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Abstract

We present a computational approach to solution of the Kiefer-Weiss prob-
lem.

Algorithms for construction of the optimal sampling plans and evaluation of
their performance are proposed. In the particular case of Bernoulli observations,
the proposed algorithms are implemented in the form of R program code.

Using the developed computer program, we numerically compare the optimal
tests with the respective sequential probability ratio test (SPRT) and the fixed
sample size test, for a wide range of hypothesized values and type I and type II
errors.

The results are compared with those of D. Freeman and L. Weiss (Journal
of the American Statistical Association, 59(1964)).

The R source code for the algorithms of construction of optimal sampling
plans and evaluation of their characteristics is available at
https://github.com/tosinabase/Kiefer-Weiss.
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sequential tests, Kiefer-Weiss problem, Bernoulli trials
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1. Introduction

In a sequential statistical experiment, a sequence of random variablesX1, X2,
. . . , Xn, . . . is potentially available to the statistician on the one-by-one basis.
The observed data bear the information about the underlying distribution Pθ,
being θ an unknown parameter whose true value is of interest to the statistician.
In this paper, we are concerned with testing a simple hypothesis H0 : θ = θ0
against a simple alternative H1 : θ = θ1, which is a classical problem of sequential
analysis (see, e. g., Wald and Wolfowitz, 1948).
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In its simplest form, a sequential hypothesis test is a pair 〈τ, δ〉 consisting of a
the stopping time τ and a (terminal) decision rule δ. Formally, it is required that
{τ = n} ∈ σ(X1, . . . , Xn) and {τ = n, δ = i} ∈ σ(X1, . . . , Xn), for any natural
n and i = 0, 1. The performance characteristics of a sequential test are the type
I and type II error probabilities, α(τ, δ) = Pθ0(δ = 1) and β(τ, δ) = Pθ1(δ = 0),
and the average sample number, Eθτ .

The Kiefer-Weiss problem is to find a test 〈τ, δ〉 with a minimum value of
supθ Eθτ , among all the tests satisfying the constraints on the type I and type
II error probabilities:

α(τ, δ) ≤ α and β(τ, δ) ≤ β. (1.1)

Kiefer and Weiss (1957) noted that in some cases the solution of this problem
can be obtained through the solution of a much simpler one (known, at the time
being, as the modified Kiefer-Weiss problem). To be more specific, suppose that
there exists a test 〈τ, δ〉 that minimizes Eθ∗τ , for some fixed θ∗, among all the
tests satisfying (1.1), and that this θ∗ is the “least favorable” for the stopping
time τ in the sense that

sup
θ
Eθτ = Eθ∗τ. (1.2)

Then it is easy to see that 〈τ, δ〉 minimizes supθ Eθτ , among all the tests satis-
fying (1.1), that is, it solves the original Kiefer-Weiss problem.

In this way, Weiss (1962) used Bayesian approach for the solution of the
Kiefer-Weiss problem, with α = β, for two special cases:
1) the observations are independent and identically distributed (i.i.d.) with a
normal N (θ, σ2) distribution with an unknown mean θ and a known variance
σ2, and 2) the observations are i.i.d. with a Bernoulli distribution with an
unknown success probability θ, under the additional assumption that θ0 = 1−θ1.
In neither case the Bayesian test was easy to find. Even the simplest Bernoulli
case “requires heavy computing” (as stated by Weiss (1962), p. 565).

Freeman and Weiss (1964) applied the same technique to a more general case
of the Bernoulli model with non-symmetric hypotheses; they proposed a scheme
for finding an approximate numerical solution to the Kiefer-Weiss problem by
making Eθ∗τ close enough to supθ Eθτ (cf. (1.2)).

Lorden (1980) characterized the structure of the optimal tests in the modi-
fied Kiefer-Weiss problem for the particular case of one-parametric Koopman-
Darmois families of distributions and showed that, for θ∗ ∈ (θ0, θ1), the stopping
times of these tests are almost surely bounded, and gave this bound.

Many other results concerning approximate or asymptotic solutions of the
Kiefer–Weiss problem, and especially the modified Kiefer–Weiss problem, can
be found in the literature. The modern viewpoint on the Kiefer-Weiss problem,
and related, can be found in the monograph Tartakovsky et al. (2014). With
respect to the exact solutions to the Kiefer-Weiss problem, which is the point
of our interest in this paper, the authors state that “finding the exact solution
involves quite heavy computation” (Tartakovsky et al., 2014, p. 228), which
is generally concurring with the opinions expressed earlier by Weiss (1962),
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Freeman and Weiss (1964), and Lorden (1980), among others, with respect to
the particular cases they studied.

In this paper, we propose a computational approach to the solution of the
Kiefer-Weiss problem, which seems to be general enough to provide an exact
solution to virtually any particular case of the Kiefer-Weiss problem, but gen-
erally does not require extreme computational power and is within the reach of
modern computer capabilities.

We call this approach “computational”, because it essentially relies on com-
puter algorithms as opposed to demonstrated properties of mathematical ob-
jects.

In Section 2, we bring together theoretical results our method is based on,
and give a general formulation of the method.

In Section 3, we concretize the general method in the case of Bernoulli obser-
vations, providing all the necessary formulas ready for their computer implemen-
tation. The R source code (R Core Team, 2013) implementing the calculations
in accordance with the formulas can be found in Novikov et al. (2021).

Using the computer code, we calculate, for a range of hypothesized values
θ0, θ1 and/or error probabilities α, β, the parameters of optimal sampling plans
and their characteristics, as well those of the Wald’s sequential probability ratio
tests (SPRT) and the fixed-sample-size tests (FSST) with the same levels of
type I and type II error probabilities. The results are presented in the form of
tables and graphs and discussed in Section 4.

2. Kiefer-Weiss problem: general results

In this section, we formulate the general results on the structure of the
optimal tests in the Kiefer-Weiss problem and its modified version.

2.1. Theoretical basis

Throughout this paper, we will use the notation of Novikov (2009) and
follow its general assumptions. The assumptions are notably more general than
we actually need in this paper, but keeping in mind the possible extensions and
generalizations, we consider it convenient to stick to the same framework as in
Novikov (2009).

In particular, we consider randomized sequential tests 〈ψ, φ〉, with ψ =
(ψ1, ψ2, . . . ) being a stopping rule, and φ = (φ1, φ2, . . . ), being a (termi-
nal) decision rule. It is always assumed that ψn = ψn(x1, . . . , xn) and φn =
φn(x1, . . . , xn) are measurable functions with values in [0, 1], whose values are
interpreted as the conditional probabilities, given the data x1, . . . , xn, to stop
at stage n, and, respectively, those to reject H0, after stopping has been decided
on, for any n = 1, 2, . . .

