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ABSTRACT
First, the covariance matrix adaptation (CMA) with rank-
one update is introduced into the (1+1)-evolution strategy.
An improved implementation of the 1/5-th success rule is
proposed for step size adaptation, which replaces cumula-
tive path length control. Second, an incremental Cholesky
update for the covariance matrix is developed replacing the
computational demanding and numerically involved decom-
position of the covariance matrix. The Cholesky update can
replace the decomposition only for the update without evo-
lution path and reduces the computational effort from O(n3)
to O(n2). The resulting (1+1)-Cholesky-CMA-ES is an ele-
gant algorithm and the perhaps simplest evolution strategy
with covariance matrix and step size adaptation. Simula-
tions compare the introduced algorithms to previously pub-
lished CMA versions.

Categories and Subject Descriptors
F.2.1 [Numerical Algorithms and Problems]: Compu-
tations on matrices; G.1.6 [Optimization]: Global Opti-
mization; I.2.8 [Problem Solving, Control Methods,
and Search]: Heuristic methods

General Terms
Algorithms, Performance

Keywords
covariance matrix adaptation, rank-one update, Cholesky
factors, evolution strategy

1. INTRODUCTION
Evolution strategies (ES) as well as evolutionary program-

ming for real-valued optimization usually rely on Gaussian
random variations. Appropriately adapting the covariance
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matrices of these mutations during optimization allows for
learning and employing a variable metric for the search dis-
tribution. It is well known that such an automatic adap-
tation of the mutation distribution drastically improves the
search performance on non-separable and/or badly scaled
objective functions [12, 14, 9, 3, 10]. In general, altering
the mutation distribution aims at making beneficial steps
in the search space more likely. The so-called covariance
matrix adaptation (CMA) explicitly employs this concept
and has proven to be an effective adaptation mechanism for
evolution strategies [9, 7, 10]. The CMA is applied with
a (μ/μ, λ)-selection scheme and relies on an eigendecom-
position to generate normally distributed random vectors
according to the given covariance matrix, requiring O(n3)
computations on n-dimensional objective functions.

This paper pursues two objectives. First, we introduce the
CMA for the (1+1)-selection scheme, showing that complex
(self-)adaptation of strategy parameters is not necessarily
confined to non-elitist selection. We expect that this method
(slightly) outperforms the (μ/μ, λ)-CMA-ES on unimodal
non-noisy fitness functions. Second, we replace the eigende-
composition in the CMA by introducing an explicit update
scheme for the Cholesky factors with a computational com-
plexity of O(n2). Because the (1+1)-CMA-ES conducts the
largest possible number of generations per function evalua-
tion, the computational complexity of the eigendecomposi-
tion, which is naturally done every generation, is most rele-
vant for this selection scheme.

In the following section, Gaussian mutations and the adap-
tation of the mutation distribution in ES are discussed. In
Section 3 the elitist (1+1)-CMA-ES is described, and com-
bined with the new update scheme in Section 4. The experi-
ments for evaluating the performance of the (1+1)-CMA-ES,
with and without evolution path, are presented in Section 5.
Finally, the results are discussed.

2. GENERAL GAUSSIAN MUTATIONS IN
EVOLUTION STRATEGIES

Evolution strategies (ES, [12, 14, 3, 10]) are one of the
main branches of evolutionary algorithms and are particu-
larly well suited for real-valued optimization. In their canon-

ical form, the objective vector x
(g+1)
i ∈ R

n of the ith off-
spring at generation g is created by

x
(g+1)
i ← c

(g)
i|{z}

recombination

+ v
(g)
i|{z}

mutation

.
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The vector c
(g)
i depends on the recombination scheme. For

example, in case of weighted global intermediate recombina-

tion c
(g)
i is the weighted center of mass of the objective vec-

tors in the current parent population. If no recombination is

used, c
(g)
i is simply the objective vector of one of the parents.

The mutation v
(g)
i is a realization of an n-dimensional ran-

dom vector distributed according to a zero-mean Gaussian

distribution with covariance matrix C
(g)
i , that is,

v
(g)
i ∼ N

“
0, C

(g)
i

”
.

The question arises how to sample the mutation distribution

to generate v
(g)
i . In general, this is done in two steps. First,

the standard normal distribution is sampled to generate a
realization of an n-dimensional normally distributed random

vector z
(g)
i ∼ N (0, I) with unit covariance matrix and zero

mean. Second, this random vector is rotated and scaled by

a linear transformation A
(g)
i ∈ R

n×n such that

A
(g)
i z

(g)
i ∼ N (0, C

(g)
i ) for z

(g)
i ∼ N (0, I) .

