
A Computational Framework
for Environment-Aware
Robotic Manipulation Planning

Marco Gabiccini, Alessio Artoni, Gabriele Pannocchia and Joris Gillis

Abstract In this paper, we present a computational framework for direct trajectory optimization
of general manipulation systems with unspecified contact sequences, exploiting environmental
constraints as a key tool to accomplish a task. Two approaches are presented to describe the
dynamics of systems with contacts, which are based on a penalty formulation and on a velocity-
based time-stepping scheme, respectively. In both cases, object and environment contact forces
are included among the free optimization variables, and they are rendered consistent via suitably
devised sets of complementarity conditions. To maximize computational efficiency, we exploit
sparsity patterns in the linear algebra expressions generated during the solution of the optimiza-
tion problem and leverage Algorithmic Differentiation to calculate derivatives. The benefits of
the proposed methods are evaluated in three simulated planar manipulation tasks, where essential
interactions with environmental constraints are automatically synthesized and opportunistically
exploited.

1 INTRODUCTION

Careful observation of how humans use their hands in grasping and manipulation tasks clearly
suggests that their limbs extensively engage functional interactions with parts of the environment.
The physical constraints imposed by the manipulandum and the environment are not regarded as
obstacles, but rather as opportunities to guide functional hand pre-shaping, adaptive grasping,
and affordance-guided manipulation of objects. The exploitation of these opportunities, which
can be referred to as environmental constraints (EC), enables robust grasping and manipulation in
dynamic and highly variable environments. When one considers the exploitation of EC, i.e. when
manipulation actions are performed with the help of the environment, the boundary between
grasping and manipulation is blurred, and traditional categories such as grasp and manipulation
analysis, trajectory planning and interaction control appear somewhat artificial, as the problem
we aim to solve seems to inextricably entangle all of them.

In this paper, we set out to formulate environment-aware manipulation planning as a nonlinear
optimal control problem and discretize it according to a direct transcription scheme [3]. In Sec. 3,
two approaches to describe the dynamics of systems with contacts are proposed and evaluated:

M. Gabiccini, A. Artoni, G. Pannocchia
Department of Civil and Industrial Engineering, Univ. of Pisa, Italy.
e-mail: name.lastname@unipi.it

J. Gillis
Department of Electrical Engineering, KU Leuven, Belgium.
e-mail: joris.gillis@kuleuven.be

1

name.lastname@unipi.it
joris.gillis@kuleuven.be

2 Marco Gabiccini, Alessio Artoni, Gabriele Pannocchia and Joris Gillis

in the first one, continuous contact reaction forces are generated by nonlinear virtual springs, and
the requirement to avoid sliding contacts is handled in an apparently original way; in the second
one, contact collisions are approximated as impulsive events causing discontinuous jumps in
the velocities according to a modified version of the Stewart-Trinkle time-stepping scheme [46].
The introduction of two different models is motivated by the relative ease for the first (second)
one to enforce EC exploitation primitives that avoid (profitably exploit) sliding motions during
interaction.

Both formulations lead to a nonlinear programming (NLP) problem (Sec. 4) that we solve
by using the Interior-Point (IP) method implemented in IPOPT [4] and discussed in Sec. 5. To
improve computational efficiency, we also annotate sparsity in the linear algebra expressions
and leverage algorithmic differentiation (AD) [21] to calculate derivatives both quickly and ac-
curately: the adoption of the CasADi framework [2], described in Sec. 5, provides a profitable
interface to all the above tools with a consistent API.

In Sec. 6, we evaluate our approaches in three simulated planar manipulation tasks: (i) moving
a circular object in the environment with two independent fingers, (ii) rotating a capsule with an
underactuated two-fingered gripper, and (iii) rotating a circular object in hand with three inde-
pendent fingers. Tasks (i) and (ii) show that our algorithm quickly converges to locally optimal
solutions that opportunistically exploit EC. Task (iii) demonstrates that even dexterous fingertip
gaits can be obtained as a special solution in the very same framework. Conclusions are drawn
in Sec. 7.

It is worth noting that with our method, approach planning, grasping, manipulation, and en-
vironment constraint exploitation phases occur automatically and opportunistically for a wide
range of tasks and object geometries, with no a-priori specification of the ordering of the differ-
ent stages required.

2 RELATED WORK

2.1 Exploitation of Environmental Constraints

The concept of exploiting environmental constraints is well-rooted in robotics. Pioneering work
was performed already in the eighties in the context of motion planning [32] and manipula-
tion [33]. However, these concepts did not have the proper influence on many of the recent
developments on either area, perhaps due to the inadequacy of the mechanical impedance prop-
erties of contemporary industrial manipulators to achieve sliding motion primitives stably, thus
precluding the adoption of strategies that exploit environmental constraints, e.g. by sliding one
object over another [10]. Also the idea of programming using environmental constraints is well
entrenched in robotics literature, starting with the seminal work [1], proceeding with [43], and
culminating in the iTaSC framework [45].

The exploitation of complex interactions with the environment in a manipulation task also
plays a central role in automation and manufacturing to design fixtures [7] and part feeders [6].
However, these works are highly specialized and they are limited to the case of handling a single
object geometry.

2.2 Traditional Grasp Planners

State-of-the-art general grasping algorithms and dexterous mechanical hands lie at the opposite
end of the spectrum: they are designed to perform grasping and manipulation of a wide range
of object geometries and for many different tasks. Traditional grasp planners (such as Open-
RAVE [11] and GraspIt! [34]) rely on precise finger-to-object contact points while avoiding the

A Computational Framework for Environment-Aware Robotic Manipulation Planning 3

surrounding environment. In real-world scenarios these models, as well as the motion of the
hand, will be highly uncertain leading to poor grasping performance for grasps that were deemed
highly robust based on theoretical considerations.

The recent paper [5] has proposed a pipeline for automated grasp synthesis of common objects
with a compliant hand by developing a full-fledged multi-body simulation of the whole grasping
process in the presence of EC: however, to date, the approach seems time consuming and the
sequence of primitive actions needed to perform complex tasks must be scripted in advance. Also
recently, both grasp planning algorithms and grasping mechanisms have begun to take advantage
of EC [13], albeit not systematically. While sequences of EC exploitation primitives have been
shown to be robust and capable [9], [26], there has been no comprehensive research on how to
enumerate and describe these primitives or how to sequence them into task-directed manipulation
plans.

2.3 General Purpose Planning Algorithms

State-of-the-art sampling-based planning algorithms like RRT*[25] seem not tailored for sit-
uations where a-priori unknown contact interactions may cause a combinatorial explosion of
system configurations. Recent extensions, initially presented in [18] for RRT, and successively
devised for RRT* in [40], were able to cope with systems described by complex and underactu-
ated dynamics. In [28], the authors presented an approach to moving an object with several ma-
nipulators. This problem presents some similarities to ours, since a sequence of phases has to be
both planned and solved. The strong assumption that the plan called by the high-level scheduler
will succeed — which is not always possible — has been removed in the recent contribution [8].

