across 618 

recruitment threshold.  619 

Potential Limitations 620 

Though the methods outlined here represent an incremental step in the analysis and visualization of MU 621 

discharge profiles, a few limitations must be considered. In specific, the biases introduced by each fit 622 

method highlighted here are only relevant to quantitative outcome metrics that employ smooth estimates of 623 
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MU discharge. The benefits of any computational approach are dependent on their application. Metrics that 624 

analyze adjacent aspects of MU discharge (e.g. inter-spike interval) would remain unaffected by the various 625 

fitting schemes. Furthermore, the improvement in estimates achieved through SVR are only improvements 626 

upon the two most commonly employed methods used in fitting spinal MU discharge rates. We are not 627 

proposing that SVR is the ultimate fitting method, that alternative approaches are inferior, or that 628 

improvements to the current approaches (e.g. bias correction for the windowing) are unavailable. Instead, 629 

we are emphasizing SVR as a modern approach that outperforms commonly employed methods.  Of 630 

particular note, though SVR outperforms a 6th degree polynomial, implementation of a 6th degree 631 

polynomial appears to outperform the commonly employed 5th degree polynomial, and thus could be 632 

considered in various circumstances. Lastly, more extensive hyperparameter optimization methods, such 633 

as a Bayesian optimization scheme, may provide superior results. 634 

CONCLUSIONS 635 

To address potential limitations in the analysis and visualization of large MU populations in modern HD-636 

sEMG studies, smooth estimates of MU discharge rates can be generated with SVR and MU populations 637 

may be visualized as ensembles. In this study, we have shown SVR to be an effective computational 638 

procedure for generating smooth estimates of MU discharge rate. In addition to possessing superior 639 

adaptability, when compared to Hanning window filtering and polynomial regression, SVR more accurately 640 

estimates the recruitment region of MU discharge while maintaining adequate accuracy throughout the 641 

duration of discharge. These desirable characteristics of SVR are highly evident when used to generate 642 

ensembles. The generation of ensembles, as defined in this study, represents a novel method to visualize 643 

the average discharge profiles of many MUs within a dataset. This allows for the efficient rendering of 644 

discharge characteristics that are representative of the entire dataset and not comprised of single choice 645 

example trials or a barrage of scatter plots. In combination, the use of SVR and generation of ensembles 646 

represents an efficient approach for portraying population discharge characteristics with appropriate 647 

accuracy for effective visualization.  648 
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