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Abstract

Repositioning existing drugs for new therapeutic uses is an efficient approach to drug discovery. We have developed a
computational drug repositioning pipeline to perform large-scale molecular docking of small molecule drugs against
protein drug targets, in order to map the drug-target interaction space and find novel interactions. Our method emphasizes
removing false positive interaction predictions using criteria from known interaction docking, consensus scoring, and
specificity. In all, our database contains 252 human protein drug targets that we classify as reliable-for-docking as well as
4621 approved and experimental small molecule drugs from DrugBank. These were cross-docked, then filtered through
stringent scoring criteria to select top drug-target interactions. In particular, we used MAPK14 and the kinase inhibitor BIM-8
as examples where our stringent thresholds enriched the predicted drug-target interactions with known interactions up to
20 times compared to standard score thresholds. We validated nilotinib as a potent MAPK14 inhibitor in vitro (IC50 40 nM),
suggesting a potential use for this drug in treating inflammatory diseases. The published literature indicated experimental
evidence for 31 of the top predicted interactions, highlighting the promising nature of our approach. Novel interactions
discovered may lead to the drug being repositioned as a therapeutic treatment for its off-target’s associated disease, added
insight into the drug’s mechanism of action, and added insight into the drug’s side effects.
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Introduction

The continuing decline of drug discovery productivity has been

documented by many studies. In 2006, only 22 new molecular

entities were approved by the Food and Drug Administration

(FDA) despite research and development expenditures of $93

billion USD by biotech companies and large pharmaceutical

companies, and this low productivity has not improved since [1].

From discovering, developing to bringing one new drug to market,

clinical trials are the most expensive step, accounting for 63% of

the overall cost [2]. To this end, drug repositioning - finding new

therapeutic indications for existing drugs - represents an efficient

parallel approach to drug discovery, as existing drugs already have

extensive clinical history and toxicology information.

Many of today’s repositioned drugs were discovered through

serendipitous observations, including high profile drugs sildenafil

by Pfizer - first developed for angina but later approved for erectile

dysfunction - and thalidomide by Celgene - first marketed for

morning sickness, then approved for leprosy and recently for

multiple myeloma [3]. Repositioned drugs have also been

discovered through rational observations, including imatinib

(Gleevec), which was first approved for chronic myeloid leukemia

by targeting the BCR-Abl fusion protein but was subsequently

approved for gastrointestinal stromal tumor due to its ability to

potently inhibit c-KIT [4]. Another example is the anti-depressant

duloxetine (Cymbalta) that is also indicated for stress urinary

incontinence based on a shared mechanism of action between the

two diseases [3]. In order to rationally reposition drugs, novel

target-disease or drug-target relationships must first be elucidated.

By screening compounds against a panel of proteins, there is

potential to discover novel drug-target interactions. Drug candi-

dates are routinely screened against a small panel of similar proteins

to determine their specificity to the intended target. Large panels

with hundreds of kinase proteins have been developed to assess

kinase inhibitor specificity [5], especially since we now know that

many kinase drugs are multi-targeting. However, the druggable

proteome is much larger than just the kinome, so larger and more

varied protein panels are needed to truly assess drug specificity.

With the availability of massively parallel DNA sequencing

technology, recurrently mutated proteins in diseases – such as

EZH2 in certain lymphomas [6] and FOXL2 in certain ovarian

cancers [7] - are now being rapidly determined and are also relevant

drug targets. However, testing all drugs against all targets

experimentally is extremely costly and technically infeasible.

Recent computational endeavors to predict novel drug

repositioning candidates have used methods incorporating protein

structural similarity [8], chemical similarity [9], or side effect

similarity [10]. One study also incorporated some molecular

docking to help filter interactions predicted through protein

binding site similarity [8]. Here we present a large-scale molecular

docking analysis of known drugs against known protein targets for

the prediction of novel drug-target interactions. Molecular docking

is a computational method that predicts how two molecules

interact with each other in 3-dimensional space. It is well
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established as a virtual screening method in drug discovery [11],

where typically many chemicals are docked against a specific

protein binding site, in order to discover novel inhibitors of that

target. Compared to similarity analyses, docking has the potential

to find drugs that bind to proteins with novel scaffolds as well as

off-targets that may be structurally dissimilar to the known targets.

Large-scale docking of many targets to many drugs is now

feasible when run on powerful computer clusters. However,

limitations in scoring methods result in high false positive

prediction rates [12], and large-scale studies amplify these low

prediction accuracies. Our method emphasizes removing false

positive predictions using scoring and ranking thresholds, and

retaining only the highest confidence interactions as drug

repositioning candidates.

Results

Computational pipeline
A computational pipeline was developed for large-scale

molecular docking of drugs to protein targets (Figure 1). Briefly,

we collected all 3D structures available for each drug target,

determined binding pockets in the structures, and docked drugs to

each pocket. Results were collected and thresholds were applied to

select the top predicted interactions, which were then visually

inspected.

Known interactions docking
We first docked 3570 known protein-drug interactions anno-

tated by DrugBank, between 678 unique human proteins and

1309 small molecule drugs. We used the docking software ICM

developed by Molsoft [13], which ranks ligands using a Monte-

Carlo based docking procedure and an empirical, energetics-based

docking score. Like most docking software, ICM recommends a

standard score cut-off for virtual screening efforts: 232 [14],

where more negative scores represent more likely binding

interactions. However, studies have used different cut-offs

depending on the protein target [15]. Here we used a score of

230 as the threshold for ‘good’ dockings scores. Of the 3570

known interactions docked, 1116 (31%) had a good ICM docking

score. 252 proteins had at least one known interaction predicted

by docking – these formed the ‘reliable’ set of proteins that we

believe are more suited for docking purposes. A breakdown of

protein classifications for this reliable set revealed that 67% of

targets were enzymes, of which 12% were protein kinases. In

contrast, there were few G-protein coupled receptors in our

database due to lack of crystal structures, which reflects both the

current state of solved protein crystal structure space as well as

popular drug targets.

