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Abstract

Influenza viruses have been responsible for large losses of lives around the world and continue to present a great public
health challenge. Antigenic characterization based on hemagglutination inhibition (HI) assay is one of the routine
procedures for influenza vaccine strain selection. However, HI assay is only a crude experiment reflecting the antigenic
correlations among testing antigens (viruses) and reference antisera (antibodies). Moreover, antigenic characterization is
usually based on more than one HI dataset. The combination of multiple datasets results in an incomplete HI matrix with
many unobserved entries. This paper proposes a new computational framework for constructing an influenza antigenic
cartography from this incomplete matrix, which we refer to as Matrix Completion-Multidimensional Scaling (MC-MDS). In
this approach, we first reconstruct the HI matrices with viruses and antibodies using low-rank matrix completion, and then
generate the two-dimensional antigenic cartography using multidimensional scaling. Moreover, for influenza HI tables with
herd immunity effect (such as those from Human influenza viruses), we propose a temporal model to reduce the inherent
temporal bias of HI tables caused by herd immunity. By applying our method in HI datasets containing H3N2 influenza A
viruses isolated from 1968 to 2003, we identified eleven clusters of antigenic variants, representing all major antigenic drift
events in these 36 years. Our results showed that both the completed HI matrix and the antigenic cartography obtained via
MC-MDS are useful in identifying influenza antigenic variants and thus can be used to facilitate influenza vaccine strain
selection. The webserver is available at http://sysbio.cvm.msstate.edu/AntigenMap.
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Introduction

An influenza virus is a negative-stranded RNA virus that belongs

to the Orthomyxoviridae family. There are three serotypes, A, B, and

C, of which B and C are reported to infect mammals only. The

influenza A viruses have 8 genomic segments (segment 1{8) with

varying lengths from about 890 to 2,341 nucleotides which encode

at least 11 proteins: PB2 by segment 1, PB1 and PB1-F2 by 2, PA by

3, haemagglutinin (HA) by 4, nucleoprotein (NP) by 5, neuramin-

idase (NA) by 6, matrix protein M1 and M2 by 7, and nonstructural

protein NS1 and NS2 by 8. Among these proteins, the surface

proteins HA and NA are involved in virus attachment and cell

fusion. Both HA and NA are the primary targets for host immune

systems. The serotypes of influenza A viruses are based on HA and

NA subtypes. To date, 16 HA and 9 NA subtypes have been

reported in influenza A viruses [1]. For instance, H1N1 influenza A

virus is named since it has HA and NA recognized by HA subtype 1

and NA subtype 1 antibodies, respectively. Influenza B viruses have

8 segments while Influenza C has 7 segments. There is not yet an

HA-NA nomenclature system in Influenza B and C viruses.

The peak influenza season in the northern hemisphere is from

January to April every year. More than 100,000 hospitalizations

and 30,000 deaths are caused by influenza in the United States

each year [2,3]. The influenza A virus may cause a pandemic

disaster that will impact multiple continents. In the 20th century,

three influenza A pandemics occurred in 1918, 1957, and 1968,

respectively [4,5]. More than 40 million people were killed in the

1918 influenza pandemic, which was caused by the H1N1

influenza A virus. This influenza pandemic shortened global life

expectancy by more than 10 years. During March and early April

2009, a new H1N1 influenza A virus epidemic was detected in

Mexico and the United States [6], and the virus spread rapidly

through human-to-human transmission, resulting in WHO

declaring a pandemic, which was the first influenza pandemic in

the past 40 years. This virus was estimated to cause about 57

million infections and 11,100 deaths solely in United States

through Jan 14, 2010 (www.cdc.gov). If we consider all cases in

five continents, the numbers will become significantly larger.

In the United States, vaccination is the primary option for

reducing the effects of influenza. The seasonal influenza vaccines

used in the past decades include three viral components: H1N1

influenza A virus, H3N2 influenza A virus, and influenza B virus.

In an effective vaccination program, vaccine strain selection will be

the most important step since the highest protection could be

achieved only if there is an identical antigenic match of the vaccine

and epidemic virus HA and NA antigens, especially HA, which is
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the primary target of human immune system. However, as an

RNA virus, influenza A virus has rapid mutations in these two

proteins, and such mutations can cause a change of antigenicity,

thus making vaccines ineffective. Mutations in HA and NA are

also referred as antigenic drift.

Immunological tests, such as hemagglutination inhibition (HI)

assay, enzyme-linked immunosorbent assay (ELISA), and micro-

neutralization assay, have been utilized to identify antigenic

variants among the circulating influenza strains. Among these

assays, HI, has been one of the routine procedures in influenza

vaccine strain selection. HI assay is an experiment to measure how

a testing influenza antigen (virus) and a reference antiserum

(antibody) react. The antibody is usually diluted in 5 fold first and

then diluted in powers of 2. Thus, the titre from HI assay will be

5|2n, n§0. The larger the n is, the more closely the testing

antigens match the reference antigens, for which the reference

antisera are generated. Usually a number smaller than 20 is

considered as a low reaction between antigen and antibody. In

many cases, HI experiments are used to measure the antigenic

distance between two testing antigens through their immunolog-

ical reactions to the same reference antiserum. For instance, if one

testing antigen is a high reactor for the reference antiserum (e.g.

with a titre of 320) while another testing antigen is a low reactor

(e.g. with a titre of 40). The antigenic distance could be

approximately 3 units, which is log2(320=40). In reality, the

antigenic distances are usually measured by a set of reference

antisera, thus the calculation is much more complicated. Such

measurements from HI data are generally used to determine the

antigenic distances between testing antigens.

In a typical influenza HI assay, generally less than 15 reference

antisera are used but the number of test antigens can be more than

100. However, interpretations of HI results are not straightforward

due to the following two challenges: (1) HI assay only shows the

indirect relationship between antigens and antisera since each value

reflects a reaction from antigen, red blood cell (RBC), and antibody.

