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Abstract

The His274?Tyr (H274Y) oseltamivir (Tamiflu) resistance mutation causes a substantial decrease in the total levels of
surface-expressed neuraminidase protein and activity in early isolates of human seasonal H1N1 influenza, and in the swine-
origin pandemic H1N1. In seasonal H1N1, H274Y only became widespread after the occurrence of secondary mutations that
counteracted this decrease. H274Y is currently rare in pandemic H1N1, and it remains unclear whether secondary mutations
exist that might similarly counteract the decreased neuraminidase surface expression associated with this resistance
mutation in pandemic H1N1. Here we investigate the possibility of predicting such secondary mutations. We first test the
ability of several computational approaches to retrospectively identify the secondary mutations that enhanced levels of
surface-expressed neuraminidase protein and activity in seasonal H1N1 shortly before the emergence of oseltamivir
resistance. We then use the most successful computational approach to predict a set of candidate secondary mutations to
the pandemic H1N1 neuraminidase. We experimentally screen these mutations, and find that several of them do indeed
partially counteract the decrease in neuraminidase surface expression caused by H274Y. Two of the secondary mutations
together restore surface-expressed neuraminidase activity to wildtype levels, and also eliminate the very slight decrease in
viral growth in tissue-culture caused by H274Y. Our work therefore demonstrates a combined computational-experimental
approach for identifying mutations that enhance neuraminidase surface expression, and describes several specific
mutations with the potential to be of relevance to the spread of oseltamivir resistance in pandemic H1N1.
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Introduction

In molecular evolution, multiple mutations are often required to

confer an advantageous phenotypic change. Frequently, one

mutation directly causes a beneficial functional alteration (such

as a shift in substrate specificity or drug resistance), but is

deleterious to protein-level properties such as folding, stability, or

expression. A secondary mutation bolsters the protein-level

properties damaged by the functional mutation, but by itself

may confer no major adaptive benefit. Both mutations are needed

to yield a protein that possesses the beneficial functional alteration

and the requisite protein-level properties. Examples of this

phenomenon may include the evolution of antibiotic resistance

[1,2], viral immune escape [3], steroid-receptor specificity [4],

cytochrome P450 enzymatic activity [5,6], HIV co-receptor usage

[7], and influenza antiviral resistance [8].

When the functional mutation occurs first and is followed by a

secondary mutation that repairs protein-level properties, the

secondary mutation is typically referred to as ‘‘compensatory.’’

However, if an initial occurrence of a secondary mutation enables

the protein to tolerate the subsequent functional mutation, the

secondary mutation is referred to as ‘‘permissive’’ [4]. It is often

impossible to determine which of these two scenarios actually

occurred, but in some cases it appears that evolution proceeded via

permissive mutations [4,8]. This fact raises the tantalizing prospect

that it may be possible to predict secondary mutations that could

foreshadow future evolutionary change. In this paper, we explore

the possibility of identifying mutations of possible relevance for the

evolution of resistance to the neuraminidase-inhibitor oseltamivir

(Tamiflu) in the 2009 swine-origin pandemic H1N1 influenza.

Resistance to oseltamivir is conferred on N1 influenza

neuraminidases by the His274?Tyr mutation (H274Y, N2

numbering), which causes a subtle structural change in the

protein’s active site that weakens the binding of oseltamivir [9].

Although H274Y could occasionally be identified in human

seasonal H1N1 isolates from people taking oseltamivir [10], it was

thought that this mutation was unlikely to spread appreciably. The

reason for this view was that H274Y dramatically attenuated a

variety of seasonal H1N1 strains in tissue culture and animal

models, including A/WSN/1933 [11], A/Texas/36/1991 [12],

A/New Caledonia/20/1999 [13], and A/Mississippi/3/2001

[14]. This attenuation coincided with a protein-level defect caused

by H274Y that decreased the amount of neuraminidase expressed

on the cell surface [8]. But by 2007, H274Y no longer detectably

attenuated seasonal H1N1 isolates [14–16], and viruses carrying

that mutation began to spread globally, going to near fixation in
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the 2008–2009 season [17–19]. This spread of resistance was

preceded by secondary mutations that counteracted the decrease

in neuraminidase surface expression caused by H274Y [8].

In the spring of 2009, human seasonal H1N1 was displaced by a

new pandemic swine-origin H1N1 strain that continues to

circulate globally [20,21]. Currently, only about 1% of tested

pandemic H1N1 isolates have carried H274Y [22,23]. Most of

these resistant isolates have been from immunocompromised

patients or individuals taking oseltamivir, with only a few reported

cases of H274Y virus being transmitted in healthy untreated adults

[22,23].

At the protein level, H274Y causes the same defect in

neuraminidase surface expression observed in early seasonal

H1N1. Specifically, H274Y causes a substantial decrease in the

total protein and activity expressed on the surface of cells

transfected with plasmids encoding pandemic H1N1 neuramini-

dase [8], while pandemic H1N1 viruses with H274Y possess

between four and 10-fold less total neuraminidase activity [24–26].

However, as discussed immediately below, it remains unclear

whether this decrease meaningfully attenuates viral fitness.

A number of experimental studies have compared the growth or

transmission of matched isolates of wildtype and H274Y pandemic

H1N1. In MDCK-derived cell lines, H274Y virus grew slightly but

detectably worse than wildtype in five of eight cases [24,27–30]; in

the other three cases, there was no discernible difference

[25,29,30]. H274Y virus grew slightly more poorly than its

wildtype counterpart in differentiated human airway epithelium

cells [25]. Upon direct inoculation of high doses into ferrets or

mice, both wildtype and H274Y viruses replicated efficiently and

caused disease in all studies [27–31]. Similarly, in all studies, both

wildtype and H274Y viruses transmitted by direct contact with

100% efficiency between co-caged ferrets [29,31] or guinea pigs

[29]. Perhaps the most biologically relevant experimental measure

of viral fitness is airborne transmission in ferrets or guinea pigs. In

two of five comparisons, both wildtype and H274Y virus

transmitted rapidly to all exposed animals in the experimental

conditions used [29,30]. But in the three comparisons without

complete rapid transmission, the H274Y virus either transmitted

markedly more slowly [30] or completely failed to infect some of

the exposed animals [27,29]. The authors of these studies differ

about whether their results imply attenuation by H274Y – clearly,

pandemic H1N1 is not severely crippled by the mutation as was

early seasonal H1N1. This difference in the extent of attenuation

caused by reduced neuraminidase levels could be due to as yet

undefined differences elsewhere in the viral genome, such as in

hemagglutinin receptor avidity [32]. However, from an evolution-

ary perspective, a reduction of viral fitness by even a few percent

would likely prevent the spread of H274Y in pandemic H1N1,

since only a small fraction of infected individuals use oseltamivir

[33].