Thus, to sample a general multivariate normal distribution,

the covariance matrix C
(g)
i is decomposed into Cholesky fac-

tors

C
(g)
i = A

(g)
i A

(g)
i

T
.

Every symmetric nonnegative definite matrix, such as co-
variance matrices, has Cholesky factors. This factorization
is in general not unique, but under certain constraints (e.g.,

A
(g)
i lower triangular with nonnegative diagonal elements)

a unique decomposition can be found. Computing Cholesky
factors (by a triangular Cholesky, eigenvalue, or singular
value decomposition algorithm) for a general covariance ma-
trix requires O(n3) steps.

One of the decisive features of ES is that the covariance
matrices are subject to adaptation. The general strategy is
to alter the covariance matrices such that steps promising
large fitness progress are sampled more often. There are
typically two ways how the adaptation of the matrices is
realized. First, the covariance matrix or its Cholesky fac-
tors can be parameterized, and these parameters can then
be adapted. Either the parameterization or the adaptation
rule has to ensure that the resulting matrices stay positive
definite. This is done in self-adaptive ES (e.g., see [13]),
where the parameters are changed by mutation. Here we
consider a second way, where the covariance matrix is di-
rectly altered by additive updates of the form

C(g+1) = αC (g) + βV (g) ,

where V (g) ∈ R
n×n is positive definite and α, β ∈ R

+
0 are

weighting factors (e.g., see [9, 7]). Let v(g) ∈ R be a mu-
tation, that is, a step in the search space, promising large
fitness progress. To increase the probability that v(g) is
sampled in the next iteration, the rank-one update

C(g+1) = αC(g) + βv(g)v(g)T
(1)

is appropriate. This update rule shifts the mutation distri-

bution towards the line distribution N `0, v(g)v(g)T ´
, which

is the Gaussian distribution with the highest probability to
generate v(g) among all normal distributions with zero mean
[9]. After the update, the new covariance matrix has to
be decomposed into Cholesky factors to sample the distri-
bution. If the covariance matrix updates occur frequently

in the ES, say, at least once in every generation, the time
needed for the factorization can dominate the computation
time of the ES even for moderate n.

3. THE (1+1)-CMA-ES
To introduce the (1+1)-CMA-ES we combine the well

known (1+1) selection scheme [12, 14, 3] with the covariance
matrix adaptation (CMA) as proposed for the non-elitist
(1,λ)- and (μ/μ,λ)-CMA-ES [8, 9]. The adaptation of the
covariance matrix in the elitist (1+1)-CMA-ES is done using
the rank-one update from the original, non-elitist (μ/μ,λ)-
CMA-ES. However, the adaptation of the global step size
has to be changed under elitist selection.

The application of the standard path length control to
adapt the global step size is problematic in elitist selection,
because the update of the evolution path (see [9] and below)
would stall whenever the offspring is not successful. If in this
case the evolution path is long, the step size might diverge.
Therefore, the cumulative step size adaptation of the non-
elitist CMA-ES is replaced by a success rule based step size
control.

In the following we specify the algorithm, where we con-
sider fitness functions f : R

n → R, x �→ f(x) to be mini-
mized. In the (1+1)-CMA-ES, parent and offspring encode
candidate solution vectors xparent, xoffspring ∈ R

n. We keep
track of an averaged success rate psucc ∈ [0, 1], the global
step size σ ∈ R+, an evolution path pc ∈ R

n, and the co-
variance matrix C ∈ R

n×n.
The algorithm is described in three routines. In the main

part, (1+1)-CMA-ES, a new candidate solution is sampled
and the parent solution xparent is replaced depending on
whether the new solution xoffspring is better than xparent.

Algorithm 1: (1+1)-CMA-ES

initialize xparent, σ, C = I , psucc = ptarget
succ , pc = 01

repeat2

determine A such that C = AAT
3

z ∼ N (0, I)4

xoffspring ← xparent + σAz5

updateStepSize (σ, λsucc, psucc)6

if f (xoffspring) ≤ f (xparent) then7

xparent ← xoffspring8

updateCov (C, Az, psucc, pc)9

until stopping criterion is met10

The variable

λsucc ←
(

1 f(xoffspring) ≤ f(xparent)

0 otherwise

denotes whether the last mutation has been successful.
After sampling the new candidate solution, the step size

is updated based on the success λsucc with a learning rate
cp (0 < cp ≤ 1) using a target success rate ptarget

succ .