However, situations where intermitted contact sequences are not easily enumerated from the
outset, but are key for the success of environment-aware manipulation plans, still appear to be
out of their reach.

2.4 Machine Learning Approaches

Although significant progresses have been made in this area in recent years [27], learning robot
motion skills still remains a major challenge, especially for systems with multiple intermit-
tent contacts. Policy search is often the preferred method as it scales gracefully with system
dimensionality, even if its successful applications typically rely on a compact representation
that reduces the numbers of parameters to learn [29], [48], [41]. Innovative policy classes [23]
have led to substantial improvements on real-world systems. However, designing the right low-
dimensional representation often poses significant challenges. Learning a state representation
that is consistent with physics and embeds prior knowledge about interactions with the physical
world has recently been proposed in [24] and seems a promising venue to find effective meth-
ods to help improve generalization in reinforcement learning: however, the simulated robotic
tasks solved by this methods are still far in complexity from environment-aware manipulation
scenarios.

The recent contribution [30] developed a policy search algorithm which combines a sample-
efficient method for learning linear-Gaussian controllers with the framework of guided policy
search, which allows the use of multiple linear-Gaussian controllers to train a single nonlinear
policy with any parametrization, including complex and high-dimensional policies represented
by large neural networks. In [31], this method has been recently applied, with some modifications
that make it practical for deployment on a robotic platform, to solve contact-rich manipulation
tasks with promising results.

4 Marco Gabiccini, Alessio Artoni, Gabriele Pannocchia and Joris Gillis

2.5 Optimization-based Trajectory Planning

Various research groups are currently pursuing direct trajectory optimization to synthesize com-
plex dynamic behaviors for systems with intermittent contacts. Those working in locomotion [44]
mainly adopt a multi-stage hybrid-mode approach (usually employing multiple-shooting), where
the optimization is constrained to operate within an a priori specification of the mode ordering.
Interestingly, a recent contribution [51] explored the synthesis of optimal gaits for legged robots
without the need to specify contact sequences. Certainly, the adoption of such an approach seems
the only viable solution for a multi-fingered hand manipulating an object also by exploiting EC.
Along this line, it is worth mentioning the contact-invariant approach originally proposed in [36]
to discover complex behaviors for humanoid figures and extended to the context of manipulation
in [35]. The previously described trajectory optimization method has been recently employed to
gradually train a neural network by following an Alternating Direction Method of Multipliers
(ADMM) strategy with interesting results [37].

The approach presented in [42] inspired our work and is the one which is definitely closest.
However, remarkable differences in the formulation of the dynamics for systems with contacts,
in the choice of the solution algorithm, solver and framework, and in the focus of the paper —
here, EC exploitation is sought as a key factor — render our work significantly different.

3 DYNAMICS OF SYSTEMS WITH CONTACTS

3.1 Penalty-based contact model

To our eyes, manipulation planning has to rely on a dynamic model of the system, namely of
manipulandum, manipulator, and the environment, and of their mutual interactions through con-
tact. We consider here deterministic systems with continuous state and control spaces, denoted
by x and u respectively. The dynamic evolution of our controlled (non-autonomous) system can
be described in continuous time t by a set of Ordinary Differential Equations (ODEs):

ẋ(t) = F(x(t),u(t)) or F̃(ẋ(t),x(t),u(t)) = 0 (1)

(explicit dependence on t is omitted hereafter). Together with an initial value x(0) = x0, equa-
tion (1) defines an initial value problem. In general, additional algebraic dependencies may ex-
ist among ẋ, x and u leading to a dynamic system governed by differential-algebraic equations
(DAEs). In the presence of contact, for instance, and if contact forces are included among the
controls u, contact interactions establish functional dependencies between u and x through a
set of algebraic equations/inequalities. As an example, if fN is the normal contact force and
gN = gN(x) the normal gap (shortest distance) between a finger and the object being manipu-
lated, the complementarity and non-negativity conditions 0 ≤ fN ⊥ gN(x) ≥ 0 must hold. The
contact model described in this section is based on a special treatment of the contact forces and
the relative velocities that arise during interaction between manipulandum, manipulator, and en-
vironment. Such a model has proved to be successful in solving trajectory planning problems for
manipulation tasks with no sliding, in the presence of EC.

For normal contact forces, the underlying idea is borrowed from classical penalty-based ap-
proaches, where contact interactions are modeled by spring-dampers. In our model, no damping
is introduced, while a nonlinear exponential spring relates the normal contact force and the nor-
mal gap through the constitutive equation (Fig. 1)

fN(gN(x)) = fN0

(
f̂N

fN0

)gN(x)/ĝN

(2)

A Computational Framework for Environment-Aware Robotic Manipulation Planning 5

Ng

Nf

0Nf

N̂f

ˆNg

Fig. 1 Normal contact force as a function of the normal gap.

where gN(x) is the normal gap function and ĝN the negative normal gap value (penetration)
corresponding to the normal force value f̂N . The (fixed) parameters (f̂N , ĝN) provide a straight-
forward way to properly “calibrate” the model and adapt it to the problem at hand. Relation (2)
is a relaxation of the above-stated complementarity condition: it avoids discontinuities while be-
ing sufficiently representative of physical reality. In order to describe (unilateral) contacts with
friction, the classical Coulomb model is adopted. The focus is placed here on point-contact with
static friction, whereby normal force fN , tangential force fT and the coefficient of static friction
µs are related by the well known relation

fT ≤ µs fN (3)

No-sliding conditions must be enforced by requiring that sliding velocities at contact points be
zero. The normal gap gN(x) and the sliding velocity ġT (ẋ,x) (i.e., the time derivative of the tan-
gential gap [50]) would call for an additional complementarity condition. We devised a smooth
relaxation of this discontinuous condition through the sliding velocity funnel shown in Fig. 2 and
described by:

ġ(l)T (gN)≤ ġT ≤ ġ(u)T (gN) (4)

where the functions ġ(l)T (gN) and ġ(u)T (gN) are lower and upper bounds, respectively, for the slid-
ing velocity. It is reasonable to have a symmetric funnel, hence ġ(l)T (gN)=−ġ(u)T (gN). The bounds
are modeled here as:

ġ(u)T (gN) = exp(c1(gN + c2))+ c3 (5)

where the three parameters (c1,c2,c3) are used for proper, problem-dependent calibration. No-
sliding manipulation planning benefits from this approach as the sliding velocity funnel smoothly
and gradually guides the fingers towards the object, eventually driving relative velocities to
(nearly) zero at their contact points. The trajectory planning methods employed in this work are
based on numerical optimization techniques that require a discrete-time model of the dynamic
system, therefore discrete-time versions of eqs. (1)–(4) are adopted in the following. In our im-
plementation, the state vector xk = x(tk) collects configuration and velocity of each body, while
control vector uk = u(tk) includes acceleration of each finger (or actuator) and contact forces at
each candidate contact point. The dynamic equation (1) is used in a direct transcription scheme
based on collocation points: using a single collocation point as midpoint in the interval [tk, tk+1],
and denoting t̄k = (tk+1 + tk)/2, x̄k = x(t̄k) and h = tk+1 − tk (fixed), the discretized dynamic
equation becomes

xk+1 = xk +hF(x̄k,uk) (6)