We therefore considered it worthwhile to investigate whether we

could identify secondary mutations that counteract the decreased

neuraminidase surface expression caused by H274Y in pandemic

H1N1. We began by testing the ability of several computational

approaches to retrospectively identify secondary mutations that

increase the total surface-expressed neuraminidase activity in

seasonal H1N1. We find that the PIPS computational approach

[34] is the most capable of correctly identifying secondary

mutations in this retrospective test. We then use this computa-

tional approach to predict 12 candidate secondary mutations to

pandemic H1N1. We experimentally screen these mutants, and

show that several of them do indeed increase the total surface-

expressed protein and activity of H274Y pandemic H1N1

neuraminidase. Combining two of these secondary mutations

with H274Y restores surface-expressed activity to approximately

wildtype levels, and also rescues the modest attenutation that

H274Y causes for viral growth in tissue culture. Our work

therefore identifies several secondary mutations that have the

potential to be of relevance for the evolution of oseltamivir

resistance in pandemic H1N1.

Results

Retrospective testing of computational approaches for
identifying important secondary mutations in seasonal
H1N1

The goal of our study is to predict secondary mutations that

enhance the surface-expressed activity and protein levels for

H274Y pandemic H1N1 neuraminidase. There are various

computational approaches that conceivably could be applied

towards this goal. We therefore began by testing the ability of

several computational approaches to retrospectively identify

important secondary mutations from the evolution of seasonal

H1N1 neuraminidase.

The A/New Caledonia/20/1999 seasonal H1N1 strain is

attenuated by H274Y [13], while the A/Brisbane/59/2007 strain

is not attenuated by this mutation [14] and is an immediate

ancestor of the lineage of oseltamivir-resistant viruses that went to

fixation beginning in 2007. We performed assays to measure both

the total surface-expressed neuraminidase activity and protein

levels in mammalian cells transfected with plasmids encoding

wildtype and H274Y neuraminidase proteins from these two

strains. As described previously [8], H274Y caused an approxi-

mately two-fold decrease in surface-expressed neuraminidase

protein and activity for the 1999 strain (Figure 1). In comparison,

the wildtype 2007 neuraminidase was expressed on the cell surface

at over 1.5-fold higher levels than its 1999 counterpart, and the

relative magnitude of the decrease caused by H274Y was

substantially smaller (Figure 1).

A total of 12 amino acid mutations separate the neuraminidases

from these strains (H45N, V48I, K78E, E214G, R222Q, V234M,

G249K, T287I, K329E, D344N, G354D, and D382N; N1

numbering). Two of these mutations (R222Q and V234M) have

been shown experimentally to be sufficient to alleviate the

attenuation of viral growth in tissue culture caused by H274Y in

the background of the 1999 neuraminidase [8]. A third mutation

(D344N) has been suggested to enhance neuraminidase substrate

affinity [15,35,36]. We progressively added these mutations to the

1999 neuraminidase in the order that they appeared in natural

sequences (V234M, then R222Q, then D344N). When all three

mutations were added to the 1999 neuraminidase, it exhibited

similar levels of total surface-expressed protein and activity to the

2007 neuraminidase, both in the presence and absence of H274Y

(Figure 1). Of the remaining mutations, three (V48I, E214G, and

D382N) have been tested previously [8]. In the background of an

H274Y seasonal H1N1 neuraminidase, none of these mutations

caused a substantial change in surface-expressed neuraminidase

protein or activity. Since the divergence in surface-expressed

protein and activity between 1999 and 2007 is explained by the

three mutations R222Q, V234M, and D344N, for the purpose of

the retrospective testing in this section, we placed these three

mutations in one group. We then placed all of the remaining

mutations in another group – although we stress that some of these

remaining mutations have not been explicitly tested for their effect

on neuraminidase surface-expressed activity.

We next sought to test whether computational approaches could

identify the three known enhancing mutations from the complete

set of mutations that separated the 1999 and 2007 strains. We

Secondary Influenza Neuraminidase Mutations
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reasoned that a computational approach that could correctly

identify these three mutations might also be able to predict new

mutations that enhance the surface expression of pandemic H1N1

neuraminidase. Because several of the candidate computational

approaches utilize structural data, we restricted the analysis to the

mutations that occurred in the crystallized [37] ectodomain of the

neuraminidase (this excludes mutations H45N, V48I, and K78E).

Our test therefore consisted of assessing the ability of the

computational approaches to distinguish R222Q, V234M, and

D344N from the remaining six ectodomain mutations (E214G,

G249K, T287I, K329E, G354D, and D382N) that occurred

during the divergence of the 1999 and 2007 strains.

We tested four different computational approaches. CUPSAT is

a computer program that combines structural information with

statistically derived potentials to predict the changes in protein

stability associated with amino acid mutations [38]. FoldX is a

computer program that uses a full atomic description of a protein’s

structure to predict mutational effects on protein stability [39].

The ‘‘consensus’’ approach assumes that the individual contribu-

tion of a mutation has a direct logarithmic (Boltzmann-like)

relationship to its frequency in a sequence alignment of

homologous proteins, such that the consensus residue is always

assumed to be the most favorable [40–42]. Finally, PIPS is a

method that we developed to infer mutational effects based on an

analysis of protein phylogenies, and which has been shown to be

able to predict secondary mutations that alleviate temperate-

sensitive defects in influenza hemagglutinin [34]. The improved

implementation of the PIPS approach used here is described in

detail in the Materials and Methods section, as are the datasets

used for the CUPSAT, FoldX, and consensus predictions.

Figure 2 shows the ability of each of the four computational

approaches to distinguish R222Q, V234M, and D344N from the

other six mutations. Neither CUPSAT nor FoldX showed any

efficacy. Both of these methods placed the predicted effects of the

nine actual ectodomain mutations near the center of the

distribution for all possible neuraminidase mutations, and failed

to separate R222Q, V234M, and D344N from the other six

mutations. The consensus approach did identify the nine actual

ectodomain mutations as being among the most preferable of all

possible mutations, although this is a somewhat tautological result

since by construction the approach prefers mutations that are

prevalent in natural sequences. However, the consensus approach

Figure 1. The three secondary mutations V234M, R222Q, and D344N largely explain the differences in total surface-expressed
activity and protein between 1999 and 2007 seasonal H1N1 neuraminidases. Shown are wildtype (WT) and indicated mutants of the A/
New Caledonia/20/1999 neuraminidase, in addition to WT and H274Y neuraminidases from the A/Brisbane/59/2007 (BR07) strain. All neuraminidases
contain C-terminal epitope tags, except for the untagged WT and H274Y A/New Caledonia/20/1999 variants. For the measurements, 293T cells were
transfected with plasmids encoding the neuraminidase proteins. After 20 hours, the cells were assayed for the total surface-expressed neuraminidase
activity (top panel) or protein using an antibody against the epitope tag (bottom panel). Bars show the mean and standard error for at least six
replicates.
doi:10.1371/journal.pone.0022201.g001
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failed to separate R222Q, V234M, and D344N from the other six

mutations. The PIPS approach was clearly the most successful. It

classified the nine actual ectodomain mutations as being more

preferable than most of the distribution of all possible mutations,

and was further able to parse R222Q, V234M, and D344N as the

most favorable of these nine mutations. We took this result as

evidence that PIPS is the most promising approach for predicting

mutations that enhance neuraminidase surface-expressed protein

or activity.