Denote cψn = cψn(x1, . . . , xn) = (1−ψ1)(1−ψ2) . . . (1−ψn−1), and sψn = cψnψn,
so for any test

α(ψ, φ) =

∞∑
n=1

Eθ0s
ψ
nφn (2.1)
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is the type I error probability,

β(ψ, φ) =

∞∑
n=1

Eθ1s
ψ
n(1− φn) (2.2)

is the type II error probability, and

N(θ;ψ) =

∞∑
n=1

nEθs
ψ
n (2.3)

is the average sample number when the true parameter value is θ (provided that∑∞
n=1Eθs

ψ
n = 1, – otherwise it is infinite).

It is common that the error probabilities are expressed through the operating
characteristic function defined as

OCθ(ψ, φ) =

∞∑
n=1

Eθs
ψ
n(1− φn) : (2.4)

α(ψ, φ) = 1−OCθ0(ψ, φ), β(ψ, φ) = OCθ1(ψ, φ).
Let S (α, β) be the set of all tests such that

α(ψ, φ) ≤ α, β(ψ, φ) ≤ β, (2.5)

where α, β ∈ [0, 1] are some fixed real numbers.
We are interested in finding the tests that minimize supθN(θ;ψ) over all the

tests in S (α, β). This problem is known as the Kiefer-Weiss problem.
The respective modified Kiefer-Weiss problem is to minimize N(θ∗;ψ) over

all 〈ψ, φ〉 ∈ S (α, β), for a given fixed value of θ∗.
At the time being, all the known solutions to the Kiefer-Weiss problem, for

particular models, are obtained through the modified version of it (see Kiefer
and Weiss, 1957; Weiss, 1962; Freeman and Weiss, 1964; Lai, 1973; Lorden, 1980;
Huffman, 1983; Zhitlukhin et al., 2013; Tartakovsky et al., 2014).

The solutions to the modified Kiefer-Weiss problem can be obtained, at least
in theory, in a very general situation using the following variant of the Lagrange
multipliers method. Let us start with this.

Let
L(ψ, φ) = N(θ∗;ψ) + λ0α(ψ, φ) + λ1β(ψ, φ), (2.6)

where θ∗ is some fixed value of the parameter and λ0, λ1 are some nonnegative
constants (called Lagrange multipliers).

Then the tests minimizing N(θ∗;ψ) subject to (2.5) can be obtained through
an unconstrained minimization of L(ψ, φ) over all 〈ψ, φ〉, using an appropriate
choice of the Lagrange multipliers (see (see Novikov, 2009, Section 2)).

Lorden (1980) shows that in the case of i.i.d. observations the problem of
minimizing the Lagrangian function is reduced to an optimal stopping problem
for a Markov process.

It is easy to see that finding Bayesian tests used in Kiefer and Weiss (1957)
is mathematically equivalent to the minimization of (2.6).
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To construct the optimal tests we need an additional assumption on the dis-
tribution of the observations. Let fnθ = fnθ (x1, . . . , xn) be the Radon–Nikodym
derivative of the distribution of X1, . . . , Xn with respect to a product-measure
µn = µ⊗ · · · ⊗ µ (n times µ by itself), n = 1, 2, . . . .

In Lorden (1980), it is shown that, in the case of i.i.d. observations following
a distribution from a Koopman-Darmois family, the tests giving solution to
the modified problem have bounded with probability one stopping times when
θ∗ ∈ (θ0, θ1).

Let us describe the construction of tests minimizing the Lagrangian function
calculated at some θ∗, over all truncated tests, i.e. those not taking more than
a fixed number H of observations (H is also called horizon in this case).

Formally, let SH = {〈ψ, φ〉 : cψH+1 ≡ 0} be the class of all such tests. Let
us define

V HH = min{λ0fHθ0 , λ1f
H
θ1}, (2.7)

and, recursively over n = H − 1, . . . , 1,

V Hn = min
{
λ0f

n
θ0 , λ1f

n
θ1 , f

n
θ∗ + IV Hn+1

}
, (2.8)

being

IV Hn+1 =
(
IV Hn+1

)
(x1, . . . , xn) =

∫
V Hn+1(x1, . . . , xn+1)dµ(xn+1). (2.9)

Remark 2.1. V Hn defined above, as well as L(ψ, φ) in (2.6), implicitly depend
on θ∗, λ0, λ1.

From the results of Section 3.1 in Novikov (2009), we easily obtain the following
characterization of all the truncated sequential tests minimizing L(ψ, φ).

Proposition 1. For all 〈ψ, φ〉 ∈ SH

L(ψ, φ) ≥ 1 + IV H1 . (2.10)

There is an equality in (2.10), for a test 〈ψ, φ〉 ∈ SH , if and only if it satisfies
the following two conditions:

a) for all n = 1, 2, . . . ,H − 1

I{min{λ0fnθ0
,λ1fnθ1

}<fnθ∗+IV
H
n+1} ≤ ψn ≤ I{min{λ0fnθ0

,λ1fnθ1
}≤fnθ∗+IV

H
n+1}

(2.11)
µn-a.e. on Cψn = {(x1, . . . , xn) : cψn(x1, . . . , xn) > 0}, and

b) for all n = 1, 2, . . . ,H

I{λ0fnθ0
<λ1fnθ1

} ≤ φn ≤ I{λ0fnθ0
≤λ1fnθ1

} (2.12)

µn-a.e. on Sψn = {(x1, . . . , xn) : sψn(x1, . . . , xn) > 0}.
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Under very mild conditions, the optimal non-truncated tests are obtained
on the basis of limits Vn = limH→∞ V Hn . Optimal stopping rules for the non-
truncated tests are obtained substituting Vn for V Hn in (2.11) for all n, leaving
the decision rules the same, just applying (2.12) for all n (see Section 3 in
Novikov (2009)).

Let us denote MH(θ∗, λ0, λ1) the class of all tests satisfying conditions a)
and b) of Proposition 1, and let M (θ∗, λ0, λ1) be the class of all (non-truncated)
tests which satisfy (2.11) with V Hn is replaced by V Hn , for all natural n, and
satisfy (2.12) for all natural n.

The following proposition shows how the Kiefer-Weiss problem and its mod-
ified version can be related (cf. also Section 3 of Freeman and Weiss (1964)).

Proposition 2. Let 〈ψ∗, φ∗〉 ∈ M (θ∗, λ0, λ1) such that α = α(ψ∗, φ∗), β =
β(ψ∗, φ∗), and let

sup
θ
N(θ;ψ∗)−N(θ∗;ψ

∗) = ∆(ψ∗). (2.13)

Then
sup
θ
N(θ;ψ∗) ≤ inf sup

θ
N(θ;ψ) + ∆(ψ∗), (2.14)

where the infimum is taken over all 〈ψ, φ〉 ∈ S (α, β).