In the above implementation, states are linear and controls are constant over each discretization
interval. The integration scheme (6) is known as implicit midpoint rule (O(h2), and it is the spe-

6 Marco Gabiccini, Alessio Artoni, Gabriele Pannocchia and Joris Gillis

Ng

Tg

()l
Tg

()u
Tg

Fig. 2 Example of sliding velocity funnel.

cial one-point case of the Gauss-Legendre collocation method. As it is a symplectic integrator,
it is suitable to cope with stiff, conservative mechanical systems. While eqs. (3)–(4) are straight-
forward to discretize, eq. (2) needs some attention: as it involves both states and controls, its
discretization must adhere to the scheme dictated by eq. (6), to wit

fNk = fN (gN(x̄k)) = fN0

(
f̂N

fN0

)gN(x̄k)/ĝN

(7)

Failing to do so (e.g., evaluating gN at xk) would result in a “causality violation”, with contact
forces being inconsistent with the interpenetrations between bodies governed by (6).

3.2 Velocity-based time stepping scheme

In this section, we present the complementarity formulation of the time-stepping scheme em-
ployed for the dynamic modeling of manipulation systems exploiting sliding over EC. To keep
the treatment general enough, we refer to a 3D system of m bodies with c contacts. We assume
a polyhedral approximation of the friction cone, with d friction directions uniformly distributed
to positively span the contact tangent plane1. For ease of notation, we write Mk = M(qk) and
likewise for other vector/matrix functions. Let h be again the time step, and let ∆v := vk+1− vk.
For k ∈ {0, . . . ,N−1}, we adopt a Backward-Euler transcription scheme by writing the kinematic
reconstruction and the dynamic equations as

qk+1−qk−hvk+1 = 0 (8a)

Mk+1∆v−h
[
κ(qk+1,vk)+Bk+1uk+1

]
−Gk+1λk+1 = 0, (8b)

where: q ∈ R6m and v ∈ R6m represent system configuration and velocity, respectively, M ∈
R6m×6m is the generalized mass matrix, κ ∈ R6m collects centrifugal, Coriolis and gravitational
forces, u ∈ Rt is the control torque vector, B ∈ R6m×t is the actuation matrix, G = [N T] is a
generalized grasp matrix, where N ∈ R6m×c and T ∈ R6m×nd are normal and tangential wrench
bases, and λ = [λ>N λ>T]> is the generalized wrench impulse vector, wherein λN and λT are the
normal and tangential contact wrench impulses. Matrix N appears as N = [N(1) · · ·N(c)], and each
column N(i) ∈R6m corresponds to contact i and contains, for each body ` connected to contact i,

1 For simplicity of description, we assume that the number of friction directions d is the same at each contact,
although this is not necessary.

A Computational Framework for Environment-Aware Robotic Manipulation Planning 7

a block of rows of the form ±[n>i (p`,i×ni)
>]>2. Since there are at most two bodies connected

to a contact, each N(i) has at most 12 non-zero elements. Similarly, T = [T (1) · · ·T (c)], and in the
generic block T (i) ∈ R6m×d , each column T (i, j) ∈ R6m contains, for each body ` connected to
contact i, a block of rows of the form ±[t>i, j (p`,i× ti, j)>]>, where ti, j denotes friction direction
j at contact i. Opposite signs must be selected for each of the two bodies connected to contact i,
and each column of T will contain, at most, 12 non-zero elements.

In partial accordance to [46], unilateral contacts with friction can be described by the follow-
ing set of inequality and complementarity conditions

0≤ λNk+1 ⊥ gN(qk+1)≥ 0 (9a)

0≤ λTk+1 ⊥
(
ġT (qk+1,vk+1)+Eγk+1

)
≥ 0 (9b)

0≤ γk+1 ⊥
[
µλNk+1 − (λ>Tk+1

H λTk+1)
1
2
]
≥ 0, (9c)

where gN(·) is the normal gap function and ġT (·) is the time derivative of the tangential gap
function [50], γ represents, in most cases3, an approximation to the magnitude of the relative
contact velocity, matrix E := BlockDiag(111, . . . ,111) ∈ R(dc)×c, with 111 ∈ Rd , µ ≥ 0 is the coeffi-
cient of friction, and H := BlockDiag(H(1), . . . ,H(c)), where the H(i)

lm = t>i,l ti,m (l,m ∈ {1, . . . ,d})
is the metric form [12, Sec. 2-5] of the basis ti,l that positively spans the tangent plane at con-
tact i. Eqs. (9a) state that bodies cannot interpenetrate (gN(qk+1)≥ 0), normal impulses can only
push objects away (λNk+1 ≥ 0), and that, in order for the impulse to be non-zero in the interval
[tk, tk+1], the normal gap must be closed at tk+1. This condition also implies that collisions are ap-
proximated here as inelastic ones, and interacting bodies may end up sticking together. Eqs. (9b)
require tangential impulses to be directed along the positive tangential directions (λTk+1 ≥ 0).
The complementarity condition in (9b) selects, for sliding contacts, the tangential impulse that
opposes the sliding velocity. This constraint is tightly coupled with the complementarity condi-
tion in eqs. (9c), and it ensures that, if a contact is sliding, the tangential force will lie on the
boundary of the friction cone. It is worth noting that the bracketed term in eq. (9c) allows one
to correctly define the Coulomb friction constraints even in sticking conditions, as it is robust to
the physiological failure of eq. (9b) in selecting only one non-zero component in each γ

(i)
k+1 for

adhesive contacts4.
The choice of fully implicit integration schemes and nonlinear complementarity formulations,

as described in Eqs. (8) and (9), can be justified in view of the increased numerical stability and
modelling accuracy they bring about, while not hindering the general structure of the problem5.

2 The positive/negative sign must be chosen if, considering equilibrium of body `, the unit normal vector ni is
facing into/away from body `.
3 In situations where the relative contact velocity and the friction vector are both zero, γ ≥ 0 can be arbitrary and
has no physical meaning.
4 Replacing the bracketed term in (9c) with [µλN −E>λT], as commonly performed in literature [47], would call
for unrealistically strict and physically unmotivated conditions to ensure adhesive friction.
5 Embedding contact dynamics into the numerical optimization problem as nonlinear constraints, where many
other implicit constraints are already present, does not justify explicit or semi-implicit discretization schemes,
which are, instead, legitimate when building fast simulators [19, Sec. 5].