Many variables from RBC and antibody will interfere the HI titres;

(2) it is not be possible to perform HI for all pairs of antigen and

antisera reactions. Thus, the resulting HI table is generally

incomplete, and the percentage of missing data could be up to

95%. By applying the metric multidimensional scaling method

(MDS) to reduce the shape space into less than three dimensions,

Lapedes and Farber [7] showed a linear correlation between

logarithm values of HI titers and the space distances between

influenza antigens. Based on this method, Smith et al. [8]

constructed influenza cartography to visualize the distances among

influenza antigens from HI tables by further developing the metric

MDS method. Their method assumes that antigens and antibodies

are mapped into the same low-dimensional space, and their

interactions are the distances between the embedded points.

However, in our implementation of their algorithm, the resulting

influenza cartography depends on the initial values selected, and

thus may not be stable. Moreover, this method results in

cartographies in which global distances may contain relatively large

errors. This is because the algorithm does not incorporate temporal

modeling to reduce the inherent temporal bias in HI tables. The

temporal bias is caused by the fact that HI table entries are not

missing uniformly at random, and off diagonal entries are more

likely to be missing or become low reactors (Figure 1). The

underlying biological reason for this bias can be explained by the

herd immunity effect, where influenza antigens evolve rapidly under

the accumulating immune pressures of human population [9]. A

more detailed illustration of this phenomenon will be given later.

The goal of this paper is to present a computational framework for

influenza cartography construction which we call Matrix Comple-

tion-Multidimensional Scaling (MC-MDS). An important aspect of

this framework is that temporal modeling can be easily incorporated,

which as we shall show, is useful for dealing with HI tables with herd

immunity induced temporal bias. Our framework includes two

integrated steps: (1) a low rank matrix completion algorithm is first

employed to fill in the entries of the HI matrix; (2) a MDS algorithm

is utilized to map the antigens (or similarly, antibodies) into a two

dimensional space for visualization. Our approach explicitly

separates the visualization (cartography) step from the matrix

completion step, making it easier to incorporate temporal models.

Our experience shows that while temporal modeling is beneficial in

both steps, it is less important in the first step, for which we may

simply employ a sliding window approach; however it is more

essential in the second step, for which we propose a more complex

herd-immunity temporal regularization model as described in the

Materials and Methods section. The reason for the difference is that

the inherent temporal bias tends to give rise to incorrect global

distances if not handled explicitly, and thus affect the 2D

cartography process more significantly. The two step procedure in

our approach is thus flexible in the first step, where we can simply use

a standard low rank matrix completion algorithm. On the other

hand, we have to pay special attention to temporal modeling in the

second step, which is essential for accurate cartography construction.

Both simulation and a practical application in H3N2 influenza A

viruses demonstrate that this method is able to overcome some

limitations in the original metric MDS method of [8] and it results in

better influenza antigenic cartographies fromHI data. Therefore the

proposed framework can potentially facilitate more accurate

interpretation of HI data in influenza surveillance as well as more

accurate identification of influenza antigenic variants. Both are

essential for influenza vaccine strain selection.

Results

While greater details are given in the Materials and Methods

section, we shall summarize the most important observations and

intuitions in our computational framework before presenting the

actual experimental results.

Characteristics of HI data
In this work we are specifically interested in HI datasets existing

accumulating original, such as the immunological datasets of human

origin. In a typical HI dataset, three types of data entries are present:

Type I, a regular HI titre; Type II (low reactors), the value is defined as

‘‘less than a threshold’’, e.g.vthreshold and this threshold is caused

Author Summary

Influenza antigenic cartography is an analogy of geo-
graphic cartography, and it projects influenza antigens
into a two- or three-dimensional map through which we
can visualize and measure the antigenic distances
between influenza antigens as we visualize and measure
geographic distances between the cities in a geographic
cartography. Thus, influenza antigenic cartography can be
utilized to identify influenza antigenic variants, and it is
useful for influenza vaccine strain selection. Here we
develop a new computational framework for constructing
influenza antigenic cartography based on hemagglutina-
tion inhibition assay, a routine antigenic characterization
method in influenza surveillance and vaccine strain
selection. This method can be used for antigenic
characterization in vaccine strain selection for both
seasonal influenza and pandemic influenza.

Influenza Antigenic Cartography Construction
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by the lower bound experimental limit in HI assays indicating a weak

(or low) immunological reaction between a testing antigen (virus) and

an antiserum (antibody); Type III, missing values. A major

characteristic of HI dataset is that the distributions of type I, type II,

and type III data are not random. Specifically, if we arrange both

antigens and antibodies in a HI matrix according to time, then there is

a banded structure, where most Type I data appear very close to the

diagonal of the matrix; Type II data tend to be slightly off diagonal,

while Type III data are more likely to occur in matrix entries that are

significantly off diagonal (Figure 1). This data characteristic introduces

a ‘‘temporal bias’’ concerning the data distribution (in comparison to

uniformly random distribution) that needs to be corrected. As we will

show, if the problem is not handled appropriately, then inaccurate

result will be produced. This is because classical methods assume

uniformly random data distribution, which does not take the temporal

bias effect into consideration. Our paper shows that temporal

modeling, which reduces the data distribution bias in HI tables, is

important in HI based influenza cartography.

The specific benchmark dataset used in our study includes

4,215 entries, representing 19:56% of all table entries (Figure 2).

Among these entries, 937 (22:2%) are Type II values (that is, they

are recorded as vthreshold ) with threshold [ f5,10,20,40g. For
algorithmic comparison purposes, we also include results on a

simulation dataset with ground truth, which is generated

according to characteristics of real HI datasets.

Sliding-window procedure for matrix completion
As pointed out above, most Type I data are located across the

diagonal line of the HI matrix, which significantly deviates from the

‘‘missing uniformly at random’’ assumption in classical matrix

completion. In order to reduce this bias, we adopt a sliding window

approach where each low rankmatrix completion will be performed

in a HI sub-matrix, which has fewer amount of Type II and Type

III data that more closely satisfy the ‘‘missing uniformly at random’’

assumption. The remaining entries that are not covered by the

(sliding window) sub-matrices can be filled with a global matrix

completion algorithm – those entries will be predicted with less

accuracy due to the banded-structure of the HI data that violates the

‘‘missing uniformly at random’’ assumption.