Known interactions docking evaluation
In high-throughput molecular docking, it is common to hold

protein structures rigid during the simulation. With this restriction,

re-docking a PDB ligand back to its native PDB structure (cognate

docking) is a simpler task than docking a different ligand to the

structure (non-cognate docking) because in the former case the

protein is already in a specific ligand-bound conformation.

Cognate-docking situations occur frequently and previous studies

show that they can be docked well in 60–80% of cases [16]. In

contrast, the more useful non-cognate docking is only successful in

20–40% of cases [16].

We analyzed the 1116 known interactions to examine whether

those that docked well were only due docking cognate ligands. For

each interaction, we observed whether the drug bound 1) a holo

Author Summary

Most drugs are designed to bind to and inhibit the
function of a disease target protein. However, drugs are
often able to bind to ‘off-target’ proteins due to similarities
in the protein binding sites. If an off-target is known to be
involved in another disease, then the drug has potential to
treat the second disease. This repositioning strategy is an
alternate and efficient approach to drug discovery, as the
clinical and toxicity histories of existing drugs can greatly
reduce drug development cost and time. We present here
a large-scale computational approach that simulates three-
dimensional binding between existing drugs and target
proteins to predict novel drug-target interactions. Our
method focuses on removing false predictions, using
annotated ‘known’ interactions, scoring and ranking
thresholds. 31 of our top novel drug-target predictions
were validated through literature search, and demonstrat-
ed the utility of our method. We were also able to identify
the cancer drug nilotinib as a potent inhibitor of MAPK14,
a target in inflammatory diseases, which suggests a
potential use for the drug in treating rheumatoid arthritis.

Figure 1. The computational molecular-docking pipeline.
doi:10.1371/journal.pcbi.1002139.g001
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(unliganded) protein structure, 2) an apo (liganded) structure with a

same or similar ligand as the drug (the cognate-docking scenario),

or 3) an apo structure with a chemically different ligand from the

drug. Chemical similarity was defined as having a Tanimoto

coefficient less than 0.54. Figure 2 shows that cognate docking

occurred in 380 of the 1116 interactions. Of these, only 56 were

drugs docked to an apo protein with the same ligand (Tanimoto

coefficient of 0). The majority of drugs docked well to holo

structures as well as apo structures with dissimilar ligands. In short,

the ICM docking method was able to predict known interactions

for both cognate and non-cognate docking scenarios.

Aside from the docking score, it was also important to verify that

the ligands were docked in correct binding conformations. We

further examined the 380 cognate dockings and found that the

docked drug conformation was close to the known drug

conformation (RMSD value #2 Å) in 69% of cases. The other

31% fell into two categories: 1) partly symmetrical ligands like

NAD and 2) ligands that bound to a small pocket. In the first case,

the molecule was incorrectly determined to be flipped, causing a

high RMSD; however, its central portion was docked correctly

due to symmetry. In the second case, the region of ligand bound in

the pocket was docked correctly, but the region free in solvent

contributed to a poor RMSD value. Overall, this analysis showed

that when a known interaction was docked with a good score, the

binding conformation was also reasonably predicted.

Known drug-target network
We gathered the known protein-drug interactions into a network

(Figure 3) with proteins as rectangular nodes, drugs as circular

nodes, and interactions as edges. Interaction edges with good

docking scores were highlighted in red. Proteins from the same

family were often grouped close together and shared many drug

interactions, such as the retinoid X and retinoic acid receptors and

the matrix metalloproteinases. Proteins having the most known drug

interactions in the network included the transport proteins serum

albumin and the phosphatase PTPN1. The most highly-connected

chemicals in the network were metabolites: ATP, NAD, and NADP.

For some proteins such as MAPK14, 13 of 14 known inhibitors

were well predicted by docking, whereas for others such as ACE,

only one of its nine known inhibitors scored well. For 426 of the 678

protein targets not included in Figure 3, none of their known

interacting drugs could be docked well, reflecting the limitations of

current molecular docking methods. To this end, we chose the

subset of 252 protein targets for which at least one known drug

docked well (from the 1116 interactions that docked well), deemed

as more ‘reliable-for-docking’ compared to the other proteins.

Large scale cross-docking & score thresholds
We proceeded to dock the 252 reliable protein set against the

database of 4621 drugs. Considering the multiple crystal structures

per protein and the multiple binding pockets per structure, there

were a total of 1514 crystal structures and 2923 binding pockets.

Each drug was docked to all binding pockets of a protein and

whichever pocket gave the best docking score for the drug

determined the final protein-drug score. This method allowed

multiple conformations of a protein to be accounted for during

docking and provided a simple model of protein flexibility.

In total, we docked 1.2 million protein-drug interactions.

104,625 (0.9%) had ICM docking scores (icm-score) of 230 or

better, encompassing all1116 known interactions in the reliable

data set. Since the fraction of known interactions in the predicted

set was so low, we assumed that the vast majority of predictions

were false positives. Though we believed that novel drug-target

interactions existed and were enriched within these 104,625, there

was clearly a need for more stringent score thresholds.

We investigated various methods of selecting top drug-target

interactions. The standard software-recommended icm-score is

based on a weighted sum of various binding energy terms [13].

