©2007 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE

A Computational Effective Document Semantic Representation

Robert Williams
School of Information Systems, Curtin University of Technology, Perth, Western Australia
e-mail: bob.williams@cbs.curtin.edu.au

Abstract

A technique based on Noun Phrase and Verb Clause slot structures is described for representing the semantics of the sentences making up a text document. Thesaurus head word index numbers are placed in the appropriate document sentence clause slots to represent the meta level meaning of the sentences. Many different expressions of the same document content can thus be represented by one semantic representation. An implementation of such a technique is described, and sample output is presented. The document summarisation thus produced is suitable for manipulation by computers for a variety of document processing tasks. The technique has primarily been developed for an Automated Essay Grading system, where a robust context free representation of documents is required.

Index Terms-document semantic representation, thesaurus, meta level meaning, document summarisation, automated essay grading.

I. Introduction

Representing the semantics of a text document for computational uses is problematic. How can we formally code the meanings of words, phrases, sentences, paragraphs and so on, so that useful computational work can be done robustly, effectively and efficiently? The computational work may involve text understanding, question answering, or essay grading to name a few possible applications.

In this article we discuss one such technique that is being used in a system being developed for Automated Essay Grading (AEG).

The technique allows a formal representation of free unseen text to be quickly and robustly built for further analysis by the AEG system.

II. Contemporary Semantic Representation

Poesio [6] discusses some current techniques for representing the meaning of sentences, including First-Order Logic and Semantic Networks. First-Order Logic uses mathematical expressions representing set membership relations for objects in the sentence belonging to sets to represent the meaning of a sentence. Computationally, this is very difficult to use for unlimited unseen text, as generally domain specific information needs to be hand coded. Semantic Networks use classifications of objects into a network of relationships, and arc traversal of the nodes can be used to imply relationships amongst the nodes. Again, substantial
domain specific knowledge needs to be hand coded prior to their use.

There is a need for a semantic representation that does not need substantial hand coding of knowledge structures prior to use, and that can deal with unlimited unseen text.

III. Practical Limitations of Context Free Phrase Structure parsers for Preliminary Processing

Many Natural Language Processing (NLP) systems use some kind of a parser to initially extract the syntax of sentences in a document as an initial step prior to further processing. Semantic analysis then follows. The use of Context Free Phrase Structure Grammar (CFPSG) parsers is commonly suggested in the literature. They require an extensive set of grammar rules which define legitimate syntax structures. However it is virtually impossible to build a set of grammar rules for free unseen text in practice, because thousands of grammar rules are typically required, and overgeneration of possible parse trees results. Increases in parsing time become exponential as the parse trees proliferate. So context free CFPSG parsing cannot be used in all but simple toy domains.

IV. Chunking as an Alternative to Full Parsing

Useful preliminary linguistic computation can be done with less structured parsing. Phrase chunking can be an effective alternative to full parsing at the initial processing stage. Chunking has the advantage that it does not require an extensive set of grammar rules - a few simple rules suffice. Specifically chunking breaks a sentence into syntactically structured components representing noun clauses or phrases and verb clauses or phrases. Often, these structures are sufficient as a preliminary to further processing.

The technique outlined in this paper uses chunking to extract noun phrase and verb clause structures for further processing.

V. Structures to Hold Chunk Semantic Details

The technique described in this paper makes use of chunking to get the structure of sentences in terms of subject and predicate, as represented by Noun Phrases (NP) and Verb Phrases (VP). Generally the NP nominates the subject of discussion, and the VP the actions being performed on or by the subject. However VPs are notoriously complex to deal with in comparison to NPs, because they typically can
have many clusters of a Verb Clause (VC) and a NP together. It is far easier to identify VCs instead of the complex VPs. The basis of the technique used is to represent the meaning of the words making up the NPs and VCs in a sequence of structured slots containing a numerical value representing the thesaurus index number for the root meaning of the word in the slot. A numerical summary of the meaning of the sentences in the document being considered is thus built up.