The windows are based on the temporal spans of influenza A

viruses. In order to complete the entire matrix, the algorithm will

slide yearly along with both the dimensions of antigens and

antisera to ensure the time difference between all antigens and

antisera are within a certain window size. In order to obtain an

optimal window size and best rank in matrix competition, we

tested six different sizes, including 4, 8, 12, 16, 20, and 24, and

ranks 2 to 10. A 10-fold cross validation suggested that the time

frames of 12-year and 16-year with rank 6 are two best ones

towards achieving the lowest RMSE (root mean squared error)

value in matrix completion of H3N2 dataset (Table 1). The

average RMSE from 12-year experiment is slightly better than

that from 16-year experiment. Both the average RMSE for 12-

year and 16-year experiment are better than that from the entire

HI matrix. Thus, during matrix completion, a window of 12 and a

rank of 6 will used. Similarly, our optimization method

demonstrated that the window size of 3 and the rank of 2 are

the best parameters for our simulation data.

Herd-immunity MDS model for antigenic cartography
construction
After the matrix completion step, we need to project the

influenza antigens onto a two-dimensional (2D) map. In order to

Figure 1. The hemagglutination inhibition (HI) data in temporal order. High reactor are in the diagonal zone, and the low reactors and the
missing values will appear more when the approaching the challenge zone.
doi:10.1371/journal.pcbi.1000949.g001

Influenza Antigenic Cartography Construction
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obtain accurate global distances, we incorporate a temporal model

in MDS based on the fact that the influenza antigens continue to

evolve under the accumulating immune pressures of human

population [9]. In order to evade the herd immunity, an influenza

virus will most likely evolve into a strain with different antigenicity

from recently circulating strains in human population. This

intuition is mathematically incorporated in our temporal MDS

model, where we assume that on the 2D cartography, influenza

viruses tend to evolve along (approximate) straight-line segments

during short time spans; that is, they tend to evolve in directions as

far away from recently appeared viruses as possible. The detailed

mathematical formula is presented in the Materials and Methods

section.

In HI tables, a Type II value is resulted from experimental

limitation of HI assay and reflects a weak (or low) immunological

reaction between a testing antigen/antiserum pair. Although this

value is not as informative as a Type I value, it is more useful than

a Type III value (missing value). In particular, if a particular virus

has type I values with a certain set of antibodies that show strong

reactions, while another virus reacts weakly with the same set of

antibodies (resulting in type II values), then the global distance

between their 2D cartography embeddings should be relatively

Figure 2. Data distribution in the H3N2 HI dataset. Three types of data are present in HI data: type I, a regular HI titre marked in red cross; Type
II, the value is defined as ‘less than a threshold’, e.g. vthreshold , where threshold [ f5,10,20,40g, and these values indicate the testing antigen and
antiserum have a weak (or low) immunological reaction. Type II values are marked in green diagonal cross; Type III, missing values, which are blank.
This HI dataset includes 4,215 entries, which represent 19:56% data presence. Among these entries, 937 (22:2%) are Type II values.
doi:10.1371/journal.pcbi.1000949.g002

Influenza Antigenic Cartography Construction
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large. A set of constraints on global distances can be derived from

this observation. The details can be found in the Materials and

Methods section.

There are four parameters l1,l2,p1,p2 to be optimized in our

temporal MDS model. We use 10-fold cross validations to select

the optimal parameters that achieve the lowest RMSE while

satisfying global distance constraints derived from Type II data.

Our cross-validation results led to l1~6, l2~11, p1~3, p2~10

for the real data and l1~6, l2~11, p1~1, p2~3 for the

simulation data.

Influenza cartography construction using simulation data
To demonstrate the potential impacts of Type II data (low

reactors) and Type III data (missing values) on the influenza

cartography, we performed experiments using simulated HI

matrices containing 200 antigens versus 100 antibodies in which

we know the ground-truth. Three simulated HI matrices were

generated, where one was based on the distributions of H3N2

1968–2003 HI data: (1) HI matrix (0% data absence) with neither

Type II nor Type III data; (2) HI matrix (80% data absence, data

structure: randomly distributed) with Type III data but without

Type II data; (3) HI matrix (80% data absence, data structure:

with a temporal data missing bias similar to H3N2 data as shown

in Figure 2) with both Type II data and Type III data. The first HI

matrix serves as the benchmark data (ground truth). The second

HI matrix is used to test the efficiency of standard matrix

completion algorithms under the missing uniformly at random

assumption. The third matrix is used to examine the efficacy of the

temporal model in MDS. A more effective computational method

would be expected to produce a cartography more similar to that

of the benchmark matrix. Using these simulated HI matrices, we

are able to compare the MC-MDS method proposed in this work

to the original metric MDS method of [8] in terms of HI matrix

completion and cartography construction accuracies.

To assess whether MC-MDS and metric MDS can accurately

recover the HI values in the HI data, we calculated the local

RMSEs for the Type I data using 10-fold cross validation (Table 2).

The experimental data were partitioned into 10 parts, and each

time we use 9 parts for training and 1 part for testing. The RMSE

values were calculated using the Type I values in the testing part.

Here we only use Type I values for RMSE calculation in order to

be consistent with our real-data experiment, where we do not

know the ground-truth corresponding to Type II and Type III

data. The local RMSE values were 1:5803+0:0840 for MC-MDS

and 1:5723+0:1519 for metric MDS, where the notation of

mean+standard deviation is used. Since a typical matrix value is

about 6:0604+2:7420, these local RMSE values indicate that

both methods were able to recover HI values effectively. The small

Table 1. The local RMSE values from 10-fold cross validations using H3N2 HI dataset (1968–2003) with different window sizes (W)
in sliding window based Alternating Gradient Descent.