8 Marco Gabiccini, Alessio Artoni, Gabriele Pannocchia and Joris Gillis

4 TRAJECTORY PLANNING AS AN OPTIMIZATION PROBLEM

4.1 Penalty-based contact model

Within our direct transcription framework, for k∈ {0, . . . ,N−1}, eqs. (6), (7), and the discretized
versions of eqs. (3) and (4) constitute a set of (equality and inequality) nonlinear constraints for
the optimal control problem (OCP) we set out to formulate. Additional constraints include the
(fixed and known) initial state values x0 = x(0) as well as a terminal equality constraint on
(some) components of xN : the latter provides a direct way to specify the required final state of
the manipulated object at the final time T = tN . Generally, no terminal constraints on the ma-
nipulation system configuration are imposed. Lower and upper bounds for (xk, x̄k,uk) are also
included: they act as operational constraints for actuators and the system’s workspace, and they
are useful to restrain contact forces within safety limits. Other constraints can be introduced to
shape emergent behaviors and to render them intrinsically more robust or desirable for several
reasons. As an illustrative example, in order to guarantee that any two fingers make always con-
tact with an object in a three-fingered manipulation task, we add the following set of inequalities
to the problem: f (1)Nk

+ f (2)Nk
≥ ε , f (2)Nk

+ f (3)Nk
≥ ε , and f (3)Nk

+ f (1)Nk
≥ ε , with ε > 0.

We introduce the vector of decision variables vvv∈Rn, which collects the sequence of unknown
(xk, x̄k,uk) (i.e., configurations and velocities in (xk, x̄k), contact forces and actuator accelerations
in uk). All equality and inequality constraints can be written compactly as

gmin ≤ g(vvv)≤ gmax, vvvmin ≤ vvv≤ vvvmax (10)

The general structure of the cost function takes the form

f (vvv) =
N−1

∑
k=0

∑
i∈I

wiφi(xk,uk), (11)

where each φi(·) represents a peculiar type of cost. These have to be carefully selected according
to the character of the manipulation action we desire to perform, along with the corresponding
weights wi (also acting as important scaling factors). Multiple cost terms φi(·) can be used to
shape different manipulation behaviors. The following terms (specifically, their squared 2-norm)
have proved to be decisive in directing the optimization process: contact forces, and their vari-
ations from one interval to the next (to minimize jerk); accelerations of actuators; deviations of
actual object trajectories from ideal, smooth trajectories (task-specific).

4.2 Velocity-based time stepping scheme

Similarly to the penalty-based contact model scheme, the discrete formulation of the dynamics of
systems with contacts expressed by eqs. (8) and (9) can be used as a set of nonlinear constraints
in an optimal control problem (OCP), involving the sequence of unknown (qk,vk+1,λk+1,γk+1).
Additional equality constraints are introduced: for the manipulated object, both initial and final
configurations and velocities are imposed, whereas only the initial conditions are specified for
the manipulation system.

Inequality constraints are also introduced with similar intentions as in the penalty-based
scheme. It is worth noting that, since in our applications the hand is velocity controlled, the
hand dynamics is not included in the optimization constraints, and the hand velocities will play
the role of control actions. Therefore, limited control authority is imposed as bounds on hand ve-

A Computational Framework for Environment-Aware Robotic Manipulation Planning 9

locities and accelerations in the form v(l)min ≤ v(l) ≤ v(l)max and al
minh≤ ∆v(l) ≤ a(l)maxh, respectively,

with l belonging to the index set corresponding to the hand.
Defining vvv ∈ Rn as the multi-stage sequence of configurations, velocities, contact impulses

and inputs, (qk,vk+1,λk+1,γk+1), all constraints are still expressed in the form (10), whereas the
cost function takes the form

f (vvv) =
N−1

∑
k=0

∑
i∈I

wiφi(qk,vk+1,λk+1,γk+1) (12)

4.3 Final optimization problem

From the previous discussion, we now present the nonlinear program (NLP) that has to be solved
to generate optimal trajectories. With vvv ∈Rn previously defined, we consider the following opti-
mization problem

min
vvv

f (vvv), subject to gmin ≤ g(vvv)≤ gmax vvvmin ≤ vvv≤ vvvmax (13)

in which: f : Rn → R is the objective function, g : Rn → Rm is the nonlinear constraint func-
tion, gmin ∈ [−∞,∞)m and gmax ∈ (−∞,∞]m (with gmin ≤ gmax) are, respectively, lower and
upper bound vectors of the nonlinear constraints, vvvmin ∈ [−∞,∞)n and vvvmax ∈ (−∞,∞]n (with
vvvmin ≤ vvvmax) are, respectively, lower and upper bound vectors of the decision variables. Prob-
lem (13) is a large-scale, but sparse NLP, that should be solved by structure-exploiting solvers.
To this end, as detailed in the next section, we resorted to the IPOPT [49] implementation of the
interior-point method within the CasADi framework. As initial guess required by the algorithm,
we somewhat crudely mapped the initial state x0 and a rough estimate of the controls to all the
(N−1) variable instances. Obviously, better initial guesses should be provided whenever possi-
ble. With the penalty-based approach, (partial) solutions of the NLP (13) have also been used as
initial guesses for a subsequent optimization according to a homotopy strategy [38, Sec. 11.3],
thereby maximizing physical realism while facilitating convergence.

5 NONLINEAR PROGRAMMING VIA AN INTERIOR-POINT
ALGORITHM

5.1 The barrier problem formulation

Problem (13) is equivalently rewritten as

min
x

f (x), subject to (14a)

c(x) = 0 (14b)
xmin ≤ x≤ xmax (14c)

in which x is formed by augmenting the decision variable vector vvv with suitable slack variables
that transform inequality constraints in (13) into equality constraints.6

Let Imin = {i : x(i)min 6=−∞}, and Imax = {i : x(i)max 6= ∞}. We consider the barrier function

6 With a slight abuse of notation, we still use n and m to denote the dimension of x and c(x), respectively, and f (x)
to denote f (vvv).

10 Marco Gabiccini, Alessio Artoni, Gabriele Pannocchia and Joris Gillis

ϕµ(x) = f (x)−µ

(
∑

i∈Imin

ln(x(i)− x(i)min)+ ∑
i∈Imax

ln(x(i)max− x(i))

)

in which µ > 0 is a (small) barrier parameter. Instead of solving (14), IPOPT performs iterations
to achieve an approximate solution of the equality constrained NLP

min
x

ϕµ(x), subject to: c(x) = 0 (15)

Note that ϕµ(x) is well defined if and only if xmin < x < xmax, i.e. if x is in the interior of its
admissible region. The value of µ is progressively reduced so that ϕµ(x)→ f (x), and in this way
solving (15), in the limit, becomes equivalent to solving (14). Clearly, as µ → 0, any component
of x can approach its bound if this is required by optimality.