The pmf-score, or potential of mean force score, is a measure of

the statistical probability for the drug and protein to interact with

each other (for example, it examines interatomic distances and

atom types of the docked interaction and compares that to existing

interactions in PDB) [14]. A consensus score was developed that

uses both icm- and pmf- scores and allows us to select the x% of

top interactions for each protein; it is described in more detail in

case studies below. We also ranked interactions in two ways. The

drug-rank is the rank of this drug compared to all drugs docked to

this protein (from 1–4621), and the protein-rank is the rank of this

protein when the drug is docked to all proteins (from 1–252).

Requiring high drug and protein ranks (i.e. a low value when the

two ranks are summed together) enforces a mutual specificity

criterion. We hypothesized that by choosing interactions with

good scores and ranks, we would better filter out false positive

predictions.

To assess performance, we measured the positive predictive

value (PPV), defined as the proportion of predicted interactions

that are known binding interactions. The premise is that a better

threshold would yield a set of predictions more enriched with

known interactions, and novel interactions that are more likely be

true binding events. Figure 4a shows that as the stringency of a

threshold increased (i.e. icm-score of 240 versus 230), fewer

interactions are predicted; however, the PPV increased due to a

higher proportion of known interactions in the predicted set. This

behavior is consistent for all thresholds, and the highest PPVs are

generally observed within the top 100 predicted interactions. It is

important to note that each of the 4621 drugs will always have a

top-ranked protein (interactions with protein-rank of 1), and each

of the 252 proteins will always have a top-ranked drug

(interactions of drug-rank 1). Thus, the protein-rank threshold

particularly is not sensitive alone.

Figure 2. Evaluating the known drug-target docking. 1116 (31%) of 3570 known interactions docked with a good score. Two-thirds of the
1116 were ligands docking to non-cognate protein structures, showing that the method could do more than re-dock existing drug-target structures.
doi:10.1371/journal.pcbi.1002139.g002
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The protein-rank and pmf-score thresholds appeared to be the

worst based on both the PPV plot (Figure 1) and on enrichment

factors (Table 1). However, they showed better PPVs when

combined with other thresholds. For example, the drug rank and

protein rank measure performs much better than drug-rank alone,

and the consensus score (combining icm- and pmf-score) also

performs better than the icm-score alone. We measured the

enrichment factor for each type of threshold, at its most stringent

setting (leftmost points of Figure 4a) and found that the pmf-score

and protein-rank were the least effective at predicting known drugs

(Table 1). Instead, combinations of score and rank criteria

provided a 100–5006 enrichment of known interactions com-

pared to a random algorithm, and a10–506 enrichment com-

pared to a standard binding energy-based ICM score cut-off of

230. Interestingly, the drug-rank 1 and protein-rank 1 (basically

the sum of ranks is 2) combination threshold performs surprisingly

well; however, adding the consensus score clearly improves PPV

for the top ,300 interactions (Figure 4b) which are the most

interesting to us for manual inspection.

Another threshold method is to use the scores of known binders

as the score cut-off for each protein. We investigated this using the

best and worst icm- and pmf-scores of known drugs. Table 2 shows

that this did not result in a higher enrichment, nor did it help

narrow down the number of predicted interactions.

Overall, the combination of consensus score with the two ranks

gave the highest PPV and enrichment values: in the top 50

predicted interactions, 49% are known. This gave us confidence

that many of the other 51%, all novel interactions, are real.

Case study: MAPK14
Two examples are presented to illustrate the utility of

combining rank and scoring criteria. The first is for the signaling

protein MAPK14 (also known as p38 alpha), an integral

component in numerous cellular processes. It is a drug-target for

inflammatory diseases [17]. MAPK14 is known to be a challenging

Figure 3. Network of known protein-drug interactions. Proteins
are shown as rectangular boxes (nodes), drugs are shown as pink
(approved) and blue (experimental) circles, and edges represent known
interactions annotated by DrugBank. Edges colored red denote known
interactions that were docked with a good icm-score. Here we show
only the 252 proteins for which at least one known drug docked well –
the ‘reliable-for-docking’ set. The proteins at the bottom of the graph
are not connected to other proteins through shared binding drugs.
doi:10.1371/journal.pcbi.1002139.g003

Figure 4. Score thresholds assessment. Various combinations of score and rank thresholds were assessed using the positive predictive value
(PPV). A) shows the PPVs for thresholds predicting less than 7000 interactions. B) is a zoomed in version showing clearer PPV separation for the top
500 predicted interactions.
doi:10.1371/journal.pcbi.1002139.g004
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docking target due to its structural flexibility [18] and its shallow

binding pocket [19]. However, these docking studies used only one

3D structure. In our dataset, there are 35 crystal structures of

MAPK14 in different conformations, providing a simple view of

protein flexibility.

The consensus score is based on the observation that when

docking a large number of diverse compounds to any target, most

compounds have poor icm- or pmf- scores, and few compounds

have both good icm- and pmf- scores. Therefore, we chose a linear

threshold that eliminated the densest area of points in the poor

scoring region (top-right) of a score plot like Figure 5, and selects

the compounds in the best scoring region (bottom-left) as potential

interaction hits. As seen in Figure 4a and Table 1, the consensus

score performed better for PPVs and enrichments compared to a

simple icm- and pmf- score combination.

Figure 5 plots the icm- versus pmf- scores of the 4621 drugs

docked to MAPK14. Each drug is a point on the graph, where the

5% of drugs passing a consensus threshold are shown in orange,

and the 1% passing a consensus threshold are shown in purple.