Proof. Let 〈ψ∗, φ∗〉 be a test satisfying the conditions of Proposition 2, and let
〈ψ, φ〉 be any test from S (α, β). Then

N(θ∗;ψ
∗) + λ0α+ λ1β = N(θ∗;ψ

∗) + λ0α(ψ∗, φ∗) + λ1β(ψ∗, φ∗)

≤ N(θ∗;ψ) + λ0α(ψ, φ) + λ1β(ψ, φ) ≤ N(θ∗;ψ) + λ0α+ λ1β,

where the first inequality is due to Proposition 1. Therefore, N(θ∗;ψ
∗) ≤

N(θ∗;ψ), so

sup
θ
N(θ;ψ∗) = N(θ∗;ψ

∗) + ∆(ψ∗) ≤ N(θ∗;ψ) + ∆(ψ∗) ≤ sup
θ
N(θ;ψ) + ∆(ψ∗),

and (2.14) follows. �
Obviously, if ∆(ψ∗) = 0 in Proposition 2, then 〈ψ∗, φ∗〉 solves the original

Kiefer-Weiss problem with α = α(ψ∗, φ∗) and β = β(ψ∗, φ∗). In this way,
Proposition 2 reduces the original Kiefer-Weiss problem to its modified variant:
one has to seek for a solution to the modified Kiefer-Weiss problem, with some
θ∗, for which N(θ∗;ψ

∗) is a maximum of N(θ;ψ∗) over all θ.
The treatment of the Kiefer-Weiss problem by Weiss (1962), in particular

symmetric cases of sampling from normal and Bernoulli distributions, in essence,
makes use of this proposition.

Freeman and Weiss (1964) propose, for the non-symmetric Bernoulli case of
observations, a choice of θ∗ making ∆(ψ∗) relatively small which gives nearly
optimal tests in the Kiefer-Weiss problem.

6



2.2. The proposed computational method

The method is based on Propositions 1 and 2.
Proposition 1 is used for the Lagrangian minimization when seeking for

solutions to the modified problem potentially solving the Kiefer-Weiss problem
by virtue of Proposition 2.

Both parts are essentially numerical, and we will show in the next Section, in
the case of sampling from a Bernoulli population, how they can be implemented
using the modern statistical software.

In what remains of this Section we want to give a general description of the
proposed method.

The method deals with an appropriate choice of the constants θ∗, λ0, λ1.
From any class MH(θ∗, λ0, λ1) let us choose one test (for example, the easiest
for implementation), - in this way, MH(θ∗, λ0, λ1) will identify a specific test.

We assume that a computer procedure is available which calculates, for any
MH(θ∗, λ0, λ1), the whole set of test characteristics: the error probabilities and
the average sample number, whatever be the true value of θ. Derived from these,
we will also assume that computing ∆(ψ∗) (see (2.13)) is available as well.

We know from Lorden (1980) that in the case of one-parametric Koopman-
Darmois family of i.i.d. observations there is an upper bound on the horizonH of
the optimal test in the modified Kiefer-Weiss problem when θ∗ is between θ0 and
θ1. Generally, it depends on θ0, θ1, θ∗, λ0 and λ1 (see Lorden (1980)). Because
θ0 and θ1 will not be moved within the algorithm, let us only retain θ∗, λ0, λ1 in
the notation, supposing H = H(θ∗, λ0, λ1) is available for computation in such
case.

Obviously, there can be cases where the bound does not exist, or is not
available for computing, for some reason, or we just do not want to use it.
We want the method be applicable in both cases, more precisely, we will treat
these cases as two variants of the method because they are based on the same
principles.

The proposed method
Option 1. Supposing the bound H = H(θ∗, λ0, λ1) is available.

1. Start with some λ0, λ1.

2. Seek for a θ∗ such that the test 〈ψ∗, φ∗〉 ∈ MH(θ∗, λ0, λ1)) with H =
H(θ∗, λ0, λ1) has a minimum value of ∆(ψ∗) over all θ:

∆(ψ∗) ≤ ∆(ψ) for 〈ψ, φ〉 ∈MH(θ, λ0, λ1) (2.15)

with H = H(θ, λ0, λ1), whatever θ.

3. Evaluate α = α(ψ∗, φ∗) and β = β(ψ∗, φ∗). If they do not comply with
requirements on the error probabilities, repeat steps 2 and 3 with other
λ0 and λ1.

If ∆(ψ∗) = 0 (because of the computational nature of the method, this should
mean in fact that it is close to 0), the solution to the Kiefer-Weiss problem
〈ψ∗, φ∗〉 for given α = α(ψ∗, φ∗) and β = β(ψ∗, φ∗) is found. If ∆(ψ∗) is not
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very close to 0, it could be informative anyway, because it shows how good the
modified version is for the Kiefer-Weiss problem.

We implement this method in the next Section for the general Bernoulli
case and obtain, for a series of particular hypothesized values of parameters and
probability errors, numerical results showing that the minimum value of ∆(ψ∗)
is 0 in each case.

In this way, we may speak about numerical solution of the Kiefer-Weiss prob-
lem for the Bernoulli observations. We provide full computational algorithms
which make our results completely verifiable.

At the same time, we are rather pessimistic about the possibility of a strictly
mathematical proof that this will always be the case, even for Koopman-Darmois
families, and even for the Bernoulli case.

Option 2. Not using bounds for the maximum sample size.

1. Start with some λ0, λ1.

2. For an increasing sequence of H repeat:

3. Seek for a θ∗ such that the test 〈ψ∗, φ∗〉 ∈MH(θ∗, λ0, λ1)) has a minimum
value of ∆(ψ∗) over all θ:

∆(ψ∗) ≤ ∆(ψ) for 〈ψ, φ〉 ∈MH(θ, λ0, λ1), (2.16)

whatever θ. Evaluate L(ψ∗, φ∗).

4. Stop repeating when the successive values of LH(ψ∗, φ∗) are close to each
other.

5. Evaluate α = α(ψ∗, φ∗) and β = β(ψ∗, φ∗). If they do not comply with
requirements on the error probabilities, repeat steps 2 through 5 with
other λ0 and λ1.

Option 2, for any given horizon H tries to find a solution to the Kiefer-Weiss
problem in the class of all truncated, at level H, sequential tests. If the solution
is a truncated test, it will be found when H is sufficiently large. If the optimal
test is not truncated, the algorithm tries to find a good approximation to it in
the class of the truncated tests, with high levels of truncation, which may be
considered a numerical solution of the Kiefer-Weiss problem, at some precision
level.