5.2 Interior-point approach to NLP

Any local minimizer to (15) must satisfy the following Karush-Kuhn-Tucker (KKT) conditions
[38, Sec. 12.2]

∇ f (x)+∇c(x)λ − z+ z = 0 (16a)
c(x) = 0 (16b)

z(i)(x(i)− x(i)min)−µ = 0 ∀i ∈ Imin (16c)

z(i)(x(i)max− x(i))−µ = 0 ∀i ∈ Imax (16d)

for some vectors λ ∈Rm, z∈Rn, and z∈Rn (for completeness: z(i) = 0 ∀i /∈ Imin, z(i) = 0 ∀i /∈
Imax). Notice that, if µ = 0, then (16) together with z≥ 0 and z≥ 0 represent the KKT conditions
for NLP (14). The KKT conditions (16) form a nonlinear algebraic system F(ξ) = 0 in the
unknown ξ = (x,λ ,z,z), which is solved in interior-point algorithms via Newton-like methods.
If we denote by Eµ(ξ) the maximum absolute error of the KKT equations (16) (appropriately
scaled), the basic algorithm implemented in IPOPT is summarized in Table 1 (in which j is the
index of the outer loop, k is the index of the inner loop, and ε > 0 is a user-defined convergence
tolerance).

Table 1 Basic Algorithm implemented in IPOPT.

1. Define µ0 > 0, x0 (xmin ≤ x0 ≤ xmax), λ0, z0 ≥ 0, z0 ≥ 0, and form ξ0 accordingly. Set: j = 0, k = 0.
2. Given the current iterate ξk, compute a Newton step pk for F(ξ) = 0. Compute the new iterate performing a

line search: ξk+1 = ξk +αk pk (for some αk > 0).
3. If E0(ξk+1)≤ ε , exit: ξk+1 is a local solution to NLP (14). Otherwise, proceed to Step 4.
4. If Eµ j (ξk+1)≤ κµ j (for some κ > 0) proceed to Step 5. Otherwise, update k← k+1 and go to Step 2.
5. Set µ j+1 = µ j/ρ (for some ρ > 1), update j← j+1, k← k+1 and go to Step 2.

A Computational Framework for Environment-Aware Robotic Manipulation Planning 11

5.3 Main computational aspects: calculating derivatives and solving (sparse)
linear systems

The most expensive computation step in the basic interior-point algorithm is the computation of
the Newton step pk for the KKT system F(ξ) = 0, i.e. Step 2. We first note that evaluation of
F(ξ), at each iteration, involves the computation of the cost function gradient ∇ f (x)∈Rn and of
the constraint Jacobian ∇c(x) ∈ Rn×m. Then, the Newton step is found from the solution of the
following linear system: Wk Ak −I I

AT
k 0 0 0

Zk 0 Xk 0
−Zk 0 0 Xk

px
k

pλ
k

pz
k

pz
k

=−

∇ϕµ j(xk)+Akλk
c(xk)

XkZk111−µ j111
XkZk111−µ j111

 (17)

in which: Wk = ∇2
xxL (xk,λk,zk,zk), with L (x,λ ,z,z) = f (x)+c(x)T λ − (x−xmin)

T z− (xmax−
x)T z the Lagrangian function associated with NLP (14); Ak = ∇c(xk) the constraint Jacobian;
Zk = diag(zk), Zk = diag(zk), Xk = diag(xk−xmin), and Xk = diag(xmax−xk) diagonal matrices;
∇ϕµ j(xk) = ∇ f (xk)− zk + zk. In order to generate the entries of system (17), it is necessary to
evaluate the cost function gradient, the constraint Jacobian, as well as the Hessian of the La-
grangian (or a suitable approximation to it). Partial derivatives can be computed numerically
by finite differentiation or analytically (for simple functions). A third approach is by means of
so-called Automatic Differentiation (or Algorithmic Differentiation) techniques, which gener-
ate a numerical representation of partial derivatives by exploiting the chain rule in a numerical
environment. Different approaches exist for AD, which are tailored to the computation of first-
order and second-order derivatives. The interested reader is referred to [20]. A final computation
observation is reserved to the numerical solution of system (17). First, it is transformed into a
symmetric (indefinite) linear system via block elimination. Then, symmetry can be exploited
by symmetric LDL factorizations. Furthemore, it should be noted that in trajectory planning
problems considered here (and in general in optimal control problems) the Hessian Wk and the
constraint Jacobian Ak are significantly sparse and structured. Exploiting these features can re-
duce the solution time significantly. To this effect, the MA57 multifrontal solver [14] from the
Harwell Software Library [22] is used.

5.4 The CasADi framework

The transcribed optimal control problem is coded in a scripting environment using the Python
[39] interface to the open-source CasADi framework [2], which provides building blocks to
efficiently formulate and solve large-scale optimization problems.

In the CasADi framework, symbolic expressions for objective and constraints are formed
by applying overloaded mathematical operators to symbolic primitives. These expressions are
represented in memory as computational graphs, in contrast to tree representations common to
computer algebra systems. The graph is sorted into an in-memory algorithm which can be eval-
uated numerically or symbolically with an efficient stack-based virtual machine or be exported
to C code. Forward and backward source-code transforming AD can be performed on such al-
gorithm at will, such that derivatives of arbitrary order can be computed. The sparsity pattern of
the constraint Jacobian is computed using hierarchical seeding [17] and its unidirectional graph
coloring is used to obtain the Jacobian with a reduced number of AD sweeps [16]. Regarding
expressions and algorithm inputs and outputs, everything is a sparse matrix in CasADi. Yet the
underlying computational graphs may be of either a type with scalar-valued (SX) nodes or a type
with matrix-valued (MX) nodes. The combined usage of these two types amounts to a check-

12 Marco Gabiccini, Alessio Artoni, Gabriele Pannocchia and Joris Gillis

pointing scheme [20]: low-level functions are constructed with the SX type algorithm, which is
optimized for speed. These algorithms are in turn embedded into a graph of the MX type, which
is optimized for memory usage, to form the expression of objective and constraints.

In the context of optimal control problems, the CasADi framework offers several advantages
over other AD tools: it comes bundled with common algorithms that can be embedded into
an infinitely differentiable computional graph (e.g. numerical integrators, root-finding and lin-
ear solvers), and takes care of constructing and passing sensitivity information to various NLP
solvers backends. Since CasADi does not impose an OCP solution strategy and allows fine-
grained speed-memory trade-offs, it is suited more than black-box OCP solvers to explore non-
standard optimal control problem formulations or efficient solution strategies.