Prediction of mutations that counteract the
neuraminidase defect associated with H274Y in
pandemic H1N1

We next used the PIPS computational approach to predict the

top 12 candidates for enhancing neuraminidase surface expression

from the entire set of possible mutations to the ectodomain of the

pandemic H1N1 A/California/4/2009 neuraminidase. These

predictions are shown in Table 1. Plasmids were constructed

encoding epitope-tagged H274Y neuraminidases with each of

these secondary mutations. Among the secondary mutations

discussed above as enhancing the surface-expressed activity of

seasonal H1N1 neuraminidase, D344N is already present in the

pandemic H1N1 neuraminidase. The identities of residues 222

Figure 2. PIPS is the most effective computational approach for retrospectively identifying the secondary mutations that increased
seasonal H1N1 neuraminidase surface expression and activity. The histograms show the distribution of predicted effects for all possible
single amino-acid mutations to the A/New Caledonia/20/1999 neuraminidase, for each of the four computational approaches (CUPSAT, FOLDX, the
consensus approach, and PIPS). The A/Brisbane/59/2007 strain contains nine mutations in the crystallized ectodomain portion of the neuraminidase
relative to the A/New Caledonia/20/1999 strain. The three mutations that were experimentally show to enhance neuraminidase surface expression or
activity (R222Q, V234M, and D344N) are indicated with red squares, while the other six mutations are indicated with green circles. The units for the
different prediction methods are arbitrary, but in all cases more negative numbers correspond to mutations that are predicted to be more favorable.
Shown are one-sided P-values for the hypothesis that the prediction method assigns more negative values to the known enhancing mutations (red
squares) than the other six mutations (green circles), as determined using the Mann-Whitney test. The most successful computational approach
appears to be PIPS, which correctly places all three red squares to the left of all six green circles.
doi:10.1371/journal.pone.0022201.g002

Table 1. Top twelve PIPS predicted neuraminidase mutations
to pandemic H1N1.

mutation PIPS prediction

N369K 210.08

T289M 27.79

V166A 27.04

S366K 26.74

P126N 26.51

N386E 26.45

V83M 26.15

I389S 26.01

G454N 24.97

V106I 24.95

R257K 24.89

N221K 24.87

Top predicted mutations to A/California/4/2009 neuraminidase, excluding
mutations not in crystallized ectodomain and only considering the top
prediction at each site. Mutations named in N1 numbering scheme.
doi:10.1371/journal.pone.0022201.t001

Secondary Influenza Neuraminidase Mutations

PLoS ONE | www.plosone.org 4 July 2011 | Volume 6 | Issue 7 | e22201



and 234 in pandemic H1N1 are asparagine and valine,

respectively. We therefore also constructed plasmids with the

secondary mutations N222Q and V234M.

Each of these secondary mutations was tested for its effect on

the total amount of neuraminidase activity and protein expressed

on the surface of transfected cells (Figure 3). H274Y decreases

surface-expressed activity and protein to less than half of wildtype

levels. Several of the secondary mutations partially rescued this

defect, with the strongest effects being mediated by R257K,

T289M, N369K, and V234M (N1 numbering scheme). Other

secondary mutations had no effect, or even decreased neuramin-

idase surface expression, indicating that the computational

predictions are imperfect. Nonetheless, we considered it hearten-

ing that combining the computational predictions with a modest

amount of experimental screening allowed us to identify several

mutations of possible relevance.

The two secondary mutations with the strongest effects were

R257K and T289M. We constructed plasmids encoding both

mutations in the background of either wildtype or H274Y, and

measured the total surface-expressed neuraminidase activity and

protein (Figure 4). Combining both R257K and T289M with

H274Y rescued total surface-expressed activity to approximately

wildtype levels. In the absence of H274Y, these two mutations

increased total surface-expressed activity to levels 50% higher than

wildtype. Interestingly, in both backgrounds, the effects of the

R257K and T289M on the levels of surface-expressed protein

were substantially larger than those on activity. The protein levels

for the H274Y-R25K-T289M triple mutant were twice those of

wildtype, while the levels for the double mutant without H274Y

were five times higher than wildtype. This finding suggests that

these secondary mutations either decrease the per-protein

enzymatic activity, or cause a portion of the protein to reach the

cell surface in an inactive form. However, this effect is outweighed

by the overall increase in surface protein levels, such that the

secondary mutations still enhance total surface-expressed activity.

Secondary mutations eliminate the mild tissue-culture
growth defect caused by H274Y in pandemic H1N1

To test the effects of the top candidate permissive mutations on

viral growth, we used reverse genetics to generate pandemic H1N1

viruses carrying GFP in the PB1 segment [8]. These viruses

derived their gene segments from the A/California/4/2009 strain,

Figure 3. Several of the predicted secondary mutations partially counteract the decrease that H274Y causes in total surface-
expressed activity and protein for the pandemic H1N1 neuraminidase. Shown are wildtype (WT) and indicated mutants of the A/California/
4/2009 neuraminidase. All neuraminidases contain C-terminal epitope tags, except for the untagged WT. For the measurements, 293T cells were
transfected with plasmids encoding the neuraminidase proteins. After 20 hours, the cells were assayed for the total surface-expressed neuraminidase
activity (top panel) or protein using an antibody against the epitope tag (bottom panel). Bars show the mean and standard error for at least six
replicates.
doi:10.1371/journal.pone.0022201.g003
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with the hemagglutinin containing the commonly occurring

T197A mutation (which makes the sequence match that from

the vaccine strain A/California/7/2009). We successfully rescued

viruses with wildtype, H274Y, R257K-T289M, and H274Y-

R257K-T289M neuraminidases.

We performed viral growth assays in MDCK-SIAT1 cells that

constitutively expressed the PB1 protein. As has been observed in

the majority of previous studies [24,27–30] with 2009 pandemic

H1N1 strains, we found that H274Y caused a slight decrease in

viral growth (Figure 5). Our results most closely resemble those

obtained by [29] with the A/California/4/2009 strain, with the

H274Y variant growing to slightly lower titers at all timepoints,

with a maximal difference of about 10-fold.

However, the H274Y-R257K-T289M and R257K-T289M

variants grew to titers similar to wildtype (Figure 5), suggesting

that these two secondary mutations may rescue a slight attenuation

in tissue-culture growth associated with H274Y. In the presence of

50 nM oseltamivir, neither the wildtype nor the R257K-T289M

variants grew appreciably. But both the H274Y and H274Y-

R257K-T289M variants grew as well as they had in the absence of

oseltamivir. Therefore, the secondary mutations do not greatly

affect viral resistance to oseltamivir per se, but may alleviate the

slight tissue-culture growth defect caused by H274Y.