To see the particular usefulness of this approach, one can have a look at the
example of the uniform distribution (see Section 3.1 of Novikov and Palacios-
Soto, 2020, starting from p. 148) . It is easily seen that in this case the algorithm
applies exactly (not numerically), and that for any fixed H it readily gives an
optimal truncated test, whose characteristics converge, as H → ∞, to those
of the optimal non-truncated test, solving the Kiefer-Weiss problem for this
particular model. Interestingly, the solution to the Kiefer-Weiss problem is an
SPRT in this case.

The virtue of this example is more theoretical than practical, though.
There are other examples (rather artificial as well) of the modified Kiefer-

Weiss problem, where the optimal stopping rule has a non-bounded stopping
time (Hawix and Schmitz, 1998), but there is no Kiefer-Weiss problem it is
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related to. Should a general context for this example exist, Option 2 should
be applicable for its numerical solution. We are pretty sure that the numerical
optimization in step 3 can be available for its computer implementation much
more generally than only in the uniform and the Bernoulli case.

Option 1 is preferable (when applicable), because it avoids the iteration
cycle over truncation level H in Option 2. But Option 2 is more general and is
applicable to virtually any Kiefer-Weiss problem for which the computation in
step 3 is feasible. Numerical experiments in the example case of the next Section,
where both Options are applicable, show that both give the same results.

3. Kiefer-Weiss problem for sampling from a Bernoulli population

In this section, we obtain formulas for solving the modified Kiefer-Weiss
problem and implement the computational algorithms of the preceding Section
for solving the Kiefer-Weiss problem in the particular case of sampling from a
Bernoulli population. On the basis of this, we obtain and analyze numerical
results for the efficiency of the numerical solution to the Kiefer-Weiss problem
with respect to the sequential probability ratio test and to the fixed-sample-size
test, ones with the same error probabilities.

Let the observationsX1, X2, . . . , Xn, . . . be independent identically distributed
Bernoulli random variables with fθ(x) = θx(1 − θ)1−x, for x = 0, 1, and
0 < θ < 1. Then the joint probability

fnθ (x1, . . . , xn) = gnθ (sn) = θsn(1− θ)n−sn ,

where sn =
∑n
i=1 xi, n = 1, 2, . . .

3.1. Construction of tests

Let 0 < θ0 < θ1 < 1 be two fixed hypothesized parameter values.
Let us construct, using Proposition 1, a solution to the modified Kiefer-Weiss

problem for a given θ∗ (see (2.7) – (2.9)).
In this Bernoulli model, it is not difficult to see, by induction, that

V Hn (x1, . . . , xn) = UHn

(
n∑
i=1

xi

)
,

for n = 1, . . . ,H, where

UHH (s) = min{λ0gHθ0(s), λ1g
H
θ1(s)}, s = 0, 1, . . . ,H (3.1)

and, recursively over n = H − 1, . . . , 1,

UHn (s) = min{λ0gnθ0(s), λ1g
n
θ1(s), gnθ∗(s) + UHn+1(s+ 1) + UHn+1(s)}, (3.2)

s = 0, 1, . . . , n.
Let us consider a non-randomized test 〈ψ∗, φ∗〉 ∈MH(θ∗, λ0, λ1), which, at

any stage n ≤ H − 1, with sn =
∑n
i=1 xi observed,
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(a) stops and accepts H0, if λ1g
n
θ1

(sn) = UHn (sn) (in which case ψ∗n = 1, φ∗n =
0),

(b) stops and rejects H0, if λ0g
n
θ0

(sn) = UHn (sn) (giving preference to (a) if
both (a) and (b) apply), being in this case ψ∗n = 1, φ∗n = 1, and

(c) continues to the next stage, if neither (a) nor (b) applies (being ψ∗n = 0 in
this case);

and, at stage H, stops and accepts H0 if λ0g
H
θ0

(sH) ≥ λ1g
H
θ1

(sH) (φ∗H = 0) and
rejects H0 otherwise (φ∗H = 1).

3.2. Operating characteristic, average sample number and related formulas

Let
aHθ (s) = gHθ (s)(1− φ∗H(s)), s = 0, 1, . . . ,H, (3.3)

and, recursively over n = H − 1, H − 2, . . . , 1,

anθ (s) = gnθ (s)ψ∗n(s)(1− φ∗n(s)) + an+1
θ (s) + an+1

θ (s+ 1), s = 0, 1, . . . , n. (3.4)

Then the error probability of type II is β(ψ∗, φ∗) = a0θ1 = a1θ1(0) + a1θ1(1).
To understand this, one can trace the appearance, in (3.1)–(3.2), of all the

terms containing λ1. The terms having λ1 as a coefficient are exactly those
in (3.3)–(3.4) (with θ = θ1). Now, take into account that, by Proposition 1,
UH0 = 1 + UH1 (0) + UH1 (1) coincides with

λ0α(ψ∗, φ∗) + λ1β(ψ∗, φ∗) +N(θ∗;ψ
∗),

and the term in UH0 having λ1 as a coefficient is a0θ1 , so it is equal to β(ψ∗, φ∗).
Because now β(ψ∗, φ∗) = OCθ1(ψ∗, φ∗) = a0θ1 , we conclude thatOCθ(ψ

∗, φ∗) =
a0θ for any θ. And finally α(ψ∗, φ∗) = 1−OCθ0(ψ∗, φ∗).

In a similar way, let

bHθ (s) = 0, s = 0, 1, . . . ,H, (3.5)

and, recursively over n = H − 1, H − 2, . . . , 1,

bnθ (s) = (gnθ (s) + bn+1
θ (s) + bn+1

θ (s+ 1))(1− ψ∗n(s)), s = 0, 1, . . . , n. (3.6)

Then the average sample number N(θ;ψ∗) = 1 + b0θ, where b0θ = b1θ(0) + b1θ(1).
When high levels of truncation H are needed, the following variant of (3.3)–

(3.4) seems to work computationally better.
Let us denote Gnθ (s) =

(
n
s

)
θs(1− θ)n−s =

(
n
s

)
gnθ (s), s = 0, 1, . . . , n.