Procedure updateStepSize(σ, λsucc, psucc)

psucc ← (1− cp) psucc + cpλsucc1

σ ← σ · exp

„
1

d

„
psucc −

ptarget
succ

1− ptarget
succ

(1− psucc)

««
2

This procedure is rooted in the 1/5-success-rule proposed
in [12] and generalizes and smoothes the implementation
of the rule proposed in [10]. It implements the well-known
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heuristic that the step size should be increased if the success
rate (i.e., the fraction of offspring better than the parent)
is high, and the step size should be decreased if the success
rate is low. The rule is reflected in the argument to the
exponential function. For psucc > ptarget

succ the argument is
greater than zero and the step size increases; for psucc <
ptarget
succ the argument is smaller than zero and the step size

decreases; for psucc = ptarget
succ the argument becomes zero and

no change of σ takes place.
The argument to the exponential function is always smaller

than 1/d and larger than −1/d if ptarget
succ < 0.5 (a neces-

sary condition for a functional success-based step size up-
date rule). Therefore, the damping parameter d controls
the rate of the step size adaptation.

If the new candidate solution is better than its parent, the
covariance matrix is updated as in the original CMA-ES [9].

Procedure updateCov(C , y, psucc, pc)

if psucc < pthresh then1

pc ← (1− cc)pc +
p

cc(2− cc) y2

C ← (1− ccov)C + ccov · pcpc
T

3

else4

pc ← (1− cc)pc5

C ← (1− ccov)C + ccov ·
“
pcpc

T + cc(2− cc)C
”

6

The update of the evolution path pc depends on the value
of psucc. If the smoothed success rate psucc is high, that is,
above pthresh < 0.5, the update of the evolution path pc is
stalled. This prevents a too fast increase of axes of C when
the step size is far too small, for example, in a (close to) lin-
ear surrounding. If the smoothed success rate psucc is low,
the update of pc is accomplished obeying an exponential
smoothing. The constants cc and ccov (0 ≤ ccov < cc ≤ 1)
are learning rates for the evolution path and the covariance
matrix, respectively. The factor

p
cc(2− cc) normalizes the

variance of pc viewed as a random variable (see [9]). The
evolution path pc is used to update the covariance matrix.
The new covariance matrix is a weighted mean of the old
covariance matrix and the outer product pcpc

T . In the sec-
ond case (line 5), the second summand in the update of pc

is missing and the length of pc shrinks. Although of minor
relevance, the term cc(2−cc)C (line 6) compensates for this
shrinking in C .

Table 1: Default parameters for the (1+1)-CMA
Evolution Strategy.

Step size control:

d = 1 +
n

2
, ptarget

succ =
2

11
, cp =

1

12
Covariance matrix adaptation:

cc =
2

n + 2
, ccov =

2

n2 + 6
, pthresh = 0.44

Initial values are set to psucc = ptarget
succ , pc = 0, and C =

I , where ptarget
succ is given in Table 1. The initial candidate

solution xparent ∈ R
n and the initial σ ∈ R+ must be chosen

problem dependent. The optimum should presumably be
within the cube xparent ± 2 σ(1, . . . , 1)T .

The (external) strategy parameters of the (1+1)-CMA-ES

are target success probability ptarget
succ , step size damping d,

success rate averaging parameter cp, cumulation time hori-
zon parameter cc, and covariance matrix learning rate ccov.
Default values are given in Table 1. Most default values
are derived from the precursor algorithms. They have been
validated by simulations on simple test functions for differ-
ent dimensions, where the parameters were varied in a large
interval, even beyond their working range limits. The final
parameter choice was made to stay away from these limits.

In particular, the parameters for the covariance matrix
adaptation are similar to those for the standard non-elitist
CMA-ES.

4. THE (1+1)-CHOLESKY-CMA-ES

4.1 Efficient Covariance Matrix Update
In general, each factorizing of a covariance matrix (com-

pare line 3 in Algorithm 1) requires O(n3) operations. Thus,
in an ES with additive covariance matrix adaptation the
Cholesky factorization of the covariance matrix is the com-
putationally dominating factor apart from the fitness func-
tion evaluations.