For 67 drugs, MAPK14 was one of the top 5 scoring targets; they

are circled in green. Table 3 shows that a combination of the

consensus and protein rank criteria resulted in the best enrichment

(1106) of known drugs. There were 15 annotated known binders

of MAPK14 in DrugBank, but we disregarded 2-chlorophenyl due

to it being a very small molecule with a very weak MAPK14-

binding affinity (.1 mM). 10 of 14 known drugs were predicted

through our stringent thresholds. Though 4 true positive binders

were lost, 99.99% of points were eliminated, presumably

consisting mostly of non-binders. Through literature search, we

found that imatinib and quercetin have been previously tested

against MAPK14 and did not show any inhibition [20]. This

suggested that the 5% consensus threshold was too lenient for

MAPK14, whereas the 1% was more appropriate. Within the

other approved drugs predicted to bind MAPK14, we found

literature validation for sorafenib, a multi-kinase inhibitor appro-

ved for renal cell carcinoma [21], and gefitinib, a EGFR inhibitor

approved for late stage non-small cell lung cancer [22].

Previous high-throughput studies have shown varying results

regarding nilotinib-MAPK14 inhibition. Some enzymatic assays to

MAPK14 showed weak inhibition: 570 nM or 2.2 mM depending

on the assay type [23]. Direct binding assays have shown 100 nM

Kd [23] or no binding at all in peptide pulldown experiment [20].

Since nilotinib was one of our top approved drugs predicted to

bind MAPK14, we decided to further experimentally validate the

Table 1. A comparison of various threshold methods based on their ability to predict a high percentage of known interactions
(PPV) and enrich the predicted interaction set for known interactions.

threshold

# predicted

interactions

# known in

predicted interactions

# proteins in

interactions

% known in

predicted set (PPV)

enrichment factor

versus random

random 1,164,492 1116 252 0.1% 1

icm-score of 230 104,625 1116 252 1.1% 11

pmf-score of 2300 150 3 20 2.0% 21

protein-rank of 1 4621 234 206 5.1% 53

consensus score 0.05% 437 45 238 10.3% 107

icm-score of 2100 72 9 17 12.5% 130

drug-rank of 1 252 42 252 16.7% 174

icm-score 2100
& pmf score 2140

48 8 13 16.6% 174

drug rank 1 & protein rank 1 53 16 53 30.2% 315

consensus score 0.05% & sum
(drug rank, protein rank)#4

45 22 39 48.8% 510

Thresholds are listed by increasing enrichment. It is also important to consider the size of the predicted set and how many proteins are included.
doi:10.1371/journal.pcbi.1002139.t001

Table 2. A comparison of various threshold methods based on their ability to predict a high percentage of known interactions
(PPV) and enrich the predicted interaction set for known interactions compared to other methods.

Threshold

# predicted

interactions

# known in

predicted

interactions

# proteins in

interactions

% known in

predicted set (PPV)

enrichment

factor

versus random

use icm- score of worst scoring
known binder

62337 1117 252 1.8% 20

use icm- & pmf- scores of worst
scoring known binder

28840 716 252 2.5% 27

use icm- score of best scoring
known binder

16412 253 252 1.5% 17

use icm- & pmf- scores of best
scoring known binder

7859 253 252 3.2% 35

These thresholds use the best and worst scores of known binders for each protein.
doi:10.1371/journal.pcbi.1002139.t002
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interaction. We performed MAPK14 ATP-competitive binding

assays for two inhibitors that were available for purchase:

zafirlukast, and nilotinib. As seen in Figure 6, both drugs exhibited

inhibition of MAPK14 at therapeutically relevant concentrations

(,10 mM) in a dose dependent manner. Zafirlukast (AstraZeneca)

is an oral leukotriene inhibitor that reduces inflammation of

breathing passage in asthma patients. We found that it does inhibit

MAPK14 weakly, and this may contribute to its inflammation

reducing effect. The chronic myeloid leukemia drug nilotinib was

especially potent with an IC50 of 40 nM.

Despite their appeal as an inflammatory disease target,

MAPK14 drug candidates to date have failed due to drug toxicity

issues [24]. Though it may seem underwhelming to use a cancer

drug with potentially serious side effects to treat inflammation,

nilotinib is noted to have a much milder adverse effects profile

compared to its similar drug dasatinib [20]. Another similar drug

imatinib has shown promise in treating rheumatoid arthritis in

mouse models [25] and specific patients [26,27], speculated due to

its inhibition of mast cell c-Kit and PDGFRB. Nilotinib also

inhibits these two proteins, and its extra inhibition of MAPK14

may render it a better choice for arthritis models. Recently,

nilotinib was tested in a glucose-6-phosphate-isomerase-induced

arthritis mouse model and found to significantly prevent paw

inflammation – to a greater extent than imatinib [28]. This study

also suggested that the two drugs acted through some distinct

mechanisms. Overall, these findings seem to agree with our

observations that nilotinib potently inhibits MAPK14, unlike

imatinib, and thus has added potential as an anti-inflammatory

drug.

Case study: BIM-8
A second example is the Protein Kinase C inhibitor BIM-8. We

docked BIM-8 to the set of 252 reliable targets, and the results are

plotted in Figure 7. Each point on the graph represents a protein

target, and targets for which BIM-8 passes the 5% consensus

threshold are shown in orange.

We compared our results to three previous studies. Two studies

performed protein kinase assays with radioactive ATP and

substrate peptides, where inhibitor binding decreases the amount

of radioactive peptide produced [29,30]. The third study

performed thermal shift assays where inhibitor binding increased

the kinase stability and thus the melting point [31]. BIM-8 targets

discovered by these papers are shown in shades of red in Figure 7,

and non-binders in these papers are shown green. The only

annotated target of BIM-8 in DrugBank is PDPK1. GSK3B and

PIM1, which are in the top 5 protein rank and top 5% consensus

threshold, were also validated as inhibitors. PDPK1 was not found

to be an inhibitor by the first two studies but was confirmed as a

Figure 5. A score-plot containing docking ICM- and pmf- scores for 4621 drugs to MAPK14. Each point represents a drug. The top 5% of
the drugs as determined by the consensus scoring threshold are shown as orange dots. These drugs were also docked to the 252 other drug targets
in our database, and circles denote the drugs for which this protein was one of the top 5 targets for the drug. The circle colors denote whether the
protein rank was based on the ICM score (green) or the pmf score (purple). Finally, drugs that are known to bind MAPK14 are shown in red boxes, and
it can be seen than most of these red boxes pass both the consensus and protein rank thresholds.
doi:10.1371/journal.pcbi.1002139.g005