Then, define

AHθ (s) = GHθ (s)(1− φ∗H(s)), s = 0, 1, . . . ,H, (3.7)

and, recursively over n = H − 1, H − 2, . . . , 1,

Anθ (s) = Gnθ (s)ψ∗n(s)(1−φ∗n(s))+An+1
θ (s)

n+ 1− s
n+ 1

+An+1
θ (s+1)

s+ 1

n+ 1
, (3.8)
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s = 0, 1, . . . , n.
It is easy to see, by induction, that Anθ (s) =

(
n
s

)
anθ (s), s = 0, 1, . . . , n, n =

1, 2, . . . ,H, so
OCθ(ψ

∗, φ∗) = A0
θ = A1

θ(0) +A1
θ(1). (3.9)

Analogously, let
BHθ (s) = 0, s = 0, 1, . . . ,H, (3.10)

and, recursively over n = H − 1, H − 2, . . . , 1,

Bnθ (s) = (Gnθ (s) +Bn+1
θ (s)

n+ 1− s
n+ 1

+Bn+1
θ (s+ 1)

s+ 1

n+ 1
)(1− ψ∗n(s)), (3.11)

s = 0, 1, . . . , n.
Again, Bnθ (s) =

(
n
s

)
bnθ (s), s = 0, 1, . . . , n, n = 1, 2, . . . ,H, and the average

sample number

N(θ;ψ∗) = 1 +B0
θ , where B0

θ = B1
θ (0) +B1

θ (1). (3.12)

We implement, in the R program code, versions (3.7)-(3.8) and (3.10)-(3.11),
repectively, as a routine for calculation of the operationg characteristic function
(3.9) and the average samle number (3.12).

It is very likely that the algorithms above in this subsection are applicable
not only to the tests obtained through the Lagrange minimization but also
generally to any truncated test. We defer the strict proof of this fact to a later
occasion.

We will use Option 1 of the method in Section 2, in view of the intensity of
calculations we need for obtaining the massive numerical results for the analysis
below in this Section. Option 2 gives the same results but is somewhat slower.

Due to Lorden (1980) (see also Hawix and Schmitz (1998)) the test minimiz-
ing the Lagrangian function, given θ∗, λ0, λ1, can be found in MH(θ∗, λ0, λ1)
with H not exceeding

H(θ∗, λ0, λ1) = inf{n ≥ 1 : a log λ0 + b log λ1 − n ≤ (a+ b) logw0}, (3.13)

where w0 = (1− Pθ0(fθ0(X) < fθ1(X))− Pθ1(fθ0(X) ≥ fθ1(X)))
−1

, and a and
b are determined from

a log

(
fθ∗(X)

fθ0(X))

)
+ b log

(
fθ∗(X)

fθ1(X))

)
≡ 1.

Thus, the computer implementation of (3.13) is straightforward.
At last, for the minimization step at stage 2 of the Option 1 of the method in

preceding Section, we use R’s optimize function, first, to find the maximum of
N(θ : ψ∗) over θ ∈ (θ0, θ1), given θ∗, then the minimum of supθN(θ;ψ∗)−N(θ∗ :
ψ∗), over all θ∗ ∈ (θ0, θ1). We use the default parameter of tolerance when
using optimize, which is approx. 0.00012 in our case. Using lower levels of the
tolerance parameter, better approximation is achieved.

The details of the implementation can be consulted in Novikov et al. (2021).
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3.3. Numerical results

The main goal of this part is to illustrate the use of the developed R code on
concrete examples based on the Bernoulli sampling, to show that the obtained
sequential tests in any one of the examples provide numerical solutions to the
Kiefer-Weiss problem, and to analyze the efficiency of the obtained tests with
respect to the classical sequential probability ratio tests and the fixed-sample-
size tests provided these have the same level of error probabilities.

We use a series of examples seen in Freeman and Weiss (1964), specified by 5
pairs of hypothesized success probabilibies: θ0 = 0.05, θ1 = 0.15; θ0 = 0.1, θ1 =
0.2; θ0 = 0.2, θ1 = 0.3; θ0 = 0.4, θ1 = 0.5 and θ0 = 0.45, θ1 = 0.55. In each one,
we employ a range of error probabilities commonly used in practice: α(= β) =
0.1, 0.05, 0.025, 0.01, 0.005, 0.001 and 0.0005.

For each combination of θ0, θ1 and α = β we ran the computer code corre-
sponding to the implementation of the method of Section 2 (Option 1), seeking
for a test with the closest values of the error probabilities to their nominal val-
ues. In each case the real and the nominal error probability are within 0.001 of
relative distance to each other.

The respective results are presented in Tables 1 – 5. For each test, there are
its corresponding values of θ∗, λ0, λ1 in the table, as well as its average sample
number N(θ∗;ψ

∗) and its corresponding ∆(ψ∗), and the 0.99-quantile Q.99(ψ∗)
of the distribution of the sample number, under θ∗ as well. We also present the
maximum sample number (denoted H in the table) the test actually takes (this
is not the upper bound (3.13)).

In the second part of each table, there are the calculated characteristics of
the corresponding SPRT with the closest values of α and β to the nominal ones.
Those are the values of the average sample number N(θ∗;W ) and the 0.99-
quantile Q.99(W ) of the distribution of the sample number, both calculated at
θ∗. They are calculated using the exact formulas in Young (1994), and not
through the Wald approximations, as in Freeman and Weiss (1964). logA and
logB are the endpoints of the continuation interval of the corresponding SPRT.

At last, FSS is the minimum value of the sample number required by the
optimal fixed-sample-size test with error probabilities not exceeding α and β.
It is calculated using the binomial distribution of the test statistic rather than
its normal approximation used in Freeman and Weiss (1964).

In the last part of each table, there are calculated values of efficiency of
each test with respect to the FSST. The efficiency is calculated as the ratio of
FSS to other characteristics of the respective test: : R(ψ∗) = FSS/N(θ∗;ψ

∗)
and QR(ψ∗) = FSS/Q.99(ψ∗) for the optimal Kiefer-Weiss test and R(W ) =
FSS/N(θ∗;W ) and QR(W ) = FSS/Q.99(W ) for the Wald’s SPRT. For ex-
ample, R(ψ∗) = 1.5 means the optimal Kiefer-Weiss test takes 1.5 times fewer
observations, on the average, than the corresponding fixed-sample-size test.

There is no SPRT part in Table 5. The reason for this is that in the symmet-
ric case (when θ0 = 1− θ1), unlike other cases, it is generally impossible to find
an SPRT matching, at least approximately, the nominal values of α and β. This
is because, in the symmetric case, there is a restricted number of available values
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of α = β, for example, for θ0 = 0.45 and θ1 = 0.55, these are 0.0991, 0.0826,
0.0686, 0.0568, 0.0470, etc., none of them exactly matching the values of α = β
used for other hypothesis pairs. In the symmetric case, the SPRT’s decision-
making process is equivalent to a random walk within two bounds formed by
two horizontal straight lines, so the values of α = β we gave above were obtained
from the well-known formula for Gambler’s Ruin probability when the lines are
symmetric with respect to the horizontal axis.