Discussion

We have investigated the possibility of predicting secondary

mutations that counteract the decreased neuraminidase surface

expression associated with the H274Y oseltamivir resistance

mutation in pandemic H1N1. We began with a retrospective test

to find the most effective computational approach for identifying

mutations that enhanced total surface-expressed activity and

protein among all of neuraminidase mutations that occurred

during the divergence of 1999 and 2007 strains of seasonal H1N1.

We then used this computational approach to predict 12 new

candidate mutations to pandemic H1N1. Three of these

candidates (R257K, T289M, and N369K), as well as one of the

secondary mutations from seasonal H1N1 (V234M), partially

rescued the defect in surface-expressed neuraminidase activity and

protein associated with H274Y in a 2009 pandemic H1N1 strain.

Combining the two best candidates (R257K and T289M) with

H274Y restored total surface-expressed activity to wildtype levels.

These two mutations also appeared to rescue the slight defect in

tissue-culture growth associated with H274Y in pandemic H1N1.

As discussed in the Introduction, the question of whether

H274Y meaningfully attenuates pandemic H1N1 is a subject of

continuing debate [24–31]. It therefore remains unclear whether

the fact that H274Y pandemic H1N1 isolates have thus far been

evolutionary dead ends [22,23] is simply a matter of luck, or is

because they are less fit than their oseltamivir-sensitive counter-

parts. Our results cannot resolve this question, which will

ultimately be answered only by continuing to observe the natural

evolution of the virus. However, our results do clearly demonstrate

that a measurable phenotype associated with H274Y in pandemic

H1N1 – a decrease in the total amount of surface-expressed

neuraminidase protein and activity – has the potential to be

counteracted by secondary mutations. Furthermore, we have

identified four specific mutations (R257K, T289M, N369K, and

V234M) with the potential to exert this effect. Note that this is

unlikely to represent an exhaustive list of all mutations that

enhance neuraminidase surface expression, since we only

experimentally screened 14 of the nearly 9,000 possibilities.

Nonetheless, these four mutations may be worthy of monitoring

during surveillance of pandemic H1N1.

Regardless of the eventual fate of H274Y in pandemic H1N1,

our findings are relevant to broader issues in protein evolution. We

began this paper by describing the burgeoning set of examples

where a mutation causes a beneficial phenotypic alteration only

when it is paired with a secondary mutation. We further noted that

these secondary mutations often act in a general manner by

bolstering a protein-level property such as folding, stability, or

expression, thereby alleviating defects caused by a variety of other

mutations [1,5,43–48]. The potential for this phenomenon

appears to be pervasive in influenza neuraminidase, as evidenced

by the existence of multiple secondary mutations that partially

counteract the decreased surface expression caused by H274Y.

The exact biophysical mechanism remains unclear, and is an

important area for further research. However, it is interesting to

note that the mutations are scattered about the neuraminidase

protein structure (Figure 6), and so appear to be generally

promoting surface expression rather than forming a specific

structural interaction with H274Y.

Figure 4. Combining several secondary mutations can fully
counteract the effect of H274Y on surface-expressed pandemic
H1N1 neuraminidase activity. Shown are wildtype (WT) and
indicated mutants of the A/California/4/2009 neuraminidase, all
containing C-terminal epitope tags. For the measurements, 293T cells
were transfected with plasmids encoding the neuraminidase proteins.
After 20 hours, the cells were assayed for the total surface-expressed
neuraminidase activity (top panel) or protein using an antibody against
the epitope tag (bottom panel). Bars show the mean and standard error
for at least six replicates.
doi:10.1371/journal.pone.0022201.g004
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It is the generality of this ‘‘buffering’’ of protein properties that

provides a basis for the strategy we used to identify potentially

important secondary mutations. The PIPS computational ap-

proach is built on the idea that a single additive dimension

captures the buffering effects of mutations on the whole set of

evolutionarily constrained protein properties. Clearly this is a

severe approximation, since mutations can have complex effects

on each of these properties. But the approximation captures

enough of the truth to be useful, since combining the resulting

computational predictions with a modest amount of experimental

screening was sufficient to identify secondary mutations that

indeed enhanced neuraminidase surface expression. Whether any

of these secondary mutations are actually found to play a role in

increasing the permissiveness of pandemic H1N1 to oseltamivir

resistance during future natural evolution will of course be the

truest test of the practical value of this approach.

Materials and Methods

PIPS computational approach for predicting secondary
mutations

The PIPS approach that we used to predict secondary

neuraminidase mutations that might enhance neuraminidase

surface expression is an improved version of that described in

[34]. The approach is based on the idea that mutations frequently

cause changes in protein-level properties that are under evolu-

tionary constraint, such as stability, folding or expression.

Previously [5,34,47,49], we cast the evolutionarily relevant

property solely as protein thermodynamic stability, DGf . Howev-

er, in the course of work by ourselves [8] and others [50,51], it has

become increasingly obvious that thermodynamic stability is not

always the protein-level property under the strongest evolutionary

constraint. We will therefore formalize a certain level of

biophysical evasiveness by defining a variable F , representing an

approximate agglomeration of evolutionarily constrained proper-

ties such as thermodynamic stability, kinetic stability, folding

efficiency, resistance to aggregation, intracellular trafficking, etc.

In this formulation, F represents the best one-dimensional

projection of all of these properties, to which in practice

mutational effects are frequently [50,52–56] but not always

[45,57] correlated. Describing each property individually would

be more biophysically accurate, but would not be mathematically

tractable in the approach that follows. The ultimate justification

for a formalism based on the biophysically approximate variable F
is experimental validation of some of the resulting predictions

described here and in [34].

More negative values of F correspond to better protein

properties, while more positive values correspond to worse

properties. We assume that evolution selects to maintain F below

some threshold (chosen here as zero) to ensure that the protein

adopts and maintains its folded conformation. However, as long as

Fv0, selection is indifferent to its exact value. When F§0, a

protein is nonfunctional. Therefore, a mutation that worsens

protein properties (increases F ) will not be tolerated by a protein

that has a marginal value of F (top panel of Figure 7A). But the

same mutation is tolerated by a protein with a larger margin in F
(bottom panel of Figure 7A). This relationship between F and

mutational tolerance corresponds to the experimental observation

that more stable proteins tend to be more robust to mutations

Figure 5. Growth in tissue-culture of pandemic H1N1 variants carrying neuraminidase mutations. The plot at left shows growth in
media lacking oseltamivir, while the plot at right shows growth in media containing 50 nM oseltamivir. Viruses contain all genes from the A/
California/4/2009 strain with the T197A mutation to hemagglutinin, with the exception of the PB1 segment which is engineered to carry GFP. MDCK-
SIAT1-CMV-PB1 cells were infected with the viruses at initial multiplicities of infection of 5|10{4 infectious particles per cell. At the indicated times,
viral supernatants were harvested and titered on fresh cells. Shown are the mean and standard error for four replicates.
doi:10.1371/journal.pone.0022201.g005

Figure 6. Sites of the mutations mapped onto the neuramin-
idases protein structure. Shown in dark green is one monomer from
an N1 neuraminidase crystal structure ([37], PDB code 3BEQ]. Residue
274 (N2 numbering) is shown in red, and the sites of the secondary
mutations (N1 numbering) are shown in blue. Oseltamivir (yellow
spheres) is modeled in its binding site based on a related crystal
structure ([83], PDB code 2HU0). The other three monomers of the full
neuraminidase tetramer are shown in light green, based on modeling
from a related crystal structure ([83], PDB code 2HU0). The image was
rendered with PyMOL.
doi:10.1371/journal.pone.0022201.g006
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[5,47,48], and the classic finding that certain mutations can

‘‘globally suppress’’ the deleterious effects of many other mutations

by increasing stability or folding efficiency [43–46].