6 APPLICATION EXAMPLES

6.1 Environment-aware manipulation

6.1.1 Penalty-based approach with disk and two independent fingers

Figure 3 shows a first example of EC-exploiting manipulation. In a vertical plane, the two inde-
pendent fingers H0 and H1, initially away from the circular object, must interact with the object
and have it interact with the environment (edges e0 and e1) so that it will be in the shown final po-
sition, with any orientation but zero velocity, at the end of a prescribed time horizon T . All contact
interactions must occur without slippage (static friction). The object’s initial state corresponds to
a configuration of static equilibrium. The fingers have limitations on their horizontal workspace:
as a result, grasping and lifting of the object is inhibited, and an environment-exploiting policy
needs to be discovered in order to accomplish the task. Also, object-passing between fingers
needs to emerge. This planning problem has been formulated and solved using the penalty-based
approach. The resulting trajectories in terms of normal contact forces are shown in the first two
plots of Fig. 4: finger H0 approaches the object first (whose weight is symmetrically supported by
e0 and e1), then rolls it on edge e1 (without slipping) until it reaches its workspace limit and hands
it over to finger H1, which completes the task. Friction forces (not shown for brevity) satisfy con-
straint (3), where µs = 2 was used. The third plot shows the actual x-component trajectory of
the object versus a suggested trajectory, included as a hint in the objective function to facilitate
convergence of the algorithm, but with a low weight (to avoid forcing such trajectory against dy-
namic constraints). With N = 180 discretization intervals (time step h = 45 ms) and considering
the prescribed initial and terminal conditions, the problem size is n= 8810 decision variables. An
animation of the obtained results can be found in part A.1 of the accompanying video [15] which
also shows the grasping-and-lifting behavior that is discovered if finger workspace limitations
are removed and the contact force exerted by edge e1 is penalized.

6.1.2 Velocity-based time-stepping scheme with capsule and two-fingered underactuated
gripper

With reference to Fig. 5, a capsule-shaped object, starting from an equilibrium configuration in
contact with segment P2P3 (of a six-edged polygonal environment), has to find itself rotated by
180 deg at the end of the planning horizon T . Since the object is passive, a manipulation gait
has to emerge for the gripper. Moreover, since we penalize high contact impulses and the gripper
has a reduced mobility due to underactuation — it has symmetrically closing jaws — it turns out
that convenient EC-exploiting behaviors are indeed automatically synthesized by the optimizer.
In fact, with reference to Fig. 6, beside finger impulses (first plot), which represent standard
grasping/manipulation actions, contact interactions generated by collisions of the object with the

A Computational Framework for Environment-Aware Robotic Manipulation Planning 13

0finger object in initial
configuration

object in required
final configuration

H

0edge e

1
edge e

1finger H1 limitH

0 limit H

tl

Fig. 3 EC manipulation scenario: the object must reach its final configuration at the prescribed final time T = 8 s.

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0 1 2 3 4 5 6 7 8
0.0

0.5

1.0

1.5

2.0

2.5

 fi
ng

er
 fo

rc
es

 f
i N

 (N
) f 0

N

f 1
N

0 1 2 3 4 5 6 7 8
0
1
2
3
4
5
6
7

 e
nv

iro
nm

en
t f

or
ce

s f
ej N

 (N
)

f e0N
f e1N

0 1 2 3 4 5 6 7 8
 time (s)

0.00

0.03

0.06

0.09

0.12

x
O

 (m
)

suggested x-displacement
actual x-displacement

Fig. 4 Trajectories for a circular object manipulated by two independent fingers: normal contact forces f i
N applied

by the fingers; normal contact forces f e j
N applied by the environment (segments e0, e1); suggested and actual x-

displacement x of the object.

environment (second plot) play a role of paramount importance in shaping the object motion.
More in detail, with reference to part A.2 of the accompanying video [15], the object is initially
grasped and lifted, then it is gently dropped so that it lays on segment P2P3 after hitting segment
P3P4 (see the corresponding bumps in λ 23

N and λ 34
N). Then, with the circular part of the capsule

pushed to corner P3, the object is rotated with only one finger by sliding it on edges P2P3 and
P3P4. Finally, both fingers grasp the object and, slightly lifting it up, they slide it on edge P2P3
to the initial position. It is worth noting that, with a wise exploitation of EC, the actual rotation
of the object can closely follow the desired one (third plot). This condition can be violated in

14 Marco Gabiccini, Alessio Artoni, Gabriele Pannocchia and Joris Gillis

ox
oy

O

{O}
H

hx

hy

Os
sx

sy

hs

hs

1H

0H

{H}

0P

1P 0O

1O

2P 3P

4P 5P

6P

or fr

hq

oq

capsule-shaped
object

commanded
gripper position

polygonal
environment

Fig. 5 EC manipulation scenario. Starting at qO(0) = π/2, in contact with segment P2P3, the capsule must be
placed, at time T = 5 s, in the same position but with qO(T) =−π/2.

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40

 fi
ng

er
 im

pu
ls

es
 λ

i N
 (N

s) λ 0
N

λ 1
N

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40

 e
nv

iro
nm

en
t i

m
pu

ls
es

 λ
ij N

 (N
s)

λ 23
N

λ 34
N

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
 time (s)

2

1

0

1

2

q O
 (r

ad
)

actual rotation
ideal rotation

Fig. 6 Motion trajectories of a capsule-shaped object manipulated by an underactuated gripper: contact normal
impulses λ 0

N and λ 1
N applied by the fingers; contact normal impulses λ

i j
N applied by the environment through

segment PiPj; ideal and actual rotation qO of the object-fixed frame.

A Computational Framework for Environment-Aware Robotic Manipulation Planning 15

general, since the trajectory prescribed from the outset only constitutes a suggested behavior
for some components of the system. Regarding the underlying numerical OCP, at each time step
k∈{0, . . . ,N−1}, the problem variables have the following dimensions: qk ∈R4+3, vk+1 ∈R4+3,
λNk+1 ∈ R6+2, λTk+1 ∈ R12+4, γk+1 ∈ R6+2. With N = 160 discretization intervals (h = 30 ms)
and considering the prescribed boundary conditions on the object/gripper, the problem size is
n = 7375. An animation of the results can be found in part A.2 of the accompanying video [15].

6.2 Dexterous manipulation

With reference to Fig. 7, a circular object, starting from a configuration where it is held in equi-
librium by three independent fingers in a force-closure grasp, has to find itself rotated by 360
deg at the end of the planning horizon T , with zero velocity. Since, again, the object itself is
passive and each finger has workspace limitations (see Fig. 7), a relatively complex (dexterous)
manipulation gait has to be discovered for the fingers. To obtain an in-place manipulation, a box
constraint has also been assigned on the position of the object center. In order to obtain a rela-
tively robust manipulation, the constraint described in section 4.1 has been included to guarantee
that any two fingers are always in contact. As we want no slipping between the fingers and the
object during manipulation, the penalty-based approach has been used (with a coefficient of fric-
tion µs = 1.5). The resulting optimal trajectories in terms of finger forces are shown in the first
two plots of Fig. 8: intermittent contacts due to the discovered manipulation gait can be clearly
seen. The third plot shows the object’s actual rotation versus a smooth (third-order), suggested
rotation trajectory. With N = 200 discretization intervals (h= 30 ms) and accounting for the fixed
initial and terminal conditions, the problem size is n = 12585. An animation is provided in part
B.1 of the accompanying video [15], while part B.2 shows the results obtained by solving the
same problem with the velocity-based time-stepping scheme, where sliding between fingers and
object is allowed and exploited.