We propose not to factorize the covariance matrix, but to
use an incremental rank-one update rule for the Cholesky
factorization, and thereby to reduce the computational com-
plexity to O(n2). The idea is never to compute the covari-
ance matrix explicitly, but to operate on Cholesky factors
only. We consider Cholesky factors that are general n × n-
matrices, and give a general update rule for ES. The pro-
posed technique belongs to the well known rank-one updates
and is frequently used in the domain of Kalman filtering [4].

Using v(g) = A(g)z(g) with z(g) ∼ N (0, I) we can rewrite
the rank-one update of the covariance matrix equation (1)
as

C(g+1) = αC(g) + βA(g)z(g)
h
A(g)z(g)

iT

. (2)

We want to turn this update for C(g) into an update for
A(g). Before we derive the new update scheme, we prove a
useful lemma.

Lemma 1. Let w ∈ R
n be a column vector. Then, for

ς =
1

‖w‖2
“p

1 + ‖w‖2 − 1
”

the following equality holds

I + wwT = (I + ςwwT )(I + ςwwT ) .

Proof. We have

(I + ςwwT )(I + ςwwT )

= I + 2ςwwT + ς2‖w‖2wwT

= I +
`
2ς + ς2‖w‖2´wwT

= I + wwT .

In order to check the last equality, it has to be verified that`
2ς + ς2‖w‖2´ = 1, and this is true for ς as defined in the

Lemma.

Now, we present the update-rule for the Cholesky factors
of the covariance matrix.
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Theorem 1. Let Ct ∈ R
n×n be a symmetric nonnegative

definite matrix with Cholesky factorization Ct = AtAt
T .

Assume further that Ct is updated using

Ct+1 = αCt + βvtv
T
t ,

with vt = Atzt a column vector and α, β ∈ R
+. Then,

the Cholesky factorization At+1At+1
T of the matrix Ct+1

is given by

At+1 =
√

αAt +

√
α

‖zt‖2
 r

1 +
β

α
‖zt‖2 − 1

!
[Atzt] z

T
t .

Proof. The proof of this theorem is straightforward by
calculating the updated covariance matrix

Ct+1 = αC t + βvtv
T
t

= αAtA
T
t + βAtztz

T
t AT

t

= αAt

„
I + zt

β

α
zT

t

«
AT

t

= At

√
α

„
I + ςzt

β

α
zT

t

«„
I + ςzt

β

α
zT

t

«√
αAT

t ,

where ς = α
β

1
‖zt‖2

„q
1 + β

α
‖zt‖2 − 1

«
. For the factoriza-

tion in the last equality we used Lemma 1 with w =
q

β
α

zt.

It directly follows that

At+1 =
√

αAt

„
I + ςzt

β

α
zT

t

«

=
√

αAt +
β√
α

ςAtztz
T
t

=
√

αAt +

√
α

‖zt‖2
 r

1 +
β

α
‖zt‖2 − 1

!
[Atzt] z

T
t

computes the update of the Cholesky factor.

The square brackets in the last equation indicate the order
of computation, showing how to achieve a time complexity
of O(n2). For an analogous rank-μ update (e.g., see [7, 6])
the time complexity can be reduced accordingly to O(μn2).

The new update rule ensures a positive-definite covari-
ance matrix. In general, the numerical stability of the new
update is likely to be better than an update requiring de-
compositions (e.g., see the discussion in [4, chapter 6]).

4.2 (1+1)-CMA-ES with Cholesky Update
Now we combine the (1+1)-CMA-ES with the proposed

“Cholesky update”. The new algorithm efficiently imple-
ments the (1+1)-CMA-ES for cc = 1. That is, the evolution
path is not considered, because it cannot be written in the
form p = Az for equation (2) easily.

In contrast to the (1+1)-CMA-ES from Section 3, the
computational complexity of a single generation is reduced
from O(n3) to O(n2). A further advantage of the (1+1)-
CMA-ES with Cholesky update, termed (1+1)-Cholesky-
CMA-ES in the remainder of this article, is its simple imple-
mentation. It can be briefly described without hidden pro-
cedures such as the covariance matrix decomposition, which
is necessary in the standard (1+1)-CMA-ES for sampling a
multivariate normal distribution.

We describe the (1+1)-Cholesky-CMA-ES in three rou-
tines, similar to the description of the (1+1)-CMA-ES in
the preceding section.