Rank

W 2 3 4 5 6 7 8 9 10

4 4:9546 3:4243 15:9876 – – – – – –

8 1:9596 1:4266 1:4396 1:4329 1:6786 2:1325 19:8018 3:7417 12:7570

12 1:6436 1:2204 1:1721 1:1001 1:0503 1:1593 1:2159 1:3143 1:2694

16 1:6594 1:2579 1:1894 1:0845 1:0613 1:0939 1:1737 1:2137 1:3267

20 1:6749 1:3389 1:2218 1:1217 1:1635 1:1975 1:1200 1:1095 1:1646

24 1:6062 1:3289 1:1605 1:2063 1:2329 1:1803 1:1518 1:1520 1:1900

doi:10.1371/journal.pcbi.1000949.t001

Table 2. Comparison between MC-MDS and metric MDS.

HI recovering Cartography construction

Local RMSE1 Robustness Global distance measurement

Correlation coefficient

(CC value)2
Maximum distance

(MD value)3
Pairwise distance RMSE

(PD value)4

Simulation MC-MDS 1:5803(0:0840)5 0:9922(0:0044) 17:3843(1:7342) 1:7761(0:1304)

Metric MDS 1:5723(0:1519) 0:8831(0:1318) 26:7597(4:4159) 3:3219(0:7724)

H3N2 MC-MDS 1:0503(0:0840) 0:9816(0:0196) 17:4676(0:9339) —

Metric MDS 1:0469(0:0850) 0:7393(0:1654) 23:3253(3:5090) —

1HI recovery ability is assessed by calculating the RMSE values on the Type I data using 10-fold cross validation, and these values are also called local RMSEs.
2A correlation coefficient (CC value) is calculated from the pairwise distances among antigens for every two independent runs. The CC values in this table were
calculated from 100 different runs.

3A maximum distance (MD value) refers to the difference between the maximum distance among any antigens in the benchmark cartography and that from the
method being evaluated (either MC-MDS or metric MDS). The MD values in this table were calculated from 100 different runs.

4A pairwise distance RMSE (PD value) is the difference between the pairwise distances among all antigens in the benchmark cartography and those from the method
being evaluated. The PD values in this table were calculated from 100 different runs. The PD values for H3N2 data were not assessed since we do not know the ground
truth of antigenic cartography for this dataset.

5The value in the bracket is the standard deviation of the associated parameter.
doi:10.1371/journal.pcbi.1000949.t002

Influenza Antigenic Cartography Construction
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difference between the two means of MC-MDS and metric MDS

is significantly smaller than the standard deviations. Hence they

are statistically insignificant. However, we note that metric MDS

has a larger standard deviation, which is consistent with our

observation that it is less stable.

The effectiveness of a cartography construction algorithm can

be assessed using figures of merit that measure its robustness and

correctness. The robustness of a method is determined by the

correlation coefficient (CC value) that is calculated from the

pairwise distances among antigens for every two independent runs.

The correctness of cartography is measured by two values: the

difference between the maximum distances (MD value) between

any antigens in the benchmark cartography and that from the

method being evaluated (either MC-MDS or metric MDS); the

pairwise distance RMSEs (PD value), calculated by measuring the

difference between the pairwise distances among all antigens in the

benchmark cartography and those from the method being

evaluated. We performed 100 independent runs, and the mean

and standard deviation for each figure of merit can be found in

Table 2.

As specified in the Materials and Methods section, the matrix

completion method employed in this paper was Alternating

Gradient Descent (AGD). In Figure 3, the ground-truth cartog-

raphy is given in Figure 3a. Figure 3b shows a typical result when

matrix entries are missing uniformly at random (the second matrix

generated in our simulation study), where the standard AGD

Figure 3. Computational simulation demonstrates that temporal model can reduce the biases generated by the Type II data (low
reactors) in hemagglutination inhibition (HI) dataset. (a) HI matrix (0% data absense) with neither Type II nor Type III data, using
multidimensional scaling (MDS); (b) HI matrix (80% data absense, data structure: randomly distributed) with Type III data but without Type II data,
using Alternating Gradient Descent (AGD) and MDS; (c) HI matrix (80% data absense, data structure: similar to H3N2 data as shown in Figure 1) with
both Type II data and Type III data, using AGD and MDS; (d)HI matrix (80% data absense, data structure: similar to H3N2 data as shown in Figure 1)
with both Type II and Type III data, using MC-MDS. (e)HI matrix (80% data absense, data structure: similar to H3N2 data as shown in Figure 1) with
both Type II and Type III data, using Metric MDS. (f) Another independent run by the same setting and method as (e).
doi:10.1371/journal.pcbi.1000949.g003

Influenza Antigenic Cartography Construction
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method accurately reconstructed cartography since the resulting

cartography is similar to that from the benchmark matrix.

Figure 3c shows a typical result with temporally biased HI table

(the third matrix generated in our simulation study), where the

cartography was constructed from a combination of AGD for

matrix completion and the conventional MDS (without temporal

modeling) for cartography generation. It shows that this

combination is unable to accurately recover the cartography of

the benchmark data since the global distances are incorrect. In

comparison, the combination of AGD with temporal MDS, shown

in Figure 3d, does achieve significantly more accurate global

cartography. This experiment demonstrates the need to explicitly

incorporate temporal modeling into the MDS step. Moreover, our

experiment shows that cartographies generated by AGD and

temporal MDS are stable. The CC value and PD value for the 100
independent runs are 0:9922+0:0044 and 1:7761+0:1304,
respectively. The MD value for the 100 independent runs is

17:3843+1:7342, which is close to the ground-truth value of

17:6108 in the benchmark cartography (Figure 3a).

For comparison, we implemented the metric MDS method of

[8] and applied to the third HI matrix which was generated with

temporally biased data type distributions. Our results indicate that

the cartographies from metric MDS are less stable, with two

typical runs given in Figure 3e and 3f. In the 100 independent runs
of metric MDS, the CC value and PD value for the 100

independent runs are 0:8831+0:1318 and 3:3219+0:7724. The
MD value is 26:7597+4:4159. These numbers are significantly

worse than the corresponding numbers from the MC-MDS

method proposed in this work. We shall especially note that the

metric MDS method tends to over-estimate the global distances in

this stimulation study. Moreover, the large standard deviations in

the results also indicate that metric MDS is not very stable.