7 CONCLUSIONS AND FUTURE WORK

This paper proposed a computational framework to plan environment-aware manipulation be-
haviors that do not rely on an a-priori defined sequences of contacts. To this end, we framed
the problem as a numerical optimal control one, including contact forces among the optimiza-
tion variables as a key factor, and we sharpened the algorithmic pipeline by exploiting structural
sparsity and leveraging Automatic Differentiation. Two contact models were proposed that best
fit manipulation scenarios where sliding primitives need to be avoided or sought, respectively.
These proved effective in solving manipulation planning problems where essential interactions
with the environment had to be synthesized to accomplish a task (sub-section 6.1). The results
presented in sub-section 6.2 demonstrated that the very same method is able to perform suc-
cessfully in discovering non-trivial gaits also in dexterous manipulation tasks. Current research
is devoted to extending the method to 3D scenarios, the major thrust being the synthesis of
EC-exploiting, whole-body manipulation strategies for humanoid platforms. Injection of motion
primitives/synergies into the model are also being considered, and proper model scaling and
tuning of IPOPT convergence parameters are under way to maximize computational efficiency.

16 Marco Gabiccini, Alessio Artoni, Gabriele Pannocchia and Joris Gillis

1finger H

finger 0H

2finger H

object in initial
configuration

workspace of
object’s center

workspace of H0

workspace of H2workspace of H1

Fig. 7 Dexterous manipulation scenario: the object must find itself rotated by 360 deg at the final time T = 6 s.

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0 1 2 3 4 5 6
0
1
2
3
4
5
6
7
8

 fi
ng

er
 fo

rc
es

 f
i N

 (N
) f 0

N f 1
N f 2

N

0 1 2 3 4 5 6

5
4
3
2
1
0
1
2
3
4
5

 fi
ng

er
 fo

rc
es

 f
i T
 (N

) f 0
T f 1

T f 2
T

0 1 2 3 4 5 6
 time (s)

0
1
2
3
4
5
6
7

q O
 (r

ad
)

suggested rotation
actual rotation

Fig. 8 Trajectories for a circular object manipulated by three independent fingers. Shown are: normal contact
forces f i

N and tangential contact forces f i
T applied by the fingers; suggested and actual rotation qO of the object.

A Computational Framework for Environment-Aware Robotic Manipulation Planning 17

8 ACKNOWLEDGEMENT

This work is supported by the grant no. 600918 “PACMAN” - Probabilistic and Compositional
Representations of Object for Robotic Manipulation - within the FP7-ICT-2011-9 program “Cog-
nitive Systems”. European Research Council and under the ERC Advanced Grant no. 291166
SoftHands (A Theory of Soft Synergies for a New Generation of Artificial Hands).

References

1. A. P. Ambler and R. J. Popplestone. Inferring the positions of bodies from specified spatial relationships.
Artificial Intelligence, 6:157–174, 1975.

2. Joel Andersson. A General-Purpose Software Framework for Dynamic Optimization. PhD thesis, Aren-
berg Doctoral School, KU Leuven, Department of Electrical Engineering (ESAT/SCD) and Optimization in
Engineering Center, Kasteelpark Arenberg 10, 3001-Heverlee, Belgium, October 2013.

3. J. T. Betts. Practical Methods for Optimal Control Using Nonlinear Programming. SIAM, 2001.
4. L. T. Biegler and V. M. Zavala. Large-scale nonlinear programming using IPOPT: An integrating framework

for enterprise-wide dynamic optimization. Computers & Chemical Engineering, 33(3):575 – 582, 2009.
5. M. Bonilla, E. Farnioli, C. Piazza, M. Catalano, G. Grioli, M. Garabini, M. Gabiccini, and A. Bicchi. Grasping

with soft hands. In IEEE-RAS Int. Conf. on Humanoid Robots (Humanoids), 2014.
6. G. Boothroyd, C. Poli, and L.E. Murch. Handbook of feeding and orienting techniques for small parts.

University of Massachusetts at Amherst, Dept. of Mechanical Engineering, Automation Project, 1981.
7. Iain Boyle, Yiming Rong, and David C. Brown. A review and analysis of current computer-aided fixture

design approaches. Robotics and Computer-Integrated Manufacturing, 27(1):1–12, February 2011.
8. B. Cohen, M. Phillips, and M. Likhachev. Planning single-arm manipulations with n-arm robots. In Robotics:

Science and Systems (RSS), 2014.
9. N.C. Dafle, A. Rodriguez, R. Paolini, Bowei Tang, S.S. Srinivasa, M. Erdmann, M.T. Mason, I. Lundberg,

H. Staab, and T. Fuhlbrigge. Regrasping objects using extrinsic dexterity. In IEEE Int. Conf. on Robotics and
Automation (ICRA), pages 2560–2560, May 2014.

10. G.E. Deacon. An attempt to raise the level of software abstraction in assembly robotics through an apposite
choice of underlying mechatronics. Journal of Intelligent and Robotic Systems, 28(4):343–399, 2000.

11. R. Diankov. Automated Construction of Robotic Manipulation Programs. Phd thesis, Carnegie Mellon
University, Robotics Institute, August 2010.

12. Manfredo Perdigao Do Carmo. Differential Geometry of Curves and Surfaces. Prentice Hall, Englewood
Cliffs, 1976.

13. Mehmet R. Dogar and Siddhartha S. Srinivasa. A planning framework for non-prehensile manipulation under
clutter and uncertainty. Autonomous Robots, 33(3):217–236, June 2012.

14. Iain S Duff. Ma57 – a code for the solution of sparse symmetric definite and indefinite systems. ACM
Transactions on Mathematical Software (TOMS), 30(2):118–144, 2004.

15. M. Gabiccini, A. Artoni, G. Pannocchia, and J. Gillis. ISRR 2015 submission accompanying video. http:
//youtu.be/ozDwPnS00fI, April 2015.

16. Assefaw Hadish Gebremedhin, Fredrik Manne, and Alex Pothen. What color is your Jacobian? Graph color-
ing for computing derivatives. SIAM Review, 47:629–705, 2005.

17. J. Gillis and M. Diehl. Hierarchical seeding for efficient sparsity pattern recovery in automatic differentiation.
In CSC14: The Sixth SIAM Workshop on Combinatorial Scientific Computing, 2014.

18. E. Glassman and R. Tedrake. A quadratic regulator-based heuristic for rapidly exploring state space. In IEEE
Int. Conf. on Robotics and Automation (ICRA), pages 5021–5028, Anchorage, Alaska, USA, 5 2010.

19. C. Glocker and C. Studer. Formulation and preparation for numerical evaluation of linear complementarity
systems in dynamics. Multibody System Dynamics, 13:447–463, 2005.