Algorithm 2: (1+1)-Cholesky-CMA-ES

initialize x
(g)
parent, σ, A, psucc ← ptarget

succ1

repeat2

z ∼ N (0, I)3

xoffspring ← xparent + σAz4

updateStepSize (σ, λsucc, psucc)5

if f (xoffspring) ≤ f (xparent) then6

xparent ← xoffspring7

updateCholesky (A, z, psucc)8

until stopping criterion is met9

The update of the step size is done as in the standard
(1+1)-CMA-ES, and the same procedure updateStepSize

is used.
In the (1+1)-Cholesky-CMA-ES the covariance matrix is

never explicitly calculated. Instead, its Cholesky factors are
directly updated using Theorem 1. This, together with the
fact that the evolution path is not considered, leads to a
very short and elegant formulation of the covariance update
updateCholesky.

Procedure updateCholesky(A, z, psucc)

if psucc < pthresh then1

A ← caA +
ca

‖z‖2
 s

1 +
(1− c2

a)‖z‖2
c2
a

− 1

!
AzzT

2

The constant ca is defined by ca =
√

1− ccov. The new al-
gorithm inherits all invariance properties from the CMA-ES
(e.g., invariance under strictly increasing transformations of
the fitness function, under translation and rotation of the
search space). The parameters should be chosen as in the
standard (1+1)-CMA-ES (see Table 1).

5. EXPERIMENTS
We conducted two sets of experiments to evaluate the new

algorithms empirically. The goal of the first experiments
was to compare the performance of the (1+1)-CMA-ES with
the (1, λ)-CMA-ES and the default (μ/μW,λ)-CMA-ES. The
second set of experiments was done to investigate the effect
of not using the evolution path.

5.1 Experimental Setup
The performance w.r.t. the number of fitness function

evaluations was tested on a family of quadratic functions

f(x) =

nX
i=1

(aiyi)
2 with y = Ox ,

where O ∈ R
n×n is an arbitrary rotation matrix, i.e. O is

orthogonal. We considered the three functions fsphere, where

ai = 1 for all i = 1, . . . , n, felli, where ai = 1000
i−1
n−1 , and

ftablet, where ai = 1000 for i = 1, and ai = 1 otherwise.
The tested dimensions were n = 5, 10, 20, 30, . . . , 80.

Further, we looked at multimodal functions, namely the
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Figure 1: Simulations on functions fsphere (above), felli (middle), and fRastrigin (below), in 5D (n = 5, left) and
20D (n = 20, right). The plots show the median trial out of 51 trials for the (1+1)-, (1,λ)-, and (μ/μW,λ)-
CMA-ES. The error bars denote final values for the 3rd and the 49th trial (5%- and 95%-percentile).

generalized Ackley’s function [1, 2]

fAckley(x) = −20 · exp

0
@−0.2

vuut 1

n
·

nX
i=1

x2
i

1
A

− exp

 
1

n
·

nX
i=1

cos(2πxi)

!
+ 20 + exp(1) ,

the generalized Rastrigin’s function [15, 11]

fRastrigin(x) = 10n +
nX

i=1

`
x2

i − 10 cos(2πyi)
´

,

and Griewangk’s function [15]

fGriewangk(x) = 1 +

nX
i=1

x2
i

4000
−

nY
i=1

cos(
xi√

i
) ,

with dimensions n = 5, 20.
We conducted 51 trials of each algorithm for each func-

tion and each dimension. Using 51 trials makes the re-
port of median and 5%-quantile straightforward and more
useful. In each of 51 scenarios, the initial candidate solu-
tion was chosen uniformly at random in the initial region
[−32.768, 32.768], [−1, 5], [−10, 600], and O−1[−1, 5]n for
Ackley’s function, Rastrigin’s function, Griewangk’s func-
tion, and the quadratic functions, respectively. In case of
the quadratic fitness functions a new coordinate system O
was randomly generated for each scenario. The initial global
step size was set to 30, 3, 305, and 3 for fAckley, fRastrigin,
fGriewangk, and the quadratic functions, respectively. All re-
sults in this paper are invariant to the choice of O.

5.2 Results
We compared the (1+1)-CMA-ES with the (1, λ)-CMA-

ES and the default (μ/μW,λ)-CMA-ES with weighted global
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intermediate recombination and rank-μ-update of the co-
variance matrix. The former is elitist and has a success rule
based step size adaptation. The comma strategies are non-
elitist, use the cumulative step size adaptation (path length
control), and the (μ/μW,λ)-ES conducts weighted recombi-
nation of all μ = 
λ/2� parents.