Table 3. Enrichment factors of various thresholds for
MAPK14.

all docked

drugs

known drugs

ligands

enrichment

factor versus

random

# docked to
MAPK14

4621 14 1

# passing icm
score #230

970 14 5

# passing 5%
consensus score

225 10 15

# passing 5%
consensus &
protein rank #5

67 10 49

# passing 1%
consensus score

45 6 44

# passing 1%
consensus &
protein rank #5

18 6 110

doi:10.1371/journal.pcbi.1002139.t003
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binder by the third study with a kinase assay and crystal structure.

Overall, if we count that there are 4 known binders (PIM1,

PDPK1, GSK3B, LCK, since CDK and MAPK14 are probably

weak or nonbinders), we can see that applying a 5% consensus

threshold and protein rank criteria gave us a 63-fold enrichment

over random selection, and a 63/10.5= 46 fold enrichment over

using a standard ICM score threshold of 230 (Table 4).

Drug-target interaction map
For a global and quantitative review of the predicted protein-

drug interactions, we plotted the icm scores of drugs docked to

established drug targets (Figure 8). Each protein is represented by

a column, on which a black line denotes a known drug docked to

the target, a red dot denotes an approved drug docked to the

target, and a blue dot denotes an experimental drug docked to the

target. Only protein-drug interactions that docked with a score

passing the consensus threshold and had a protein-rank #5 are

shown.

Overall, the known drugs (black crosses) had better scores than

other drugs for a given target. This was expected, as many of these

known drugs were chemically optimized for their targets. For a

number of targets, the known drug was the only predicted

interaction. None of the approved and experimental drugs from

DrugBank were able to dock well, despite a reliable protein

structure, suggesting that virtually screening larger chemical

databases may be the only way to discover novel inhibitors by

docking. For most targets, at least one experimental drug showed a

better score than the known drugs; however, experimental drugs

are often unavailable for purchase or experimental testing.

Instead, we were most interested in cases with approved drugs

such as the MAPK14-sorafenib example which was verified by the

literature, and the MAPK14-nilotinib example which we verified

with an in vitro kinase assay.

Through literature search, we found experimental support for

many of our top drug-target predictions that scored better than

known interactions (Table 5). These all pass the 1% consensus

threshold and are observed to have high drug and protein ranks

for the most part. It is important to note that the drug-rank

depends on the number of known binders for the protein; thus,

since ESR1 had 39 annotated drugs in DrugBank, a drug-rank of

16 is not as low. In contrast, a drug-rank of 16 would be low for

MMP13, which has only seven annotated drugs in DrugBank.

One type of validated interaction includes drugs that are close

analogs of known drugs for that target; for example, the estrogen

analog ERA-923 is a known selective estrogen receptor modular

(SERM) [32]. Genistein is known to bind both ESR1 and ESR2

[33]. Becocalcidol and ED-71 are vitamin-D analogs and bind the

vitamin D receptor [34,35]. Drosiprenone is a synthetic progestin

with anti-mineralocorticoid receptor (MR, NR3C2) effects and has

potential for reducing cardiovascular risk in women taking oral

contraceptives or postmenopausal hormone treatment [36]. Due

to the many in depth studies on kinase inhibitor specificity, we

were able to find collaborating evidence for some of our kinase

protein interaction predictions. For example, vatalanib is a known

pan-VEGFR inhibitor [37], nilotinib is a potent KIT inhibitor

[38], and other inhibitors of MAPK14 and targets of kinase

inhibitor BIM-8 were discussed in previous sections. Docosahex-

anoic acid (DHA, DB03756) is an endogenous ligand for brain

fatty acid binding protein (B-FABP) that is essential for brain

growth and function [39]. We predicted that it binds the transport

protein human serum albumin; indeed, this interaction has been

validated and found to confer neuroprotection in animal models of

ischemia [40]. This finding suggested that DHA might have

potential repositioning value for ischemic stroke.

Overall, we were able to find literature support for 30 of our top

predicted interactions, which validated our computational method

as useful for finding novel drug-target interactions.

Discussion

The binding of a small molecule drug to its target protein in a

cell is much more complex than a single docking calculation. For

example, an ATP-competitive kinase drug would have hundreds of

ATP-binding sites to choose from due to the large size of the

kinome. Cancer drugs such as sunitinib are now known to potently

inhibit many more kinase targets than previously expected [41]. In

addition, non-kinase targets of kinase drugs have also been found:

NQO2 was the first non-kinase target discovered for imatinib

Figure 7. Docking icm- and pmf- scores for BIM-8 docked to
252 reliable-for-docking protein targets. Each point represents a
protein target. Targets for which BIM-8 passed a consensus threshold
are shown as orange dots (top 5%) and brown dots (top 1%). Targets
with experimental support are enclosed in red colors. Targets that have
shown no binding activity with BIM-8 in the literature are shown in
shades of green. It can be seen that most of the actual targets of BIM-8
pass stringent consensus score thresholds.
doi:10.1371/journal.pcbi.1002139.g007

Figure 6. Testing nilotinib and zafirlukast in ATP-competitive
enzymatic assays against MAPK14. Results are plotted as percent
inhibition of activity versus drug concentration. The nilotinib-MAPK14
IC50 was calculated to be 40 nM.
doi:10.1371/journal.pcbi.1002139.g006
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[20,42], and several cytotoxic LIM kinase inhibitors were found to

be actually inhibiting tubulin [43]. Such studies imply that the

target search space for any inhibitor should be the entire

druggable proteome.