To evaluate the performance of the optimal tests for α 6= β we ran the R
computer code on a grid of equidistant points of λ0 and λ1 on the logarithmic
scale, for each pair of θ0 and θ1 finding, at each point of the grid, the optimal
test 〈ψ∗, φ∗〉 for the Kiefer-Weiss problem. In each case ∆(ψ∗) was found to be
0 (within the given precision of calculations).

For each pair of λ0 and λ1, we calculated the error probabilities α = α(ψ∗, φ∗)
and β = β(ψ∗, φ∗) and the average sample numbers N(θ∗;ψ

∗), N(θ0;ψ∗) and
N(θ1;ψ∗) corresponding to the optimal test 〈ψ∗, φ∗〉 ∈ M (θ∗, λ0, λ1), as well
as an estimate of the fixed sample size required to achieve the same α and β.
This time we use an approximate formula for the FSS based on the normal
approximation

FSS ≈

(
zα
√
θ0(1− θ0) + zβ

√
θ1(1− θ1)

θ1 − θ0

)2

,

where zα = Φ−1(1 − α), being Φ the cumulative distribution function of the
standard normal distribution. This form is preferable from the point of view
of smoothness of the graphical representation below, while the relative error, in
comparison with its exact value based on the binomial distribution is within as
much as 5%, for the range of the α and β calculated.

In Figures 1 – 3, we present the results of the performance evaluation for
three hypothesis pairs: θ0 = 0.05 vs. θ1 = 0.15, θ0 = 0.2 vs. θ1 = 0.3 and
θ0 = 0.45 vs. θ1 = 0.55.

Each graph depicts one performance characteristic (z-coordinate) as a func-
tion of α (x-coordinate) and β (y-coordinate). For α and β, the scale of decimal
logarithms is used. In each Figure, the upper left graph represents the same effi-
ciency used in the Tables, defined as R(ψ∗) = FSS/N(θ∗;ψ

∗). The upper right
graph depicts the average sample number N(θ∗;ψ

∗) as a function of α and β.
The two lower graphs in each Figure represent the performance of the optimal
tests under H0 and H1 (very much analogously to the first graph) depicting the
efficiency defined as R0(ψ∗) = FSS/N(θ0;ψ∗) and R1(ψ∗) = FSS/N(θ1;ψ∗),
respectively.

The graphs are prepared using the 3D visualization package rgl (Murdoch
and Adler, 2021). Each graph is based on a grid of 25×25 equidistant points of
lnλ0 and lnλ1, both within a range of 6 to 13.

There are interactive versions of the graphs in Novikov et al. (2021).
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α = β 0.1 0.05 0.025 0.01 0.005 0.001 0.0005
θ∗ 0.0768 0.0823 0.0848 0.0865 0.0874 0.0885 0.0888
λ0 157.70 356.55 785.75 2067.24 4334.60 22957.0 46319.1
λ1 193.35 430.27 952.99 2512.30 5183.48 27541.8 56073.6
H 128 182 237 302 345 465 508

N(θ∗;ψ
∗) 38.62 64.75 93.79 134.33 167.10 246.23 281.64

∆(ψ∗) -4.E-8 1.E-4 9E-5 4.E-5 4.E-5 -3.E-6 -4.E-5
Q.99(ψ∗) 89 134 187 244 291 397 442

logA -2.13 -2.90 -3.60 -4.54 -5.24 -6.85 -7.55
logB 1.85 2.59 3.27 4.22 4.91 6.53 7.22

N(θ∗;W ) 40.53 71.93 109.81 173.09 228.77 388.01 469.32
Q.99(W ) 149 269 414 660 884 1502 1819

FSS 60 93 136 181 224 322 365
R(ψ∗) 1.55 1.44 1.45 1.35 1.34 1.31 1.30

QR(ψ∗) 0.67 0.69 0.73 0.74 0.77 0.81 0.83
R(W ) 1.48 1.29 1.24 1.05 0.98 0.83 0.78

QR(W ) 0.40 0.35 0.33 0.27 0.25 0.21 0.20

Table 1: Optimal tests for θ0 = 0.05, θ1 = 0.15

α = β 0.1 0.05 0.025 0.01 0.005 0.001 0.0005
θ∗ 0.1364 0.1394 0.1409 0.1420 0.1425 0.1432 0.1434
λ0 246.64 557.46 1204.68 3212.66 6701.95 35404.1 72301.3
λ1 275.38 620.37 1343.38 3595.28 7471.57 39608.9 80459.6
H 232 308 384 480 549 721 783

N(θ∗;ψ
∗) 56.45 95.03 138.06 198.54 246.92 364.39 416.74

∆(ψ∗) 5.E-5 9.E-7 9.E-5 5.E-7 2.E-5 2.E-5 4.E-5
Q.99(ψ∗) 135 205 274 364 434 592 657

logA -2.13 -2.88 -3.60 -4.53 -5.24 -6.85 -7.54
logB 1.95 2.70 3.42 4.35 5.04 6.66 7.35

N(θ∗;W ) 59.48 106.66 163.68 258.59 342.82 583.22 705.82
Q.99(W ) 224 410 636 1007 1337 2280 2759

FSS 86 135 190 272 328 479 541
R(ψ∗) 1.52 1.42 1.38 1.37 1.33 1.31 1.30

QR(ψ∗) 0.64 0.66 0.69 0.75 0.76 0.81 0.82
R(W ) 1.45 1.27 1.15 1.05 0.96 0.82 0.77

QR(W ) 0.38 0.33 0.30 0.27 0.25 0.21 0.20

Table 2: Optimal tests for θ0 = 0.1, θ1 = 0.2
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α = β 0.1 0.05 0.025 0.01 0.005 0.001 0.0005
θ∗ 0.2435 0.2450 0.2457 0.2462 0.2464 0.2468 0.2469
λ0 381.04 866.23 1870.27 4985.94 10346.1 54837.5 111392
λ1 403.11 912.57 1971.23 5256.63 10880.4 57566.7 117078
H 414 539 653 786 895 1133 1242

N(θ∗;ψ
∗) 84.43 142.50 206.73 297.74 370.24 546.67 625.28

∆(ψ∗) 2.E-5 1.E-5 1.E-8 1.E-7 2.E-5 1.E-5 1.E-5
Q.99(ψ∗) 204 309 410 547 649 886 989

logA -2.12 -2.88 -3.59 -4.53 -5.23 -6.84 -7.54
logB 2.05 2.78 3.51 4.44 5.14 6.75 7.44

N(θ∗;W ) 89.41 160.30 247.69 389.73 517.48 880.57 1066.27
Q.99(W ) 346 627 968 1527 2027 3453 4181