While these two methods achieve similar matrix completion

accuracies, the reconstructed cartographies reveal a more

significant difference. As we pointed out earlier, this is because

the temporal bias (of data type distribution) in HI tables has

stronger impact in the MDS step, especially when we compare

global distances. Without temporal modeling, the accuracy of

global distances between two points (representing two viruses) in

the 2D cartography decays more rapidly when the two points

become further apart in time. While this reduction of accuracy is

an unavoidable limitation of the banded structure in HI tables

(Figure 1) that makes it harder to reliably compare points far away

in time, a good temporal model can alleviate its impact, and thus

increase the accuracy of the resulting cartography.

Finally we summarize the main observations from this simulation

study as follows. Both MC-MDS and metric MDS methods

achieved similar accuracy in recovering HI values. This means

that they achieve comparable performance in the matrix comple-

tion sub-task, which is less sensitive to the temporal bias problem in

HI tables. However, without temporal modeling, the global

distances among far away points in the reconstructed cartography

become inaccurate. Therefore it is helpful to incorporate temporal

modeling into the MDS step in order to reduce the temporal bias

effect. The proposed MC-MDS framework (with herd-immunity

temporal model) is effective in reducing the bias problem, and it

leads to more accurate cartography. The metric MDS appears to be

less stable and it generates less accurate cartographies because the

method does not address the temporal bias problem.

Influenza antigenic cartography for H3N2 influenza A
virus
In the second experiment, we use MC-MDS to construct

influenza cartography for H3N2 influenza A viruses from 1968 to

2003 using the HI datasets from Smith et al. [8]. The antigenic

map is shown in Figure 4. The scale of antigenic cartography is

based on the antigenic distances from HI tables, e.g. each unit

(grid) in the antigenic cartography represents of a 2-fold change in

HI titres. These viruses are specifically labeled as eleven clusters

(HK68, EN72, VI75, TX77, BK79, SI87, BE89, and BE92,

WU95, SY97, and FU02). Our results indicate that the antigenic

distance between HK68 and FU02 is approximately 17:5 units.

The resulting cartography can be compared to the published

antigenic map in Smith et al. [8]. The overall trend in our results is

similar to the cartography from Smith et al. [8]. However, there are

two major differences: (1) The global distances in our cartography

are smaller than those of Smith et al. [8]. For example Smith et al. [8]

shows a distance of 32 units betweenHK68 and FU02. Although we

have no ground truth for this data, we note that this discrepancy is

consistent with our simulation study, where the metric MDS

method also produces larger global distances. In that case, the

metric MDS method over-estimated the global antigenic distance

between A and J by 9:1489 units more than the true distance. (2)

The local cartographies between some clusters are different. For

instance, the distance betweenWU95 and BE89 from our method is

larger than those shown in Smith et al. [8]. In order to examine

which antigenic cartography is likely to be more accurate, we

performed a small cartography for H3N2 HI data from 1987 to

1995. Since the number of Type II data on the HI data from 1987

to 1995 is quite small, the effects of Type II on the antigenic

cartography is minimal. Therefore, the cartography for the viruses

between 1987 to 1995 using data from the limited span will not

suffer much from the temporal bias problem discussed in the paper,

and thus should be close to the true cartography. Our result shows

that the distance between WU95 and BE89 should indeed be larger

than that between BE95 and BE92 (Figure 5), and this is consistent

with the local cartographies from MC-MDS.

Similar to the simulated HI data experiments, we can assess the

robustness of MC-MDS and metric MDS on the H3N2 data

(Table 2). The best local RMSE was 1:0503+0:0840 for MC-

MDS and 1:0469+0:0850 for metric MDS. Therefore there is no

statistically significant difference in matrix completion quality. The

CC values from the 100 independent runs are 0:9816+0:0196
and 0:7393+0:1654 for MC-MDS and metric MDS, respectively.

The MD value was 17:4676+0:9339 for MC-MDS and

17:4676+0:9339 for metric MDS. These numbers are consistent

with the simulation study, showing again that MC-MDS is more

stable for antigenic cartography construction.

From the 100 runs of metric MDS, we were not able to generate

the exact cartography in Smith et al. [8]. One reason might be that

the initial values we randomly chose were not exactly the same as

those from [8], which were not specified clearly from [8]. The source

code of our implementation of the metric MDS method in [8] is

available upon request. We shall point out that our implementation is

strictly based on what was described in [8]. While we have spent great

effort to ensure the correctness of our implementation, it is possible

that there are undocumented improvements in the optimization

algorithm used to solve the metric-MDS problem. In such case, their

actual implementation might not suffer from the issues observed in

our study. Nevertheless it is still useful for us to examine problems of

the algorithm presented in their original paper, the underlying causes

of these problems and their potential mathematical remedies. This is

what this study tries to achieve.

Discussions

Each year, about 80 World Health Organization (WHO)

collaborating laboratories and 70 National Respiratory and

Influenza Antigenic Cartography Construction
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Enteric Virus Surveillance System (NREVSS) that are located

throughout the United States participate in virologic surveillance

for influenza. By collaborating with over 110 other National

Influenza Centers in the WHO Global Influenza Surveillance

Network, the vaccine strains for next influenza season are

determined in the middle of February each year for northern

hemisphere (these strains are used as vaccine strains in the United

States) and September for southern hemisphere. The pandemic

vaccine strains are also selected through collaborative efforts

among different laboratories across the WHO Global Influenza

Surveillance Network. Influenza vaccine strain selection is a very

labor intensive procedure that depends on both antigenic

characterization and genetic characterization. In general, whether

an isolate will be sequenced or not is based on the result from

antigenic characterization, and only highly potential antigenic

variants are sequenced. Therefore, antigenic characterization is

critical for vaccine strain selection. In order to identify a potential

influenza vaccine strain, we have to integrate the HI tables from

different experiments in the same laboratories or even from

different laboratories. Each experiment only includes up to 15

reference antisera, which are updated at each influenza season or

even each month within the same influenza season. In addition, it

is common for individual laboratories to use different antisera.