Our strategy was to find novel drug targets of existing drugs by

computationally screening the druggable proteome. For this

purpose, we chose molecular docking due to its speed, low cost,

and detailed three-dimensional simulation. Moreover, docking can

evaluate any protein with a solved structure due to its virtual

nature, without the need for tailoring enzymatic assays or

collecting drugs in solutions. However, docking is known to have

a high false positive prediction rate, due to limitations such as

incomplete binding pocket prediction, inadequate ligand confor-

mation sampling, inaccurate scoring functions, lack of protein

flexibility, and lack of water and cofactor molecules during the

simulation. As evidenced in this study, only 31% of the 3570

known interactions docked with a good score. One review states

that 10–50% of a set of diverse compounds can be expected to be

docked correctly for a given target [12]. We are well within this

range, and believe our method performs quite well considering the

large variety protein targets involved and the automated nature of

the pipeline. However, the other 69% of known interactions were

not predicted due to docking limitations.

Our method attempted to address these limitations. First, we

manually included binding pockets that were present in PDB

structure complexes but not predicted by the binding pocket

search. Second, we docked each interaction 10 times to better

sample ligand conformations. Third, we applied consensus score

Table 4. Enrichment factors of various thresholds for BIM-8.

all docked

proteins

known protein

targets

enrichment

factor versus

random

# proteins BIM-8
was docked to

252 4 1.0

# passing default
score #230

24 4 10.5

# passing 5%
consensus score

20 4 12.6

# passing 1%
consensus score

6 3 31.5

# passing 5%
consensus &
protein rank #5

3 3 63

# passing 1%
consensus &
protein rank #5

3 3 63

doi:10.1371/journal.pcbi.1002139.t004

Figure 8. Quantitative interaction map of drugs docked to protein targets, according to their ICM docking score. Each protein is
represented by a column, on which a black cross denotes a known drug docked to the target, a red dot denotes an approved drug docked to the
target, and a blue dot denotes an experimental drug docked to the target. Only the top predictions for established drug targets (at least one known
approved drug) that docked with a score passing the consensus threshold and had a protein-rank #5 are shown.
doi:10.1371/journal.pcbi.1002139.g008
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and rank criteria to further narrow down top scoring docking hits.

Fourth, we used all available structures of a protein (versus

choosing one representative structure), to allow a simple view of

protein flexibility. We did not incorporate water and cofactor

molecules in our docking simulations due to the computational

complexity involved. However, by selecting proteins for which at

least one known drug docked and scored well, we selected proteins

for which the limitations of the docking software were not critical

for a good prediction. In short, assuming the docked conformation

of the known ligand was correct, we used only proteins for which

the binding pocket was genuine, the scoring functions were

adequate, the protein was in a conformation amenable for drug

Table 5. Top predicted hits that have literature support.

protein drug icm score pmf score drug rank protein rank notes

AIFM1 DB02332 279 2231 1 1 Flavin is a cofactor. [51]

ALB DB03756 266 2163 1 2 Dosahexanoic acid (DHA) can form complex with
albumin and confers neuroprotective effects in rats.
[40]

ALB DB06689 251 2130 84 3 Ethanolamine oleate promptly binds with albumin
in the blood [52]

AKT1 DB03265 281 295 2 1 Crystal structure of inositol 1,3,4,5-
tetrakisphosphate bound to AKT1. [53]

BTK DB03344 269 299 1 3 [54] shows that inositol 1,3,4,5-tetrakisphosphate
binds to BTK. This compound is very similar: inositol
1,3,4,5,6 tetrakisphosphate.

CYB5R3 DB02332 271 2258 2 2 Flavin is a cofactor. [55]

ESR1 DB05414 247 2197 3 1 ERA-923 is a selective estrogen receptor modulator.
[32]

ESR1 DB01645 242 2109 16 1 Genistein is a selective estrogen receptor
modulator. [33]

GART DB02223 263 2126 1 5 LY-231514 tetra-glu a known thymidylate synthase
inhibitor. LY-231514 is pemetrexed, a GART and
thymidylate sythase inhibitor. inhibitor. [56]

GART DB02794 262 2147 2 4 Crystal structure of compound bound to E.coli
GART. [57]

GSR DB02332 257 2211 Flavin is a cofactor. [61]

KDR DB04879 249 2152 1 1 Vatalanib is a pan VEGFR inhibitor. IC50 37 nM. [37]

KIT DB04868 244 2240 4 2 Nilotinib. [38]

MAPK10 DB00317 239 2183 72 3 Gefitinib binds MAPK10 weakly: Kd = 2–3 uM. [58]

MAPK14 DB00398 251 2161 2 2 Sorafenib IC50 0.057 uM. [59]

MMP2 DB02255 237 284 1 6 Illomastat is a broad-spectrum MMP inhibitor. Ki
0.5 nM (Chemicon International Inc, Temecula, CA)

MMP8 DB02255 244 267 2 1 Illomastat is a broad-spectrum MMP inhibitor. Ki
0.1 nM (Chemicon International Inc, Temecula, CA)

NR3C2 DB01395 248 2150 1 1 Drospirenone, a progestogen with
antimineralocorticoid properties. [60]

PPARD DB03756 262 2144 1 4 DHA can activate PPARD. [61]

PPARG DB06536 247 2130 9 1 Tesaglitazir is a dual PPARA/PPARG agonist [62]

RAC1 DB03532 2120 2145 1 1 RAC1 is a GTPase [51], and this compound is a
standard GTP analog.