FSS 127 204 289 402 495 713 806
R(ψ∗) 1.50 1.43 1.40 1.35 1.34 1.30 1.29

QR(ψ∗) 0.62 0.66 0.70 0.73 0.76 0.80 0.82
R(W ) 1.42 1.27 1.17 1.03 0.96 0.81 0.76

QR(W ) 0.37 0.33 0.30 0.26 0.24 0.21 0.19

Table 3: Optimal tests for θ0 = 0.2, θ1 = 0.3

α = β 0.1 0.05 0.025 0.01 0.005 0.001 0.0005
θ∗ 0.4490 0.4493 0.4494 0.4494 0.4495 0.4495 0.4495
λ0 519.98 1177.67 2540.72 6804.60 14096.5 74239.7 151569
λ1 524.39 1186.52 2561.23 6853.52 14170.5 74851.8 152375
H 575 744 893 1082 1231 1558 1698

N(θ∗;ψ
∗) 111.82 189.19 274.56 395.75 491.95 726.33 830.78

∆(ψ∗) -6.E-6 -2.E-5 6.E-7 3.E-5 8.E-5 1.E-4 8.E-5
Q.99(ψ∗) 272 409 546 726 862 1177 1313

logA -2.12 -2.86 -3.58 -4.51 -5.21 -6.82 -7.52
logB 2.10 2.85 3.57 4.50 5.20 6.81 7.51

N(θ∗;W ) 118.79 213.16 330.10 519.05 688.86 1172.59 1420.01
Q.99(W ) 465 835 1293 2037 2703 4605 5576

FSS 168 268 384 535 655 944 1071
R(ψ∗) 1.50 1.42 1.40 1.35 1.33 1.30 1.29

QR(ψ∗) 0.62 0.66 0.70 0.74 0.76 0.80 0.82
R(W ) 1.41 1.26 1.16 1.03 0.95 0.81 0.75

QR(W ) 0.36 0.32 0.30 0.26 0.24 0.21 0.19

Table 4: Optimal tests for θ0 = 0.4, θ1 = 0.5
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Figure 1: Performance of the optimal test for θ0 = 0.05 vs. θ1 = 0.15:
R(ψ∗) and N(θ∗;ψ∗) (above), R0(ψ∗) and R1(ψ∗) (below)
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Figure 2: Performance of the optimal test for θ0 = 0.2 vs. θ1 = 0.3:
R(ψ∗) and N(θ∗;ψ∗) (above), R0(ψ∗) and R1(ψ∗) (below)
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Figure 3: Performance of the optimal test for θ0 = 0.45 vs. θ1 = 0.55:
R(ψ∗) and N(θ∗;ψ∗) (above), R0(ψ∗) and R1(ψ∗) (below)
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4. Discussion and conclusions

4.1. Analysis of the numerical results

Tables 1 – 5 are convenient for analyzing the relative efficiency R(ψ∗) of the
optimal tests with respect to the fixed-sample-size test. It is clearly seen that
it does not vary much within the whole range of α and β computed. Its lowest
value is about 1.3 and is attained at the minimum values of α and β considered.
There is a clear tendency of the relative efficiency decreasing with α = β → 0.
It would be interesting to have a meaningful theoretical lower bound for its
limiting value, but we doubt it could ever be obtained. The only fact we know
is that the relative efficiency by definition can not drop below 1.

The relative efficiency QR(ψ∗) based on the 0.99-quantile of the optimal
Kiefer-Weiss test behaves quite well maintaining the approximate level of 0.6 to
0.8, for practical values of α = β.

The relative efficiency of the SPRT based on the average sample number
evaluated at θ∗ drops to approx. 0.7 – 0.8 for lower levels of α and β, which
could still be considered tolerable, at least it is comparable to the efficiency 1.3
of the optimal Kiefer-Weiss test. What is catastrophic for the SPRT is its low
efficiency QR(W ) based on the 0.99-quantile of the sample number distribution,
under θ∗, which is as low as approx. 0.3 – 0.2, meaning the 0.99-quantile can
reach a 3 – 5 times higher level than the fixed sample size.

The relative efficiency based on the average sample number calculated at θ∗
is important as a guideline for constructing optimal tests, but has only a lim-
ited importance for practical applications: the operating characteristic function
evaluated at θ∗ is always about 0.5, thus, under this circumstance, the optimal
test is as useful as flipping a coin. The ”minimax” Kiefer-Weiss criterion is
more like some ”robustness” principle for constructing tests. A more in-depth
discussion of this aspect of the Kiefer-Weiss problem and related questions can
be found in Fauß and Poor (2020).

What really matters for the performance of a test is its behaviour under
H0 and H1. To analyze this, we define two other characteristics: R0(ψ∗) =
FSS/N(θ0;ψ∗) and R1(ψ∗) = FSS/N(θ1;ψ∗). The behaviour of the three
characteristics, R, R0 and R1, can be observed on Figures 1 – 3 as a function
of α and β (on the logarithmic scale).

It is clearly seen that R(ψ∗) keeps maintaining its level at approx. 1.3 – 1.5,
now in the whole range of α and β, not only for equal ones.

The relative efficiency under H0, R0, tends to have higher values for very
asymmetric cases of small α and large β and lower values for large α and small
β, being within 1.8 – 2.4 in the vicinity of the diagonal α = β. R1 behaves nearly
symmetrically to R0 with respect to the diagonal α = β. In the symmetric case
θ0 = 1− θ1, R0 and R1 are perfectly symmetric to each other.

In general, the optimal tests in the Kiefer-Weiss setting maintain good levels
of efficiency, requiring, under H0 and H1, on the average 1.8 – 2.4 times fewer
observations than the best fixed-sample-size test (for α ≈ β), and 1.3 – 1.5 times
fewer, in the worst case when the hypothesis is misspecified.
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4.2. Further work

There is a lot of work can be done on the basis of the results we obtained
here.

The most immediate is to study the efficiency of Lorden’s 2-SPRT with
respect to the optimal Kiefer-Weiss test in the case of Bernoulli observations.
The symmetric normal case is analyzed numerically in Lorden (1976).

For the Bernoulli case, we now have the software for exact calculation of
the optimal Kiefer-Weiss tests and all their characteristics. In addition, the
subroutines for calculation of the operating characteristic and the average sam-
ple number we have in our package, can be used for 2-SPRT as well (in fact,
they are applicable to any sequential test). As an alternative, one can make
use of the algorithm described by Causey (1985) specifically for the 2-SPRT.
Thus, we are in a position to evaluate the efficiency of the 2SPRT with respect
to the optimal test in the Kiefer-Weiss problem, for the Bernoulli model. The
exact results may shed light on the precision of the general asymptotic results
of Lorden (1976), Huffman (1983) in this particular case.