Therefore, the integrated HI table is typically an incomplete

matrix. This incompleteness and the limitation of HI experiments

(see the introduction section) present a challenge in interpreting HI

results and thus antigenic variant identification. Another impor-

tant challenge of HI data is the temporal bias effect, which means

Figure 4. The influenza antigenic cartography constructed by MC-MDS for H3N2 viruses from 1968 to 2003. The 253 viruses labeled
with the cluster names HK68, EN72, VI75, TX77, BK79, SI87, BE89, BE92, WU95, SY97 and FU02 are defined by [8]. One unit (grid) corresponds to a two-
fold change in HI assay.
doi:10.1371/journal.pcbi.1000949.g004
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that entries in an HI matrix are not missing uniformly at random

(Figure 1). These are the problems this paper addresses.

As an analog of geographic cartography, influenza cartography

can be used to visualize and measure antigenic distances between

influenza viruses. An essential criterion for a new influenza vaccine

strain is significant antigenic divergence (e.g. 4 fold change in HI

test) from the current vaccine strain. Influenza antigenic

cartography can help us identify whether a testing antigen (virus)

is antigenically far away from a specific vaccine strain or a specific

cluster of antigens (e.g. circulating strains at a specific time period).

In this study, we proposed a new computational framework for

constructing an influenza antigenic cartography, and demonstrat-

ed its usefulness in antigenic characterization. This computational

framework has two integrated steps: (1) through a matrix

completion algorithm, influenza antigenic distance matrices are

constructed; (2) through MDS (with herd-immunity temporal

model), influenza antigens (viruses) are projected onto a two-

dimensional cartography. We specifically pay attention to the

major challenge that is caused by the temporal bias in HI datasets.

That is, the banded structure of HI entries indicates that the

matrix entries are not missing uniformly at random (Figure 1),

which violates the standard assumption in conventional methods.

Our experiment showed that standard approach will not handle

this problem very well, and will produce cartographies with

incorrect global distances. This paper addresses the problem

through a biologically motivated temporal evolution model that is

Figure 5. The antigenic cartography by MC-MDS for H3N2 HI data from 1987 to 1995. The influenza viruses labeled with the cluster names
SI87, BE89, BE92, WU95 are defined by [8]. One unit (grid) corresponds to a two-fold change in HI assay. This data is a subset of the HI data shown in
Figure 2.
doi:10.1371/journal.pcbi.1000949.g005
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mathematically incorporated into the MDS algorithm. It is shown

that more accurate antigenic distances can be obtained from this

approach.

Although MC-MDS is presented as a 2D cartography

construction method in this paper, it can be extended easily for

3D (or even higher dimensional) cartography by modifying the

resulting cartography dimension in the MDS step of our

computational framework.

The temporal regularization in MC-MDS is based on the fact

that the influenza antigens continue to evolve under the

accumulating immune pressures of human population [9]. Within

a short time period, the antigenic distances among viruses tend to

become larger in temporal order. Such a regularization is

important since it can effectively minimize the biases of Type II

data. However, such regularization does not necessarily imply that

the antigen would always evolve forward. Theoretically, it is

possible that the antigenicity (not genetic sequence) of influenza

viruses could become similar to earlier circulating strains when the

selective pressure from herd immunity disappears. This is

supported indirectly by the report that 2009 pandemic H1N1

virus cross-reacted with the serum from the ages over 60, who

were likely to infect the seasonal H1N1 virus circulating in human

population before 1957 [10].

Besides the immunological datasets for the influenza viruses

(such as those of human origin) with the accumulating immunity

from their hosts, there are other immunological datasets for the

influenza viruses from mutations (not necessarily accumulating

immunity), such as those of swine or avian origin. For the latter

case (e.g. the data of swine or avian origin), our limited

experiments in H5 and H7 studies suggested that the users can

use MC-MDS directly without temporal model (data not shown).

However, there might be additional structures to explore in such

data. This requires more extensive investigations in the future.

Conclusion
We introduced a new computational framework for influenza

antigenic cartography construction from HI datasets. This

approach, which we refer to as MC-MDS, integrates two

mathematical procedures: matrix completion and MDS projection

(with temporal modeling). Using the AGD matrix completion

algorithm on HI datasets from 1968 to 2003, we successfully

identified the eleven reported clusters of antigenic variants that

represent major antigenic drift events during these 36 years. Thus,

this method is useful in both influenza antigenic variant

identification and influenza vaccine strain selection. Our results

also demonstrated that MC-MDS is more robust and effective

than our implementation of the metric MDS method [8] in

influenza antigenic cartography construction.

Materials and Methods

Dataset and data transformation
H3N2 HI benchmark dataset and data transformation.

The benchmark HI dataset is adopted from [8], and it includes

4,215 observed HI values from the reactions from 273 H3N2

influenza A viruses against 79 ferret antisera. These viruses were

isolated periodically from locations around the world between

1968 and 2003, and the antisera were generated against 79

prototype influenza strains, most of which were selected from these

273 influenza isolates. Both influenza antigen (virus) and antiserum

(antibody) can be roughly clustered into eleven groups, HK68,

EN72, VI75, TX77, BK79, SI87, BE89, BE92, WU95, SY97 and

FU02, which represent the eleven major events of antigenic drifts

resulting in a pandemic or an epidemic from 1968 to 2003. For

instance, FU02 represents a group of influenza viruses isolated

around the year of 2002 with similar antigenic characteristics.

Within this dataset, three types of data points are present: Type

I, a regular HI titre; Type II, the value is defined as ‘less than a

threshold’, e.g. vthreshold, where threshold [ f5,10,20,40g, and
this value represents the testing antigen and antiserum do not

strongly react with each other; Type III, missing values. Following

[8], we preprocess the HI matrix by normalizing the data entries

as follows: each Type I entry with the observed value mij is

transformed to qmax(Hij)r{log2
max(Hj)

Hij

� �
, where max(Hij) is

the largest HI value among all observed entries andmax(Hj) is the
maximum HI value for antiserum j; each Type II entry with value

vthreshold is transformed into qmax(Hij)r{log2
max(Hj)

Threshold

� �
;

Type III data are replaced with 0 s, representing the missing

values.