The exact structure of the NP and VC slots is discussed further below, but to illustrate the concept and to give a practical example, consider the following. A typical sentence would comprise alternating NPs and VCs as follows. A typical first NP slot word and numerical contents would be

DET ADJ ADJ N
 The small black dog
 $100143 \quad 97 \quad 678$

A typical first VC slot word and numerical contents would be

V ADV ADV
 walked slowly down
 3498767

A typical concluding NP slot word and numerical contents would be

DET N

the street
100234
where the numbers are the thesaurus index numbers for the corresponding words. The numbers here are fictitious, for illustration purposes only. A sentence generally consists of groups of alternating NPs and VCs, not necessarily in that order, so a sentence summary would be represented by a group of NP slots and VC slots containing numerical thesaurus indices. A document summary would then consist of a collection of these groups. Note that a sentence does not have to start with a NP, but can start equally well with a VP.

A. Proposed NP Structure

Martha Kolln [2] on page 433 states a rule for defining an NP under transformational grammar as follows
(1) $\mathrm{NP}=(\mathrm{DET})+(\mathrm{ADJ})+\mathrm{N}+($ PREP PHR $)+(\mathrm{S})$
and on page 429 a Prep Phr as follows
PREP PHR $=\mathrm{PREP}+\mathrm{NP}$

When considering the slots to be provided for a NP, (1) above can now be rewritten as

(2) NP = DET ADJ N PREP NP S

The basic component of an NP appears to be

(9) $\mathrm{VC}=\mathrm{CONJ}$ PREP AUX AUX ADV ADV V AUX AUX ADV ADV

If we allow for 40 occurrences of this basic VC component to handle VCs encountered in practice, we will need the following 40x11 array structure in the program. Fig. 2 shows the first 10 rows of this array.

If a sentence happens to start with a VC , then the CONJ slot will be set to blank (in fact the number 0). Any empty slots will likewise be set to 0 .

VI. Algorithms for Building a Chunked Semantic REPRESENTATION

It is all well and good to postulate a theoretical model of semantic representation, but can it be implemented in a practical way? The answer is yes, and details of the author's implementation of the concepts are discussed below.

The following algorithm describes the process.

For each sentence in the document

Tag each word with POS
Convert POS tags to standard format
Stem each word
For each word and/or stem
Extract thesaurus indices and POS (many)
Determine within context thesaurus index and POS (one)
Store thesaurus index, POS, Word

Chunk sentence

Store chunks in NC and VC slots
End
The following sentence will be used as an example in the explanation that follows. It has been chosen for its relative complexity, to show that the system can handle more than trivial sentences.
"For example if people working on a group project did work their own way and on their own schedule it would be extremely difficult to coordinate their work and assure the quality and timeliness of the end product."
(Source: [1])

A. Tag Each Word with POS

As with many NLP systems, we start with Part of Speech (POS) tagging of the words in the sentence, one sentence at a time. This allows the system to have a preliminary understanding of the words in the sentence it will be dealing with. The Qtag tagger from Mason [3] is currently used. It produces
<w pos="IN">For</w>
<w pos="RB22">example</w>
<w pos="CS">if</w>
<w pos="NN">people</w>
<w pos="VBG">working</w>
<w pos="IN">on</w>
<w pos="DT">a</w>
<w pos="NN">group</w>
<w pos="NN">project</w>
<w pos="DOD">did</w>
<w pos="NN">work</w>
<w pos="PPS">their</w>
<w pos="DT">own</w>
<w pos="NN">way</w>
<w pos="CC">and</w> <w pos="IN">on</w> <w pos="PP\$">their</w> <w pos="DT">own</w> <w pos="NN">schedule</w> <w pos="PP">it</w> <w pos="MD">would</w> <w pos="BE">be</w> <w pos="RB">extremely</w> <w pos="JJ">difficult</w> <w pos="IN">to</w> <w pos="VB">coordinate</w> <w pos="PP\$">their</w> <w pos="VB">work</w> <w pos="CC">and</w> <w pos="VB">assure</w> <w pos="DT">the</w> <w pos="NN">quality</w> <w pos="CC">and</w> <w pos="NN">timeliness</w> <w pos="IN">of</w> <w pos="DT">the</w> <w pos="NN">end</w> <w pos="NN">product</w>

B. Convert POS Tags to a Standard Format

To reduce the number of tags the system has to deal with, the numerous tags produced by Qtag are reduced to a standard set, which eases the computational load in later processing. The system changes the above tag information to the following.