Another direction for future work is the implementation of the proposed
method for other distribution families. Without any doubt, this can be done for
discrete one-parametric Koopman-Darmois families, directly applying Proposi-
tion 1 for obtaining solutions to the modified Kiefer-Weiss problem. Applica-
tions to continuous distributions seem to be also viable using quadrature for-
mulas for integrals in (2.9), similar to those suggested by Liu et al. (2016) (see
Section II.E) for computation of the SPRT characteristics.

At last, a relationship with a continuous-time model can be anticipated,
when the hypotheses get close (θ1 → θ0 in our case). In view of invariance
principles, the limiting characteristics of the optimal tests in the Bernoulli case
are expected to be those corresponding to the Kiefer-Weiss problem for Wiener
process with a linear drift (cf. Lai, 1973). Therefore, our results will provide an
approximation to the limiting continuous-time problem. Because the theoretical
solution to the latter is known for α = β (see Zhitlukhin et al., 2013), numerical
estimation of the rate of convergence can be obtained in this case. For α 6= β,
our approximations may shed light on the solution of the Kiefer-Weiss problem
for the Wiener process.

Acknowledgements

A. Novikov (Mexico) is grateful to SNI by CONACyT, Mexico, for a partial
support for his work.
The work of A. Novikov (Russia) was partially supported by Russian Founda-
tion for Basic Researh grant 19-29-01058.
F. Farkhshatov thanks CONACyT, Mexico, for scholarship for his doctoral stud-
ies.

20



References

Causey, B.D., 1985. Exact calculations for sequential tests based on Bernoulli
trials. Communications in Statistics - Simulation and Computation 14, 491–
495. URL: https://doi.org/10.1080/03610918508812452.

Fauß, M., Poor, H.V., 2020. Fading boundaries: On a nonparametric variant of
the Kiefer–Weiss problem. arXiv:2010.12094.

Freeman, D., Weiss, L., 1964. Sampling plans which approximately minimize
the maximum expected sample size. Journal of the American Statistical As-
sociation 59, 67–88.

Hawix, A., Schmitz, N., 1998. Remark on the modified Kiefer-Weiss problem
for exponential families. Sequential Analysis 17, 297––303.

Huffman, M.D., 1983. An efficient approximate solution to the Kiefer-Weiss
problem. The Annals of Statistics 11, 306–316.

Kiefer, J., Weiss, L., 1957. Some properties of generalized sequential probability
ratio test. Annals of Mathematical Statistics 28, 57–75.

Lai, T.L., 1973. Optimal stopping and sequential tests which minimize the
maximum expected sample size. The Annals of Statistics 1, 659–673.

Liu, Y., Gao, Y., Li, X.R., 2016. Operating characteristic and average sample
number of binary and multi-hypothesis sequential probability ratio test. IEEE
Transactions on Signal Processing 64, 3167 –3179.

Lorden, G., 1976. 2-SPRT’S and The Modified Kiefer-Weiss Problem of
Minimizing an Expected Sample Size. The Annals of Statistics 4, 281 –
291. URL: https://doi.org/10.1214/aos/1176343407, doi:10.1214/aos/
1176343407.

Lorden, G., 1980. Structure of sequential tests minimizing an expected sample
size. Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete 51,
291–302.

Murdoch, D., Adler, D., 2021. rgl: 3D Visualization Using OpenGL.
Https://github.com/dmurdoch/rgl, https://dmurdoch.github.io/rgl/.

Novikov, A., 2009. Optimal sequential tests for two simple hypothesis. Sequen-
tial Analysis 28, 188–212.

Novikov, A., Novikov, A., Farkhshatov, F., 2021. An R project for numerical
solution of the Kiefer-Weiss problem. https://github.com/tosinabase/

Kiefer-Weiss.

Novikov, A., Palacios-Soto, J.L., 2020. Sequential hypothesis tests under ran-
dom horizon. Sequential Analysis 39, 133–166. doi:10.1080/07474946.2020.
1766875.

21

https://doi.org/10.1080/03610918508812452
http://arxiv.org/abs/2010.12094
https://doi.org/10.1214/aos/1176343407
http://dx.doi.org/10.1214/aos/1176343407
http://dx.doi.org/10.1214/aos/1176343407
https://github.com/tosinabase/Kiefer-Weiss
https://github.com/tosinabase/Kiefer-Weiss
http://dx.doi.org/10.1080/07474946.2020.1766875
http://dx.doi.org/10.1080/07474946.2020.1766875


R Core Team, 2013. R: A Language and Environment for Statistical Computing.
R Foundation for Statistical Computing. Vienna, Austria. URL: http://www.
R-project.org/.

Tartakovsky, A., Nikiforov, I., Basseville, M., 2014. Sequential analysis: hy-
pothesis testing and changepoint detection. Chapman & Hall/CRC Press,
Boca Raton.

Wald, A., Wolfowitz, J., 1948. Optimum character of the sequential probability
ratio test. Annals of Mathematical Statistics 19, 326–339.

Weiss, L., 1962. On sequential tests which minimize the maximum expected
sample size. Journal of American Statistical Assocciation 57, 551–566.

Young, L.J., 1994. Computation of some exact properties of Wald’s SPRT when
sampling from a class of discrete distributions. Biom.J. 36, 627–637.

Zhitlukhin, M.V., Muravlev, A.A., Shiryaev, A.N., 2013. The optimal decision
rule in the Kiefer-Weiss problem for a Brownian motion. Russian Mathemat-
ical Surveys 68, 389–394.

22

http://www.R-project.org/
http://www.R-project.org/


α = β 0.1 0.05 0.025 0.01 0.005 0.001 0.0005
θ∗ 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000
λ0 526.61 1193.78 2577.11 6878.97 14273.4 75384.0 153475
λ1 526.61 1193.78 2577.11 6878.97 14273.4 75383.2 153475
H 571 733 887 1081 1227 1557 1699

N(θ∗;ψ
∗) 112.71 191.27 277.26 399.83 497.03 733.80 839.32

∆(ψ∗) 0.E+0 0.E+0 6.E-14 -1.E-13 -3.E-13 2.E-13 2.E-13
Q.99(ψ∗) 274 414 551 733 871 1190 1328

FSS 163 269 383 539 661 951 1077
R(ψ∗) 1.45 1.41 1.38 1.35 1.33 1.30 1.28

QR(ψ∗) 0.59 0.65 0.70 0.74 0.76 0.80 0.81

Table 5: Optimal tests for θ0 = 0.45, θ1 = 0.55
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