Simulated HI data. To study the effect of temporal bias on

influenza cartography, we simulate HI matrices with DV D viruses

and DAD antibodies. Both the viruses and antibodies can be

partitioned into t blocks by temporal information. In each

block, we will have 20 viruses and 10 antibodies. Let HIti ,t’j
denote the HI titre for Vti and At’j , where tƒ10, t’ƒ10, 0viƒ20,

and 0vjƒ10. Each HIti ,t’j is a random value generated uniformly

from f5|211{D3|(t{t’)D, 5|211{D3|(t{t’){1D, 5|211{D3|(t{t’){2D,

5|211{D3|(t{t’){3Dg.
In the HI matrix with Type II values, all the HI values no more

than a titre of 20 will be replaced with Type II values of the form

ƒ20. The matrix is preprocessed according to the same method

used in the H3N2 HI benchmark dataset. To generate incomplete

HI matrices, we randomly select Type I and Type II HI values

(about 20%) from the entire HI matrix by mimicking the data

distribution in the H3N2 HI dataset.

Matrix completion algorithms

The goal of matrix completion is to fill the missing entries in an

incomplete matrix based on appropriate mathematical models of

the matrix. It is a traditional mathematical problem that has been

studied for many decades. Early contributions on this problem

include Schur [11], Farahat and Ledermann [12], Friedland [13],

Hershkowitz [14], London andMinc [15], Mirsky [16] and Oliveira

[17–19]. In the past decade, interest in the problem has grown

substantially, especially after the launch of Netflix competition [20]

in 2007. The Netflix problem is to predict each user’s movie

preference (in order for Netflix to make appropriate movie

recommendations to each user) from approximately 1% observed

user ratings. This can be regarded as a matrix completion problem,

where we predict missing user/movie ratings from incomplete

observations. This is exactly like the problem of predicting antigen/

antibody interactions which we consider in this paper. In general,

matrix completion is ill-posed and computationally intractable

[21,22]. However, recently, Candes and Rect [22] and Recht et. al

[23] proved that under appropriate conditions, the minimum rank

matrix solution can be recovered from incomplete entries by solving

a convex optimization problem. These theoretical developments

generated further interest, and afterwards, a number of new

methods have been proposed [24–30].

If we do not consider the temporal bias effect, then the antigenic

cartography task can be formulated as a matrix completion

problem. Simply, in an HI matrix, there are m antigens

corresponding to the rows, and n antisera corresponding to the

columns. Let mij denotes the HI value from the reaction between

testing antigen i and antiserum j. The HI matrix can be
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represented as

Mm|n~(aij)m|n:

Let E denote the subset of M’s entries corresponding to Type I

and Type II data. In practice DED%m|n. The goal of matrix

completion is to estimate the HI values in the Type II and Type III

entries as accurately as possible. In addition, matrix completion

can re-estimate Type I entries and remove embedded noises,

which were from the uncertainties in experimental measurements.

This is a standard matrix completion problem. The standard

approach to this problem is to assume that the matrix is low rank,

with rank r%min(m,n). In our application, this means that each

antigen i can be embedded into the r-dimensional space as ui, and

each antiserum j can be embedded into the r-dimensional space vj .

In the low rank model, the interaction aij between antigen i and

antiserum j is given by uTi Sr|rvj for some matrices Sr|r. We can

aggregate vectors ui into a matrix Um|r and aggregate vectors vj
into a matrix Vn|r. Mathematically, the low-rank model is to find

matrices U with dimensions m|r, V with dimensions n|r and a

diagonal matrix S with dimensions r|r such that

M~Um|rSr|r(Vn|r)
T: ð1Þ

Here we describe AGD matrix completion method, which is

developed based on gradient decent method. AGD method

assumes the low rank matrix completion model (1).

If type II data are not present, one can employ the following

optimization formulation to estimate the missing values

min
X

1

2

Xm

i~1

Xn

j~1

(ME
ij {XE

ij )
2
zlg(X ),

s:t: X~Um|rSr|r(Vn|r)
T

ð2Þ

where ME
ij ~Mij , X

E
ij ~Xij when (i,j) [E and ME

ij ~0,XE
ij ~0

otherwise.

The function g(X ) is a regularization condition for the matrix

X , which is introduced to stabilize the solution. The solution X of

the optimization problem (2), which does not contain any missing

value, will replace M (which has missing values) as the true (and

denoised) HI table, which we can then use for other purposes, such

as cartography construction.

In the AGD method, we take g(X )~
Xm

i~1
g1

U ik k2

3m0r

 !
z

Xn

i~1
g1

V ik k2

3m0r

 !
in (2), where g1(z)~e(z{1)2

{1 when z§1

and g1(z)~0 otherwise. U i (V i) denotes the ith row of U (V ) and

m0~maxfm,ng.
First, the algorithm uses SVD to obtain the factorization

ME’
~USVT. Here ME’ is the trimmed matrix of ME where we

randomly set some observed values to 0 from the rows (columns)

when a row (column) contains more than 2DED=m(2DED=n) observed
values. The purpose of this trimming step is to guarantee that each

row (column) has less than 2DED=m(2DED=n) non zero values. This is

based on the observations of Keshavan et. al. [27] that when

DED~H(n), the corresponding singular vectors are highly concen-

trated on high-weight column (or row) indices. It means that those

vectors do not provide useful information. After SVD, we set the

initial value U to U0 �
ffiffiffiffi
m

p
and V to V0 �

ffiffiffi
n

p
where U0 and V0

are the first r columns of U and V respectively.

We then apply the following alternating optimization procedure

until convergence or when certain number of iterations are reached.

N Fix Uj and Vj and calculate the matrix Sr|r to minimize the

squared error
1

2

Xm

i~1

Xn

j~1
(ME

ij {XE
ij )

2. This is a least

squares regression problem with respect to Sr|r.