RARG DB02466 258 2216 1 1 BMS181156 binds RARG with Kd 0.6 nM. [63]

RARG DB02258 256 2220 2 1 SR11254 is a RARG-selective ligand [64].

RARA DB05076 245 2131 6 2 4-HPR is a highly selective activator of retinoid
receptors. [65]

RARG DB05076 246 2134 6 1 4-HPR is a highly selective activator of retinoid
receptors. [65]

RARG DB02741 252 2217 3 1 CD564 binds RARG with Kd 3 nM. [63]

RARG DB03466 246 2208 11 1 BMS184394. [63]

RXRA DB03756 254 2137 1 8 DHA. [66]

RXRA DB04557 253 2156 2 5 Arachidonic acid. lit support. [63]

VDR DB04891 249 2204 1 1 Becocalcidiol, a vitamin D analog. [34]

VDR DB04295 244 2297 4 1 ED-71, a vitamin D analog. [35]

doi:10.1371/journal.pcbi.1002139.t005
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inhibition, and the lack of water or cofactor molecules didn’t

drastically affect the prediction.

Virtual screening studies typically involve docking large

chemical databases to one protein target, selecting compounds

that score within the top 0.5–1% of the database and then further

prioritizing them by visual examination. When experimentally

validating these top candidates, a 5% hit rate can be considered a

successful endeavor (where a good hit is a predicted compound

showing an experimental binding affinity in the mM or lower

range) [44]. Depending on the target, the crystal structure, the

software used, post-docking criteria (such as chemical clustering),

and even the individual performing the visual examination, the hit

rate can be improved to 10–40% (Cavasotto et al. had 14% hit rate

from 50 tested compounds [15]; Sabio et al. had a 36% hit rate

from 56 tested compounds [45]).

In our case, both the standard scoring threshold and the known-

inhibitor score were not sufficient. With a normal score threshold

of 230, docking 4621 drugs against 252 proteins resulted in

104,625 predicted interactions. This is roughly 1% of the docked

interactions, so even selecting the top 1% of the docking hits for

validation becomes prohibitive for large-scale studies. It is

important to note that each protein has different physiochemical

properties: for some proteins, hundreds of compounds pass the

230 cut-off, while for other proteins none pass. Thus, using the

known-inhibitor score as a cut-off allows for a threshold that is

tailored to each protein. However, this method still predicted

,8000 interactions at the most stringent. Our consensus threshold

allowed us to pick the top 1% (or any x%) of docked compounds

with the best icm- and pmf- scores for each protein and further

filter from there. Through testing many combinations, we found

that using the consensus score with rank information allowed us

the highest PPV – nearly 50% - and enrichment factor – 50 times

better than standard 230 score threshold and 490 times better

than random selection. This high enrichment for known

interactions suggests that many of the other predictions that have

not yet been experimentally tested may be true binding

interactions.

There are limitations to this scoring scheme. Since the pmf-

score is a statistical score comparing the docked interaction to

known interactions in PDB, a chemical with a different scaffold or

novel binding conformation may have a poor pmf-score and

become predicted as a false negative. However, our foremost goal

in this study was to eliminate as many false positive predictions as

possible and obtain a high enrichment of true positives in our

predicted interaction set. Thus, it was acceptable to miss some

false negative predictions. In addition, the consensus score is quite

simple with a linear separation method, and may not be as

informative as a machine-learning algorithm that trains on known

ligand docking scores. However, we desired an automated scoring

method that did not depend upon the existence of known ligands.

That is, if a protein structure had just one, or no known binders,

our method would still be able to select the top 1% of docking hits.

To date, cross-docking of proteins to compounds has generally

been used for small datasets. As an example, Huang et al. docked

40 targets against 40 compounds to check whether their docking

method could distinguish between a target’s cognate ligands and

the other targets’ cognate ligands [19]. In this large-scale cross-

docking study, our use of a 1000-processor cluster was essential to

completing the tens of millions of docking simulations in a timely

manner. In addition, the large number of crystal structures and

binding pockets involved required much of the docking pipeline be

automated.

High-throughput computational screening of drug-target inter-

actions represents a parallel approach to high-throughput experi-

mental screening. Due to differences in experimental methods,

assay settings, and protein panels, different studies may present

differing results. For example, small molecule affinity purification

methods that use whole cell lysates would give different results

from in vitro kinase assays that use a specific panel of proteins. In

the case of gefitinib, two such studies had distinct differences in

their proposed cellular targets [22,41]. Differences in methods are

also further compared in a study by Manley et al [23]. We

presented an example for BIM-8, which binds to PDPK1

differently in two similar in vitro experiments. For MAPK14, the

experimental results for nilotinib also varied. We experimentally

tested two purchasable approved drugs against MAPK14 and

found that nilotinib was a strong nanomolar inhibitor, and

zafirlukast was also an inhibitor, though not as potent. Thus,

interactions that are predicted to be very likely inhibitors

computationally may merit extra study even if experimental tests

are initially negative.

In short, we have developed a computational pipeline that can

run large-scale cross-docking of compounds to targets. We

developed stringent criteria to filter a large proportion of false

positive interactions. The two case studies presented were selected

based on known experimental binding assay data, so as to

demonstrate the notable enrichment of known interactions using

our scoring and ranking criteria. We hypothesized that predicting

a set of interactions with a higher PPV (enrichment of known

interactions) would also lend confidence to the other novel

interactions in the set. This appears to have worked, as we were

able to find validation for 31 predicted drug-target interactions

that were not previously annotated in DrugBank, as well as

validate two other inhibitors of MAPK14. Other drug-target

interaction predictions are currently undergoing experimental

validation; novel interactions discovered are potential drug

repositioning candidates, but also provide insight into a drug’s

mechanism of action and adverse effects profile.