Each mutation is associated with a DF value, which is the

difference between the F of the mutated protein and the wildtype

one. Most mutations worsen protein properties, corresponding to

an increase in F , or a positive DF value. Figure 7B shows a

representative distribution of DF values for all mutations to a

protein. The time-averaged probability distribution of F for an

evolving protein is determined by the balance between the

selection pressure to maintain Fv0 and the opposing pressure of

mutations with mostly positive DF values. The exact distribution

of F also depends on factors such as mutation rate, population

size, and the specific DF values associated with that protein

[49,58,59]. However, the distribution will have the general feature

that most of the time F is just marginally below the selection

threshold of zero. Figure 7C shows a representative time-averaged

probability distribution of F .

The foregoing facts lead to an obvious relationship between a

mutation’s DF value and the probability that it will be fixed during

neutral evolution. Specifically, let DF r
xy be the change in F

associated with mutating residue r from y to x. Given the above

assumptions, when DF r
xyƒ0, the mutation will always be selectively

neutral, since it will never pushF over the threshold of zero. On the

other hand, when DF r
xyw0, the mutation will only be selectively

neutral if the protein possess a sufficient buffer in F , which will be

the case when FvDF r
xy. Given the time-averaged distribution of

F shown in Figure 7C, it is clear that mutations just slightly

increasing F will frequently be neutral, while mutations with very

large DF r
xy will only rarely be neutral. Let f r

xy be the probability that

the mutation is selectively neutral. The relationship between f r
xy and

DF r
xy will have the general qualitative form shown in Figure 7D.

We will use this relationship to infer DF r
xy values from the

mutational histories contained in protein phylogenies.

For each residue r, we want to infer the set fDF r
xWTg

rð Þ
of the

DF r
xWT values for mutating the residue from its wildtype (WT)

identity to some other residue x. We will assume that the DF r
xWT

values for all residues are independent and additive, an assumption

that although obviously imperfect is nonetheless likely to

frequently be reasonable [60–65]. The specification of

fDF r
xWTg

rð Þ
allows for calculation of arbitrary DF r

xy as

DF r
xy~DF r

xWT{DF r
yWT: ð1Þ

Figure 7. Rationale for assuming that the fixation probability of a mutation depends on its effect on evolutionarily constrained
protein properties. (A) Evolution is assumed to select in a threshold manner for properties such as folding, stability, or expression (approximated
by the variable F ). A mutation deleterious to F will not be tolerated by a protein that has a marginal value of F (top panel). But the same mutation is
tolerated by a protein with an extra buffer in F (bottom panel). (B) Most mutations are deleterious to F , and therefore have positive DF values.
Shown is an example distribution of DF for all mutations to a protein, taken from [49]. (C) The time-averaged probability distribution of F for an
evolving protein will tend towards values just marginally below the threshold. Shown is an example of this distribution, taken from [49]. (D) As a
consequence, mutations with negative DF values will generally be tolerated, but those with positive DF are less likely to be tolerated. Shown is a
plot of the relationship between the probability f r

xy that mutating residue r from y to x will be tolerated as a function of the associated DF r
xy value, as

defined in Equation 3.
doi:10.1371/journal.pone.0022201.g007
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The corresponding derivatives are

LDF r
xy

LDF r
zWT

~

1, if x~z=y

{1, if y~z=x

0, otherwise:

8><
>: ð2Þ

We have described f r
xy as the probability that the mutation of

residue r from y to x goes to fixation at the neutral expectation.

Here we give an exact functional relationship between f r
xy and

DF r
xy. We have chosen this functional form arbitrarily, for simple

reasons of mathematical convenience. However, it captures the

key qualitative attributes discussed above. Specifically, we assume

that

f r
xy~

1

2
{

1

2
tanh b|DF r

xy{
1

2
ln

c

1{c

� �� �
, ð3Þ

where bw0 is a constant describing the steepness of the curve and

c gives the value of f r
xy at DF r

xy~0. We use a range of g~20 and

constrain {gvDF r
xWTvg. We set c~0:8, and then choose

b~0:265 so that 10{4~
1

2
{

1

2
tanh b|g{

1

2
ln

c

1{c

� �� �
.

Equation 3 is plotted in Figure 7D. The corresponding derivatives

are

Lf r
xy

LDF r
xy

~2bf r
xy f r

xy{1
� �

, ð4Þ

and so by the chain rule,

Lf r
xy

LDF r
zWT

~

2bf r
xy f r

xy{1
� �

if x~z=y

{2bf r
xy f r

xy{1
� �

if y~z=x

0 otherwise:

8>>><
>>>:

ð5Þ

As in [34], define Gr as the matrix with elements

Gr
xy~

f r
xy cxy, if x=y

{
P
z=y

f r
zy czy, if x~y

8<
: , ð6Þ

where cxy is the probability that a random nucleotide mutation to

a codon for amino acid y changes this codon to be for amino acid

x. We refer to the set of all cxy values as C. Again using the chain

rule,

LGr
xy

DF r
zWT

~

cxy|2bf r
xy f r

xy{1
� �

if z~x=y

{cxy|2bf r
xy f r

xy{1
� �

if z~y=x

{czy|2bf r
zy f r

zy{1
� �

if x~y=zX
w=y

cwy|2bf r
wy f r

wy{1
� �

if x~y~z

0 otherwise:

8>>>>>>>>>>><
>>>>>>>>>>>:

ð7Þ

The probability that a substitution changes residue r from y to x
after an elapsed time t is given by element Mr

xy tð Þ of the matrix

Mr tð Þ defined by

Mr tð Þ~exp utGrð Þ, ð8Þ

where u is the per codon mutation rate. Let Dr be the diagonal

matrix with entries equal to the eigenvalues of Gr, let Sr be the

matrix with columns equal to the right eigenvectors of Gr, and let

S{1
r be the inverse of Sr, so that

Gr~SrDrS
{1
r : ð9Þ

The matrix Mr tð Þ is conveniently computed as

Mr tð Þ~Srexp utDrð ÞS{1
r : ð10Þ

The derivatives of Mr tð Þ are given by [66] as

LMr tð Þ
LDF r

zWT

~SrVr,zS{1
r , ð11Þ

where the elements of Vr,z are

Vr,z
xy ~

Br,z
xy

exp utDr
xxð Þ{exp utDr

yy

� 	
Dr

xx{Dr
yy

if x=y

Br,z
xx ut exp Dr

xx ut
� 	

if x~y,

8<
: ð12Þ

where Dr
xx and Dr

yy are the diagonal elements of Dr representing

the eigenvalues of Gr, and Br,z
xy are the elements of the matrix Br,z

defined by

Br,z~S{1
r

LGr

LDF r
zWT

Sr: ð13Þ

Let the probability pr
x of finding residue x at position r in the

long-time limit be given by element x of the vector pr. The vector

pr represents the stationary solution to Equation 8, and so is the

probability vector (entries sum to one) that satisfies the eigenvector

equation

pr~ IzGrð Þpr, ð14Þ

where I is the identity matrix. Given a value of Gr, the uniqueness

of pr is guaranteed by the Perron-Frobenius theorems, since IzGr

is a nonnegative and acyclic stochastic matrix. The derivatives of

pr are given by [67] as

Lpr

LDF r
zWT

~{ Grð Þ#
LGr

LDF r
zWT

pr, ð15Þ

where Grð Þ# is the group inverse of Gr as described in [68].

In practice, we want to infer fDF r
xWTg from a phylogeny built

from a set of protein sequences. Let S~ skj1ƒkƒN

 �

consists of

N aligned homologous sequences of length L, with sk denoting the

kth sequence. For each sequence sk, we know the identity sk
r of the

amino acid at position r (where 1ƒrƒL). The set of amino acid

identities for all N proteins at a single site r is denoted by

S rð Þ~ sk
r j1ƒkƒN


 �
. Let T be the phylogenetic tree giving the

relationship among these sequences. The probability of S given

fDF r
xWTg, the set C of cxy values, the mutation rate u, and the tree
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T , is the product of the per-site likelihoods,

Pr SjfDF r
xWTg,C,u,T

� 	
~ P

L

r~1
Pr S rð ÞjfDF r

xWTg
rð Þ

,C,u,T
� �

: ð16Þ

For the example tree in Figure 8,

Pr S rð ÞjfDF r
xWTg

rð Þ
,C,u,T

� �
~
X

x,y,z,w

Pr A,C,D,E,F ,x,y,z,wjfDF r
xWTg,C,u,T

� 	
:
ð17Þ

Using the pruning approach of [69,70],

Pr S rð ÞjfDF r
xWTg

rð Þ
,C,u,T

� �

~
X

x

pr
x

X
y

Mr
yx t6ð Þ|Mr

Ay t1ð Þ|Mr
Cy t2ð Þ

 !
|

X
z

Mr
zx t8ð Þ|Mr

Dz t3ð Þ|
X

w

Mr
wz t7ð Þ|Mr

Ew t4ð Þ|Mr
Fw t5ð Þ

" # !
:

ð18Þ

The derivatives of Equation 18 can be computed using the

recursive nature of the likelihood calculation. This is most easily

seen by introducing the notation where Lr
n qð Þ represents the

likelihood that node n has residue q at position r given all the data

in the subtree rooted at node n. With this notation, Equation 18 is

Pr S rð ÞjfDF r
xWTg

rð Þ
,C,u,T

� �
~
X

x

pr
xLr

9 xð Þ, ð19Þ

where the likelihoods are calculated recursively down to the tree

tips, so that for example,

Lr
9 xð Þ~

X
y

Mr
yx t6ð ÞLr

6 yð Þ
 ! X

z

Mr
zx t8ð ÞLr

8 zð Þ
 !

, ð20Þ

and

Lr
8 zð Þ~Mr

Dz t3ð Þ|
X

w

Mr
wz t7ð ÞLr

7 wð Þ
 !

: ð21Þ

Using this representation,

LPr S rð ÞjfDF r
xWTg

rð Þ
,C,u,T

� �
LDF r

qWT

~
X

x

Lpr
x

DF r
qWT

Lr
9 xð Þzpr

x

LLr
9 xð Þ

LDF r
qWT

 ! ð22Þ

where the derivatives of the pr
x values are given by Equation 15,

and the derivatives of the likelihoods are calculated recursively, as

for example,

LLr
9 xð Þ

LDF r
qWT

~

X
y

LMr
yx

LDF r
qWT

Lr
6 yð ÞzMr

yx

LLr
6 yð Þ

LDF r
qWT

 !" # X
z

Mr
zx t8ð ÞLr

8 zð Þ
 !

z
X

y

Mr
yx t6ð ÞLr

6 yð Þ
 ! X

z

LMr
zx

LDF r
qWT

Lr
8 zð ÞzMr

zx

LLr
8 zð Þ

LDF r
qWT

 !" #
,

and

LLr
8 zð Þ

LDF r
qWT

~
LMr

Dz t3ð Þ
LDF r

qWT

X
w

Mr
wz ty

� 	
Lr

7 wð Þ
 !

z

Mr
Dz t3ð Þ|

X
w

LMr
wz t7ð Þ

LDF r
qWT

Lr
7 wð ÞzMr

wz t7ð Þ
LLr

7 wð Þ
LDF r

qWT

 !" #
,

ð24Þ

where the derivatives of the Mr
yx are given by Equation 11.

As discussed in [34], a prior probability distribution can be

specified for each DF r
xWT value. These priors can introduce

specific biophysical knowledge as might be computed using

molecular modeling programs, or can simply serve a ‘‘regular-

izing’’ role [71] to avoid overfitting the DF r
xWT values. The

priors also enforce the constraint that {gvDF r
xWTvg. We

define the prior probability distributions as beta distributions

peaked at a prior estimate DF r
xWT,PRIOR for the DF r

xWT in

question, and with the sum of the beta distribution a and b
parameters equal to Bsum,

Pr DF r
xWT

� 	
~

DF r
xWTzg

� 	a{1
g{DF r

xWT

� 	b{1

B a,bð Þ 2gð Þazb{1
ð25Þ

Figure 8. An example phylogenetic tree T . This tree shows the
sequence data S rð Þ for five sequences at a single site r. The amino acid
codes at the tips of the branches (A, C, D, E, and F ) show the residue
identities for the five sequences at this site. The variables at the internal
nodes (x, y, z, w) are the amino acid identities at the site for the
ancestral sequences, and must be inferred. The numbers next to the
nodes are unique identifiers for the nodes. The branch lengths (t1 , t2 ,…)
are proportional to the time since the divergence of the sequences.
doi:10.1371/journal.pone.0022201.g008