20. A. Griewank and A. Walther. Evaluating Derivatives. SIAM, 2 edition, 2008.
21. Andreas Griewank. Evaluating Derivatives: Principles and Techniques of Algorithmic Differentiation. Num-

ber 19 in Frontiers in Appl. Math. SIAM, Philadelphia, PA, 2000.
22. HSL. A collection of fortran codes for large scale scientific computation., 2014.
23. A. Ijspeert, J. Nakanishi, and S. Schaal. Learning attractor landscapes for learning motor primitives. 2003.
24. Rico Jonschkowski and Oliver Brock. State representation learning in robotics: Using prior knowledge about

physical interaction. In Proceedings of Robotics: Science and Systems, Berkeley, USA, July 2014.
25. S. Karaman and E. Frazzoli. Sampling-based algorithms for optimal motion planning. International Journal

of Robotics Research, 30(7):846–894, June 2011.
26. Moslem Kazemi, Jean-Sebastien Valois, J.Andrew Bagnell, and Nancy Pollard. Human-inspired force com-

pliant grasping primitives. Autonomous Robots, pages 1–17, 2014.
27. J. Kober, J. A. Bagnell, and J. Peters. Reinforcement learning in robotics: A survey. Int. Journal of Robotics

Research (IJRR), 32(11):1238–1274, 2013.

http://youtu.be/ozDwPnS00fI
http://youtu.be/ozDwPnS00fI

18 Marco Gabiccini, Alessio Artoni, Gabriele Pannocchia and Joris Gillis

28. Y. Koga and J.-C. Latombe. On multi-arm manipulation planning. In IEEE Int. Conf. on Robotics and
Automation (ICRA), 1994.

29. N. Kohl and P. Stone. Policy gradient reinforcement learning for fast quadrupedal locomotion. In IEEE Int.
Conf. on Intelligent Robots and Systems (IROS), 2004.

30. Sergey Levine and Pieter Abbeel. Learning neural network policies with guided policy search under unknown
dynamics. In Neural Information Processing Systems (NIPS), 2014.

31. Sergey Levine, Nolan Wagener, and Pieter Abbeel. Learning contact-rich manipulation skills with guided
policy search. Under review, 2015.

32. Tomás Lozano-Pérez, Matthew T. Mason, and Russell H. Taylor. Automatic synthesis of fine-motion strate-
gies for robots. Int. Journal of Robotics Research (IJRR), 3(1):3–24, March 1984.

33. Matthew T. Mason. The mechanics of manipulation. In IEEE Int. Conf. on Robotics and Automation (ICRA),
volume 2, pages 544–548, 1985.

34. A.T. Miller and P.K. Allen. Graspit! a versatile simulator for robotic grasping. IEEE Robotics and Automation
Magazine, 11(4):110–122, 2004.

35. I. Mordatch, Z. Popović, and E. Todorov. Contact-invariant optimization for hand manipulation. In Euro-
graphics/ACM Symposium on Computer Animation, 2012.

36. I. Mordatch, E. Todorov, and Z. Popović. Discovery of complex behaviors through contact-invariant opti-
mization. In ACM Transactions on Graphics, 2012.

37. Igor Mordatch and Emo Todorov. Combining the benefits of function approximation and trajectory optimiza-
tion. In Proceedings of Robotics: Science and Systems, Berkeley, USA, July 2014.

38. J. Nocedal and S. J. Wright. Numerical Optimization. Springer Verlag, New York, 2006.
39. Travis E Oliphant. Python for scientific computing. Computing in Science & Engineering, 9(3):10–20, 2007.
40. A. Perez, R. Platt, G. Konidaris, L. Kaelbling, and T. Lozano-Perez. LQR-RRT*: Optimal sampling-based

motion planning with automatically derived extension heuristics. In Robotics and Automation (ICRA), 2012
IEEE International Conference on, 2012.

41. J. Peters and S. Schaal. Reinforcement learning of motor skills with policy gradients. Neural Networks,
21(4):682–697, 2008.

42. M. Posa, C. Cantu, and R. Tedrake. A direct method for trajectory optimization of rigid bodies through
contact. Int. Journal of Robotics Research (IJRR), 33(1):69–81, 2014.

43. C. Samson, M. Le Borgne, and B. Espiau. Robot Control, the Task Function Approach. Clarendon Press,
Oxford, England, 1991.

44. G. Schultz and K. Mombaur. Modeling and optimal control of human-like running. IEEE/ASME Transactions
on Mechatronics, 15(5):783–792, 2010.

45. Joris De Schutter, Tinne De Laet, Johan Rutgeerts, Wilm Decré, Ruben Smits, Erwin Aertbeliën, Kasper
Claes, and Herman Bruyninckx. Constraint-based task specification and estimation for sensor-based robot
systems in the presence of geometric uncertainty. International Journal of Robotics Research, 26(5):433–455,
2007.

46. D. E. Stewart and J. C. Trinkle. An implicit time-stepping scheme for rigid body dynamics with inelastic
collisions and coulomb friction. Int. Journal for Numerical Methods in Engineering, 39:2673–2691, 1996.

47. David Stewart and Jeffrey C Trinkle. An implicit time-stepping scheme for rigid body dynamics with coulomb
friction. In IEEE Int. Conf. on Robotics and Automation (ICRA), volume 1, pages 162–169. IEEE, 2000.

48. R. Tedrake, T. Zhang, and H. Seung. Stochastic policy gradient reinforcement learning on a simple 3d biped.
In IEEE Int. Conf. on Intelligent Robots and Systems (IROS), 2004.

49. A. Wächter and L. T. Biegler. On the implementation of a primal-dual interior point filter line search algorithm
for large-scale nonlinear programming. Mathematical Programming, 106:25–57, 2006.

50. Peter Wriggers. Computational contact mechanics. Springer, Berlin, New York, 2006.
51. W. Xi and C.D. Remy. Optimal gaits and motions for legged robots. In IEEE Int. Conf. on Intelligent Robots

and Systems (IROS), pages 3259–3265, 2014.

	Marco Gabiccini, Alessio Artoni, Gabriele Pannocchia and Joris Gillis
	INTRODUCTION
	RELATED WORK
	Exploitation of Environmental Constraints
	Traditional Grasp Planners
	General Purpose Planning Algorithms
	Machine Learning Approaches
	Optimization-based Trajectory Planning

	DYNAMICS OF SYSTEMS WITH CONTACTS
	Penalty-based contact model
	Velocity-based time stepping scheme

	TRAJECTORY PLANNING AS AN OPTIMIZATION PROBLEM
	Penalty-based contact model
	Velocity-based time stepping scheme
	Final optimization problem

	NONLINEAR PROGRAMMING VIA AN INTERIOR-POINT ALGORITHM
	The barrier problem formulation
	Interior-point approach to NLP
	Main computational aspects: calculating derivatives and solving (sparse) linear systems
	The CasADi framework

	APPLICATION EXAMPLES
	Environment-aware manipulation
	Dexterous manipulation

	CONCLUSIONS AND FUTURE WORK
	ACKNOWLEDGEMENT
	References