Methods

Pocket database and drug database construction
We downloaded the DrugBank 2.5 database [46], containing

drug information and comprehensive information of their targets.

We extracted human protein drug targets from DrugBank and

retrieved their sequences from SwissProt [47]. Protein Data Bank

structures showing at least 95% sequence identity for proteins at

least 20 amino acids in size were downloaded. They were required

to be X-ray crystal structures with a minimum resolution of 2.8 Å.

Multiple chains were grouped into a set of non-redundant

sequences, based on PDB’s chain redundancy analysis at the

95% sequence identity level.

Preparing a target pocket database
We prepared protein structures for docking using Molsoft’s

ICM software version 3.4-9c [13], removing water molecules,

solvent ions, and other ligands from the structures. We added

hydrogen atoms to the structures then optimized their positions.

These prepared protein structure files can be downloaded from

http://www.bcgsc.ca/downloads/yli/. To predict pockets, or

potential binding sites, we used the PocketFinder [48] method in

ICM, which calculates a transformation of the van der Waals

energy for an aliphatic carbon probe on a grid map. For each

protein, the three largest pockets are retained in the database. If

metal ions were found near a pocket, we prepared two receptors

for docking, one of the protein with the metal ion and one without.

The receptor was defined as the box 3.5 Å surrounding the

pocket. If the pocket overlapped well with the ligand but the ligand
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extended out of the protein structure, we defined the receptor be

the box 3.5 Å around the pocket but also including 2.0 Å around

the ligand. This ensured that known ligand binding sites not

predicted by our automated method were also included in our

pocket database.

Docking
We docked drugs to target receptors using the ICM virtual

library screening (VLS) module. This method performs rigid-

receptor flexible-ligand docking using a two-step Monte Carlo

minimization method and energy scoring function to sample

ligand conformations and select the best docking hits. MMFF

partial charges and ECEPP/3 force-field parameters are used.

Docking one interaction required on average 30 seconds to 1 min

per processor. A given protein may have several structures, each of

which with more than one pocket; in such cases we dock all

pockets to a drug, and the best scoring interaction is selected to be

the representative protein-drug score.

To ensure a sufficient coverage of the docking energy landscape,

we docked each drug-target interaction 10 times in the known

docking analysis and 5 times in the large-scale cross-docking

analysis. Docking was performed on a Linux cluster with 1000

processors – this level of throughput allowed us to complete 1–3

million dockings per day.

Known interactions docking
8867 known interactions between human protein targets and

drugs were culled from the DrugBank Drugcards database. Of

these, 3570 interactions with protein target crystal structures

present in our database were docked. Due to the Monte-Carlo

nature of the ICM method, each interaction was docked 10 times

to better cover the docking energy landscape. After 10 iterations,

the best scoring prediction was retained.

If the protein structure was solved in complex with a ligand, a

Tanimoto coefficient was used to determine if the docked drug was

similar to the complexed ligand. A coefficient less than 0.54

represented similar molecules [49], and thus cognate dockings.

Evaluation of static RMSD values of protein-drug interactions

representing 380 cognate interaction dockings was performed on a

case-by-case basis as the chemical numbering of PDB heteroatoms

and docked structures often differed, which caused incorrect

RMSD calculations. Each RMSD comparison was required to

match at least 30% of the docked ligand atoms to the cognate

crystal-structure ligand. 320 interactions pass this requirement, of

which 221 (69%) showed RMSDs under 2 Å. The other 99 (31%)

had RMSDs larger than 2 Å.

Cytoscape [50] was used to generate the known drug-target

interaction map. Networks were fitted to a force-directed layout

and manually edited for improved visibility. Drugs and protein

targets are nodes in the network, interconnected by interaction

edges. The edge lengths were not weighted, and are adjusted for

maximum visible understanding.

Applying and evaluating score thresholds
We applied several methods of score thresholding: applying cut-

offs of the ICM docking score ranging from [225 to 2100];

applying cut-offs of the ICM potential of mean force score ranging

from [280 to 2200]; applying a drug rank cut-off ranging from [1

to 4500]; applying a protein rank cut-off ranging from [1 to 252];

applying a combined docking score and mean force score cut-offs.

For the consensus score thresholds, all slopes (from 21 to 240)

and intercept (from 0 to2400) combinations were tested. For each

line, we calculated the density of the points eliminated in a

trapezoidal area delineated by the consensus line, the best icm-

score for this protein, and the best pmf-score for this protein, the

midpoint between the worst icm-score and its mean, and the

midpoint between the worst pmf-score and its mean. For two

consensus thresholds that predicted the same number of

interactions, we used the one that eliminated a denser cloud of

points.

While evaluating PPV for combination thresholds, it was often

observed that two sets of thresholds resulted in the same number of

predicted interactions but different PPVs. In such cases, we

considered only the threshold combination that gave us the higher

PPV.

Large scale cross-docking
1,164,492 interactions between 252 proteins and 4621 drugs

were docked using ICM. Though there were actually 4854 drugs

small molecules, some were excluded being too small or too large

for docking (molecular weight under 100 or over 1000 g/mol).

Due to the multiple binding pockets per protein and multiple

crystal structures per protein, there were a total of 2923 binding

pockets. Each interaction was docked 5 times to better cover the

docking energy landscape and the best scoring conformation was

retained. Overall there were 29236462165 dockings or 68 million

docking calculations. The icm and pmf scores of each interaction

were gathered into large matrices for further analysis.

Kinase assays
Protein inhibition assays were performed by SignalChem

(Richmond, BC, Canada). Kinases assays consisted of 33P-ATP

at 25 mM, the protein kinase, peptide substrate, assay buffer, and

the drug. Blank assays without substrate or drug, and assays

without the drug, were used as controls. Staurosporine at 1 mM

was used as the positive control drug.
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