First, to validate the step size adaptation we conducted
experiments on a linear fitness function (the presented re-
sults are identical for any non-constant linear function). The
step size increases linearly on the log-scale in all strategy
variants, a minimal necessary demand on step size control
[5]. The mean number of function evaluations needed to in-
crease the step size by one order of magnitude is shown in
Table 2 for the plus- and two comma-strategies. The success

Table 2: Mean number of function evaluations
needed to increase the step size by a factor of ten
on a linear fitness function, divided by n/5.

n λ (1+1) (1,λ) (μ/μW,λ)

5 8 25 98 72
20 12 18 96 56

rule in the plus-strategy is up to five times faster than the
path length control in the comma-strategies. This differ-
ence is an advantage in the linear environment, but should
be usually of minor relevance.

Trials on fsphere, felli, and fRastrigin are shown in Figure 1.
On fsphere and felli elitist (1+1) is roughly 1.5 times faster
than (μ/μW,λ) and two times faster than (1,λ). The final
steepness of the function value graph on felli implies that the
adaptation of the covariance matrix is successfully achieved
as in the comma variants: after the mutation distribution
has been adapted, the same performance as on the sphere
function is achieved. On fRastrigin the standard (μ/μW,λ)
finds considerably (and significantly, Wilcoxon rank sum
test, p < 0.01) better solutions than (1,λ), which in turn is
significantly better than (1+1). Here, the performance of
the plus-strategy can be considerably improved if the step
size change rate is slowed down by increasing the damping
d, but the performance of the (μ/μW,λ) cannot be achieved.

In the second set of experiments, the (1+1)-Cholesky-
CMA-ES, which requires O(n) operations less per fitness
function evaluation, is compared with the (1+1)-CMA-ES.
On fsphere it turns out that the difference in terms of fitness
function values between the strategies is marginal, while the
(1+1)-CMA-ES performs slightly faster (not shown). Fig-
ure 2 shows that the (1+1)-Cholesky-CMA-ES successfully
adapts its covariance matrix to the underlying coordinate
system on felli. As for the (1+1)-CMA-ES after the muta-
tion distribution has been adapted, the same performance
as on the sphere function is achieved. However, the compar-
ison with the standard (1+1)-CMA-ES shows a considerable
increase in the number of function evaluations needed. The
standard (1+1)-CMA-ES performs better, because keeping
track of the evolution path excels the adaptation on felli.

To quantify the performance loss by omitting the evo-
lution path on felli, we measured the number of function
evaluations to achieve a fitness value less than 10−10. For
every dimension, we determined the increase in the number
of fitness evaluations by dividing the median of the number
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Figure 2: Course of the median fitness computed in
each iteration over 51 trials of the (1+1)-CMA-ES
with evolution path and the (1+1)-Cholesky-CMA-
ES without evolution path on felli for dimensions n =
5, 20. The advantage of the evolution path becomes
more pronounced with increasing dimension.

of evaluations to reach the threshold 10−10 using the (1+1)-
Cholesky-CMA-ES by the corresponding median achieved
by the (1+1)-CMA-ES. This ratio is plotted in Figure 3.
The loss is less than linear in the dimensionality n, while we
gain a factor of n in terms of computational efficiency by us-
ing the Cholesky update. Thus, in terms of computational
efficiency of the covariance matrix update, the larger number
of matrix updates due to omitting the evolution path is still
compensated by the new update rule for large n. Of course,
more generations mean more fitness evaluations. Thus, the
(1+1)-CMA-ES with evolution path performs better than
the (1+1)-Cholesky-CMA-ES in terms of objective function
evaluations, which is usually the most relevant measure in
practice.

Figure 4 shows trials on ftablet. While for n = 5 the result
is slightly in favour for the standard (1+1)-CMA-ES, for n =
20 the Cholesky variant slightly outperforms the standard
variant in a later stage of the optimization. Obviously, on
ftablet the evolution path is of lesser importance.

On the multimodal test functions, no considerable or sta-
tistically significant performance differences can be found
between the two algorithms, see Tables 3, 4 and Figure 5.