(23)
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where B is the beta function, a~
DF r

xWT, PRIORzg
� �

Bsum{2ð Þ
2g

z1, and b~Bsum{a. Note that DF r
xWT,PRIOR must satisfy

{gvD F r
xWT, PRIORvg. The derivative of Equation 25 is

LPr DF r
xWT

� 	
LDF r

xWT

~Pr DF r
xWT

� 	 a{1

DF r
xWTzg

{
b{1

g{DF r
xWT

� �
: ð26Þ

The overall prior probability of the set of fDF r
xWTg

rð Þ
of DF r

xWT

values for residue r is simply the product of the prior

probabilities for the individual DF r
xWT values,

Pr fDF r
xWTg

rð Þ
� �

~ P
DF r

xWT

Pr DF r
xWT

� 	
, ð27Þ

so the derivative is

LPr fDF r
xWTg

rð Þ
� �
LDF r

xWT

~Pr fDF r
xWTg

rð Þ
� � a{1

DF r
xWTzg

{
b{1

g{DF r
xWT

� �
:

ð28Þ

Equations 16 and 18 provide a method for computing

Pr SjfDF r
xWTg,C,u,T

� 	
. But goal is to infer the fDF r

xWTg, which

is equivalent to computing Pr fDF r
xWTgjS

� 	
. Using Bayes’

Theorem,

Pr fDF r
xWTgjS

� 	
~
X
C,u,T

Pr fDF r
xWTg,C,u,T

� 	
Pr SjfDF r

xWTg,C,u,T
� 	

P
fDF r

xWT
gPr fDF r

xWTg,C,u,T
� 	

Pr SjfDF r
xWTg,C,u,T

� 	 :ð29Þ

Rather than solving for all of the unknown variables, here we will

take the computational shortcut of using other methods to assign

fixed values to C, u, and T , so that

Pr fDF r
xWTgjS

� 	
~

Pr fDF r
xWTg

� 	
Pr SjfDF r

xWTg,C,u,T
� 	

P
fDF r

xWT
g Pr fDF r

xWTg
� 	

Pr SjfDF r
xWTg,C,u,T

� 	 : ð30Þ

Furthermore, rather than fully solving the right-hand side of

Equation 30 as might in principle be done using Markov-chain

Monte Carlo methods [72–74], we will simply compute the

maximum a posteriori value fDF̂F r
xWTg of fDF r

xWTg, defined as

fDF̂F r
xWTg~

argmax

fDF r
xWTg

Pr fDF r
xWTg

� 	
Pr SjfDF r

xWTg,C,u,T
� 	� 


:ð31Þ

Above we have provided equations for all of the derivatives

necessary to perform this maximization using gradient-based

techniques.

Implementation of the computational approach in the
PIPS program

A computer program that solves Equation 27 to infer fDF r
xWTg

was written in the Python programming language and given the

name PIPS (Phylogenetic Inference of Protein Stability), version

1.0. This program and the raw data from the analyses described in

this paper will be made freely available at http://labs.fhcrc.org/

bloom/.

As input to the PIPS program, we used MUSCLE [75] to build

a multiple-sequence alignment of all 3,731 unique full-length N1

neuraminidase protein sequences that were available for download

from either NCBI’s Influenza Virus Resource ([76], http://www.

ncbi.nlm.nih.gov/genomes/FLU/FLU.html) or GISAID’s EpiFlu

Database ([77], http://platform.gisaid.org/) as of June 21, 2010.

The aligned sequences were then used to build a neighbor-joining

phylogenetic tree without a molecular clock, using the PHYLIP

package [78]. This tree was used as input to the PIPS program.

The PIPS program was used to compute the fDF r
xWTg values

for mutations to the neuraminidases from the seasonal H1N1

strain A/New Caledonia/20/1999 and the pandemic H1N1 strain

A/California/4/2009. The prior probability distributions in

Equation 22 were set so that all mutations had prior estimates of

D F r
xWT, PRIOR~5, based on the idea that most mutations will be

moderately deleterious to F . The value of Bsum in Equation 22

was set to three. The mutation biases given by C in Equation 6

were calculated by assuming that each amino acid is equally likely

to be encoded by any of its possible codons, and that nucleotide

mutations occur with a transition-to-transversion ratio of four. The

value of u in Equation 8 was set to 10. The maximization in

Equation 31 was performed using the conjugate-gradient algo-

rithm. Although this algorithm is deterministic given specific

starting values, there may be local maxima. Therefore, for each

residue we performed five different maximizations starting from

different randomly chosen DF r
xWT values, and used the values that

gave the highest a posteriori probability as the final estimates.

Running the program in this fashion gave the PIPS predictions

shown in Figure 2 for the specified mutations to the neuraminidase

from A/New Caledonia/20/1999. For the mutations to the

neuraminidase from A/California/4/2009, Table 1 lists the 12

mutations with the most negative predicted DF r
xWT values,

considering only the best mutation for each residue and only

residues found in the ectodomain of the crystal structure of a

closely related N1 neuraminidase ([37], PDB code 3BEQ).

CUPSAT, FoldX, and consensus predictions
We also used CUPSAT, FoldX, and the consensus approach to

predict the effects of mutations to the A/New Caledonia/20/1999

(H1N1) neuraminidase, as shown in Figure 2. Text files giving all

of these predictions are available along with the PIPS program and

raw data that are being made available at http://labs.fhcrc.org/

bloom/.

CUPSAT and FoldX both take as their input a protein’s

structure. We used the crystal structure from PDB code 3BEQ

[37], which is of the 1918 H1N1 influenza neuraminidase. This

neuraminidase aligns to that of A/New Caledonia/20/1999 with

no gaps and 89% protein identity over the 385 residues in the

crystallized ectodomain. For the CUPSAT predictions, this

protein structure was submitted to the webserver http://cupsat.

tu-bs.de/cupsat/custompdb.htm to generate predictions for all

single mutations. For FoldX, we made the predictions using the

FoldX executable version 3.0 beta 4 for Mac OS X, as

downloaded from http://foldx.crg.es/. The FoldX ‘‘RepairPDB’’

function was first run to refine the PDB structure. The predictions

were then made using the default parameters and the ‘‘Position-

Scan’’ function. For the 89% of the residues in which the A/New

Caledonia/20/1999 neuraminidase sequence exactly matched

that in the 3BEQ crystal structure, the predicted mutational effects

were simply the predictions for that mutation. For residues that

differed between the two sequences, the predicted mutational
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effect was calculated as the predicted effect of mutating the PDB

residue to the target amino acid minus the predicted effect of

mutating the PDB residue to the A/New Caledonia/20/1999

residue. For both CUPSAT and FoldX, highly destabilizing

mutations (values greater than the leftmost histogram bar shown in

Figure 2) are counted in this last bar to avoid having to

dramatically expand the x-axis of the plot in the positive direction.

For the consensus predictions, we used the same sequence data

set of 3,731 full-length N1 neuraminidases that is described above

for the PIPS program. The predicted effect of mutating a residue

from amino acid x to y was calculated as ln
Nyz1

Nxz1
where Nx and

Ny are the number of sequences that have amino acids x and y at

that position, respectively. The one in the formula represents a

single pseudocount added to each sequence tally to avoid

undefined values for mutations to residues that are not present

in the natural sequence alignment.