P For
N example
CONJ if
N people
V working
P on
DET a
N group
N project
AUX did
N work
N their
DET own
N way
CONJ and
P on
N their
DET own
N schedule
N it
AUX would
AUX be
ADV extremely
ADJ difficult
P to
V coordinate
N their
V work
CONJ and
V assure
DET the
N quality
CONJ and
N timeliness
P of
DET the
N end
ADJ product

C. Stem each Word

The words produced above will be input to a database containing an electronic version of a thesaurus to attempt to find a head word index number. Additional words, particularly conjunctions and prepositions have been added to this document to rectify their omission from a standard thesaurus. These are represented by index numbers over 1000 . If the word cannot be found in the thesaurus, the word's stem is input in attempt to find the word's base form. Many words, such as 'working' do not appear in the thesaurus, but its stem 'work' does. In this case we use the thesaurus index number for 'work' instead of 'working', without losing substantial meaning of the word.

The stemming program used is an implementation of the Porter stemming algorithm documented in [5]. It produces the following output.

for

exampl
if
peopl
work
on
a
group
project
did
work
their
own
wai
and
on
their
own
schedul
it
would
be
extrem
difficult
to
coordin
their
work
and
assur
the
qualiti
and
timeli
of
the
end
product
D. For each Word and/or Stem
a) Extract Thesaurus Indices and POS (many)

We now extract the POS and head word index numbers from the thesaurus. Only the POS that matches the POS for the input word is output. This process produces the following output. Notice that many words have multiple entries. Eg 'working'. An index number of 8888 indicates that an entry could not be found for the word in the thesaurus.

3027 P For 22 N example
4012 CONJ if
997 N people
677 V working
680 V working
686 V working
3034 P on
2000 DET a
712 N group
8888 N project
5008 AUX did
154 N work
170 N work
415 N work
593 N work
625 N work
686 N work
2008 N their
8888 DET own
26 N way
180 N way
627 N way
4003 CONJ and
3034 P on
2008 N their
8888 DET own
86 N schedule
8888 N it
5032 AUX would
5002 AUX be
8888 ADV extremely
868 ADJ difficult
3046 P to
60 V coordinate
2008 N their
677 V work
680 V work
686 V work
4003 CONJ and
858 V assure
2007 DET the
5 N quality
157 N quality
812 N quality
875 N quality
4003 CONJ and
8888 N timeliness
3032 P of
2007 DET the
620 N end
8888 ADJ product

E. For each Word and/or Stem

b) Determine within Context Thesaurus Index and POS (one). Store Thesaurus Index, POS, Word

As can be seen, many words have multiple entries in the output above. This process now selects the most appropriate entry by using a 'within context' algorithm. The entry chosen is the one which makes the most sense in the context of the other words in the sentence. This is done by using broader groups of word categories that are indicated in the related words of the thesaurus classification.

These processes produce the following output. Notice that 'working' now has only one entry.

3027 P For
22 N example
4012 CONJ if
997 N people
677 V working
3034 P on
2000 DET a
712 N group
8888 N project
5008 AUX did
154 N work
2008 N their
8888 DET own
26 N way
4003 CONJ and
3034 P on
2008 N their
8888 DET own
86 N schedule
8888 N it
5032 AUX would
5002 AUX be
8888 ADV extremely
868 ADJ difficult
3046 P to
60 V coordinate
2008 N their
677 V work
4003 CONJ and
858 V assure
2007 DET the
5 N quality
4003 CONJ and
8888 N timeliness
3032 P of
2007 DET the
620 N end
8888 ADJ product
F. Chunk Sentence

The above output is now input into the chunking process. This process uses generic sequences of POS to determine the start of NPs and VCs, and then fills the slots for the clauses with the composing words and index numbers. The object-oriented context free Phrase Structure Grammar parser written in C++ described by Perelman-Hall [4] has been substantially adapted to implement the concepts described previously. This process produces the following output. Slots containing blanks and zeroes have been eliminated because of space limitations.

NOUN PHRASE
FOR EXAMPLE
IF PEOPLE
030270000220
4012000009970
VERB PHRASE
WORKING
00000067700000
NOUN PHRASE
ON A GROUP

0000006000000

NOUN PHRASE

THEIR
00000020080

VERB PHRASE

AND WORK

ASSURE
40030000067700000
00000085800000

NOUN PHRASE

THE	QUALITY
AND	TIMELINESS
$\quad 1-4244-0470-3 / 07 / \$ 20.00 ~ © 2007 ~ I E E E ~$	