6. DISCUSSION
The proposed (1+1)-CMA-ES combines the covariance

matrix adaptation and a newly introduced success rule based
step size control with the (1+1) selection scheme. Step size
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Figure 3: Number of function evaluations needed to
reduce the fitness below 10−10 on felli. We computed
for each iteration the median over 51 trials of the
(1+1)-CMA-ES with evolution path and the (1+1)-
Cholesky-CMA-ES without evolution path for vary-
ing problem dimension n. The plot depicts the quo-
tient, that is how many times the (1+1)-CMA-ES is
faster. The decreasing slope of the graph indicates
that the gain in performance is less than linear.

Table 3: Comparison of the (1+1)-CMA-ES with
evolution path and the (1+1)-Cholesky-CMA-ES
without evolution path on Rastrigin’s function
fRastrigin. The table shows the values for median,
the 3rd best, and the 49th best trial (i.e., median
and 5%- and 95%-percentile) in generation 1000 for
a total number of 51 trials.

n with evolution path without evolution path

median 3rd 49th median 3rd 49th

5 11.4 11.4 29.5 11.4 11.4 29.5

20 63.7 45.6 100 63.8 45.6 118.1

control and covariance matrix adaptation perform reliably
within the (1+1)-ES. The result reveals that complex strat-
egy parameter adaptation in evolution strategies is not con-
fined to non-elitist selection. On unimodal functions the
plus-selection together with the success rule based adap-
tation for the step size makes the (1+1)-CMA-ES about
1.5 times faster than the default (μ/μ, λ)-CMA-ES. In con-
trast, on multimodal functions the comma strategy with
path length control is less susceptible to get trapped into
local optima for two reasons. First, even a locally well
evaluated individual is abandoned in the next generation;
second, the path length control adapts larger step lengths,
in particular within the recombinant strategy variant. Due
to its performance deficiency on multimodal functions we
would not generally recommend the (1+1)-CMA-ES as new
default strategy variant.

The newly developed covariance matrix update rule re-
duces the computational complexity of the rank-one covari-
ance matrix update from O(n3) to O(n2). This is a sig-
nificant improvement on high dimensional, fast computable
fitness functions. The new update rule is much simpler to
implement (e.g., allowing for easy implementations in hard-
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Figure 4: Course of the median fitness computed in
each iteration over 51 trials of the (1+1)-CMA-ES
with evolution path (thinner line) and the (1+1)-
Cholesky-CMA-ES without evolution path on func-
tion ftablet. The upper plot refers to n = 5, the lower
to n = 20.

ware and in low level programming languages) and is com-
pletely specified without any hidden, numerically involved
procedures such as a singular value decomposition.

In contrast, using the more expensive eigenvalue or sin-
gular value decomposition has the advantage of making the
eigenvalues of the covariance matrix available. This provides
insights into the problem, allows for cumulative step size
adaptation [8, 9], and makes explicit bounding of eigenval-
ues from below possible. In practice it is even not necessary
to perform the eigenvalue decomposition in every genera-
tion, but only every τ generations. For τ = o(n) the new
approach is still faster for large n while τ = ω(n) is not
advisable. Only for τ = Θ(n) the computational complex-
ity aligns with the Cholesky update rule. We believe that
even then, aside from its simplicity, the new rule is still
computationally faster, which will be asserted in further in-
vestigations.

The most severe drawback of the proposed covariance ma-
trix update is its incompatibility with the concept of an evo-
lution path, because the evolution path cannot be factorized
appropriately. On some benchmark functions the evolution
path is of minor relevance, but on some test functions it con-
siderably improves the performance, and it rarely results in a
usually small performance degradation. We cannot rule out
that, based on the given results, an efficient factorization
with evolution path might be found in future. Nevertheless,
for the time being, we consider the (1+1)-Cholesky-CMA-
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n with evolution path without evolution path

median 3rd 49th median 3rd 49th

5 2.81 1.90 20.00 2.81 2.64 20.00

·10−10 ·10−10

10 19.85 3.50 20.00 19.86 2.57 20.00

Figure 5: The plots show the median fitness
computed in each iteration over 51 trials of the
(1+1)-CMA-ES with evolution path and the (1+1)-
Cholesky-CMA-ES without evolution path on Ack-
ley’s function fAckley. The upper plot refers to n = 5,
the lower to n = 20. The graphs for the two algo-
rithms can hardly be distinguished. The table shows
the values for median, the 3rd best, and the 49th best
trial in generation 1000.

ES as a theoretically elegant algorithm, the perhaps sim-
plest evolution strategy with step size and covariance matrix
adaptation, applicable to fast computable fitness functions.
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