Neuraminidase surface expression and activity assays
To test the effect of the predicted permissive mutations on the

levels of surface-expressed neuraminidase activity and protein, we

created plasmids encoding various mutants with C-terminal HA

epitope tags. Each neuraminidase protein-coding sequence was

directly fused to the epitope tag (YPYDVPDYA) and inserted into

a plasmid (HDM) containing a CMV promoter and 59 EcoRI/39

NotI cloning sites, followed by an internal ribosome entry site

(IRES) expressing the mCherry red fluorescent protein. As was

previously observed [8], the addition of the C-terminal epitope tag

led to at most a slight (less than 10%) decrease in the total surface-

expressed neuraminidase activity relative to an untagged variant

(Figures 1 and 3), indicating that the tag did not substantially alter

the protein or activity levels. Plamids were constructed for all of

the mutants of the A/New Caledonia/20/1999 neuraminidase

shown in Figure 1 and all of the mutants of the A/California/4/

2009 neuraminidase shown in Figures 3 and 4. In the naming of

the mutations, H274Y was named in the N2 numbering scheme to

adhere to historical convention – this is actually residue 275 in

sequential numbering of the N1 neuraminidase. All of the other

mutations are named according sequential N1 neuraminidase

numbering.

For the assays, the plasmids were transfected into 293T cells in

12-well dishes that had been seeded at uniform densities of 2|105

cells per well. At 20 hours post-transfection, the cells were

collected using a very brief treatment with EDTA-trypsin, and

resuspended in an isotonic assay buffer at pH 7.4, consisting of

15 mM MOPS, 145 mM sodium chloride, 2.7 mM potassium

chloride, 4.0 mM calcium chloride, and 2% heat-inactivated fetal

bovine serum. A fraction of these cells (5% of the total number

collected per well) were then assayed for the total neuraminidase

activity expressed on the cell surface using the fluorogenic

MUNANA assay. For this assay, the cells were incubated with

0.1 mM MUNANA (Sigma M8639) in a total volume of 150 ml in

black 96-well plates at 370C for 45 minutes. The reactions were

quenched by adding 100 ml of 150 mM sodium hydroxide in 84%

ethanol. The fluorescence was read using a Tecan Safire 2 plate

reader (excitation 360 nm, slit width 5 nm; emission 448 nm, slit

width 20 nm). The activities were quantified as the fluorescence

above the background from untransfected cells, normalized by the

fraction of cells transfected with the plasmid as determined by flow

cytometry for mCherry fluorescence as described below. Each bar

for the activity measurements in Figures 1, 3, 4 represents the

mean and standard error for at least six individual measurements.

A remaining fraction of the cells were stained with a

fluorescently conjugated antibody against the epitope tag (Santa

Cruz Biotechnology, HA probe F-7 Alexa-Fluor 647 conjugate, sc-

7392 AF647, 1:100 dilution). The stained cells were analyzed by

flow cytometry to determine the fraction of cells expressing the

mCherry protein (these are the cells transfected with the plasmid),

and the mean signal from the antibody staining among these

mCherry positive cells. The staining signal above background was

assumed to be proportional to the amount of neuraminidase

protein on the cell surface. Each bar for the stain measurements in

Figures 1, 3, 4 represents the mean and standard error of at least

six individual measurements.

Viral growth assays
Reverse genetics plasmids for the A/California/4/2009 H1N1

strain were constructed by using reverse-transcriptase PCR to

amplify the genome segments from total RNA extracted from virus

obtained from the Biodefense and Emerging Infections Resource

Repository (BEI Resources, catalog number NR-13658). The

hemagglutinin gene for A/California/4/2009 was modified by

adding the T197A mutation, since this mutation is present in the

majority of 2009 pandemic H1N1 isolates including the A/

California/7/2009 vaccine strain, and has been reported to aid in

virus rescue by reverse genetics [79]. The gene segments were

cloned into the BsmBI sites of the bidirectional RNA polymerase

I/polymerase II cassette plasmid pHW2000 [80], which was

kindly provided by Robert Webster of St. Jude Children’s

Research Hospital. Mutations to the neuraminidase were

introduced by site-directed mutagenesis.

Virions carrying GFP in the PB1 segment were rescued as

described in [8]. Briefly, the plasmid pHH-PB1flank-eGFP

encodes a viral RNA with the untranslated regions and 80

terminal coding nucleotides from each end of the PB1 gene

segment from A/WSN/33 influenza, with potential start codons

mutated. This plasmid and the reverse genetics plasmids for the

other seven influenza segments (PB2, PA, HA, NP, NA, M, and

NS) were co-transfected into a co-culture of 293T (ATCC

CRL11268) and MDCK-SIAT1 ([81], HPA Cultures 05071502)

cells that constitutively expressed the A/WSN/33 PB1 protein

under a CMV promoter (293T-CMV-PB1 and MDCK-SIAT1-

CMV-PB1 cells), with the PB1-F2 peptide eliminated by

introduction of a stop codon in the manner described by [82].

At 12 hours post-transfection, the cells were washed once with

PBS and the media changed to influenza growth media (Opti-

MEM I supplemented with 0.3% bovine serum albumin, 0.01%

heat-inactivated fetal bovine serum, 100 U/ml penicillin, 100

mg/ml streptomycin, and 100 mg/ml calcium chloride) containing

3 mg/ml TPCK-treated trypsin. After another 60 hours, at which

point essentially all cells had turned green and were undergoing

visible cytopathic effect, the viruses were harvested by filtration

through a 0.45 mm filter. The viruses were titered by infecting

MDCK-SIAT1-CMV-PB1 cells in influenza growth media, and

then quantifying the percentage of GFP positive cells at 15 hours

post-infection using flow cytometry. Each virus variant (wildtype,

H274Y, R257K-T289M, and H274Y-R257K-T289M neuramin-

idase) was rescued and titered in duplicate.

For the growth assays, MDCK-SIAT1-CMV-PB1 cells were

seeded in 6-well dishes so that they were at 6|105 cells per well at

the time of viral infection. Immediately before infection, the

medium was changed to 3 ml of influenza growth media plus

3 mg/ml TPCK-trypsin. Some wells also contained 50 nM

oseltamivir carboxylate (kindly provided by J. Smith and A. Perrin

of F. Hoffmann-La Roche), as indicated in Figure 5. Each well was

then infected with an amount of virus equal to 300 infectious

particles according to the flow cytometry titering. At the time

points indicated in the figures, supernatant was collected and the
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viral titer determined by flow cytometry titering on fresh MDCK-

SIAT1-CMV-PB1 cells. Each point in the figures shows the mean

and standard deviation for four total replicates, with two replicates

performed with each of the two separate virus rescues. The

exceptions are the measurements for the wildtype and R257K-

T289M viruses in 50 nM oseltamivir, where only two total

replicates were performed (one with each of the two separate virus

rescues).
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