N Update Ujz1 (Vjz1) using gradient descent: we take steps

proportional to its negative of gradient with respect to the

objective function. That is, Ujz1~Ujzt � +Uj
and

Vjz1~Vjzt � +Vj
where t is the step size parameter which

can be optimized by line search algorithm.

N The first two steps are repeated until convergence or reaching

a pre-defined number of iterations.

The gradient of U and V are:

+U~((USVT)E{ME)VS
T
zUQUz

lf (U ,2 � e(Qu1{1)2 � (Qu1{1)),
ð3Þ

+V~((USVT)E{ME)TUSzVQVz

lf (V ,2 � e(Qv1{1)2 � (Qv1{1))
ð4Þ

where

QU~
1

m
UT((ME

{(USVT)E)VS
T ,QV

~
1

n
VT((ME

{USVT)E)TUS,

Qu1~

Pr
j~1 U

2
1jPr

j~1 U
2
2j

.

.

.

Pr
j~1 U

2
mj

0

BBBBB@

1

CCCCCA

2m0r
,Qv1~

Pr
j~1 V

2
1jPr

j~1 V
2
2j

.

.

.

Pr
j~1 V

2
nj

0

BBBBB@

1

CCCCCA

2m0r

and

f (Xm|r,Ym|1)~Zm|r, Zij~

Xij�Y (i,1)

m0r
if Y (i,1)w0),

0 otherwise:

(

A general method to handle Type II values. Although

Type II data is not as informative as Type I data, they still provide

useful information. Therefore we have to modify (2) to include

type II data. First we introduce threshold values hi,j for each

entries (i,j), and let hi,j~{? if the corresponding entry is not

type II data. If an entry is type II data, we set hi,j to be the

corresponding threshold. We change the standard matrix

completion formulation (2) into the following form that

incorporates type II information:

min
X

1

2

Xm

i~1

Xn

j~1

(ME
ij {XE

ij )
2I(XE

i,j§hi,j)zlg(X ), s:t: X

~Um|rSr|r(Vn|r)
T ,

ð5Þ
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where I(:) is the indicator function: I(XE
i,j§hi,j)~1 if XE

i,j§hi,j ;

and I(XE
i,j§hi,j)~0 if XE

i,jvhi,j . The intuition behind this

formulation is that for an type II entry (i,j), if XE
i,jvhi,j , then we

do not have to penalize the error (ME
ij {XE

ij )
2 because the

constraint is satisfied.

One advantage of this formulation is that we can employ any

optimization algorithm that solves (2) to solve (5). We start with an

initial estimate of X by ignoring the type II data. We then iterate

as follows until a certain number of iterations are reached:

N Let ji,j~I(XE
i,j§hi,j)

N Update X by solving

min
X

1

2

Xm

i~1

Xn

j~1

(ME
ij {XE

ij )
2ji,jzlg(X ), s:t: X

~Um|rSr|r(Vn|r)
T

using any optimization algorithm (such as AGD) for (2).

The procedure is a principled approach to handle Type II data,

and it can be used with any algorithm that optimizes (2).

The two parameters, l in the penalty function and the rank to

project data, are trained through 10-fold cross validation. The

rank (from 2 to 10) and l (l [ f0:01,0:05,0:1,1,10,100g) with the

smallest RMSE value will be selected as the best rank in matrix

completion.

Performance evaluation. The performance of matrix

completion is evaluated using the following three criteria in this

study: root mean squared error (RMSE), correlation coefficient,

and biological interpretation. Given s values fxkgk~1,...,s and

fykgk~1,...,s, we define the RMSE as:

RMSE~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPs
k~1 (xk{yk)

2

n

s

,

where xk stands for an observed value and yk stands for the

corresponding predicted value. If a prediction scheme has a small

RMSE value, then the predicted values are close to the true values.

For matrix completion, we utilize 10-fold cross validation to

calculate the RMSE values. The observed matrix entries are

partitioned into 10 equal parts. Each time, one part is used for

testing and the other nine parts for training. That is, each time we

use 9 parts as observed values in matrix completion; after the

completed matrix is generated from these 9 parts, we calculate the

RMSE between the completed matrix and the observed matrix

entries in the remaining part. The process is repeated for every

part in the dataset. The RMSE value is the average RMSE value

over several runs. The RMSE values were estimated only using

Type I values, and thus they are also called local RMSE. Note that

we also report the standard deviation numbers calculated from

cross validation. It is known that standard deviation calculation

based on cross validation is often smaller than the true standard

deviation; however, the numbers still provide meaningful

indications and hence are included.

For the temporal based MDS, we can define the distance

between two viruses as the Euclidean norm between the rows of

the completed HI table corresponding to the two viruses. In

evaluation, we use the local pairwise distances among temporally

close by viruses because these distances are more reliable. In

particular, the local pairwise distances are partitioned into 10

equal parts. Again, each time we left one part as testing samples

and applied temporal based MDS by using 9 parts. The RMSE

between the estimated distance and testing data are calculated,

and they are called the pairwise distance RMSEs (PD value).

The correlation coefficient (CC) between two vectors measures

the strength and direction of their linear relationship. Let

y~fy1, y2, � � � , yng denote the vector A and by1y1, by2y2, � � � , bynyn denote
the vector B. The correlation coefficient (CC) between vector A

and B is defined as follows:

CC(y, ŷy)~

n
Pn

i~1 yi byiyi{
Pn

i~1 yi
Pn

i~1 byiyiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n
Pn

i~1 y
2
i {

Pn
i~1 yi

� �2� �
n
Pn

i~1 byiyi2i {
Pn

i~1 byiyi2i
� �2� �r

Clearly, a larger CC value indicates the two vectors are closely

related. For every two runs, we will have two distance vectors and

one CC value. In 100 experiments, we will have 4,950 CC values,

then the mean and standard deviation can be calculated. This test

is to assess whether every two runs of the test method (temporal

MC-MDS or Metric MDS) are different. For instance, if metric

MDS has lower CC value and larger standard deviation, we will

conclude it is not stable.

The biological interpretation is based on separation and

quantification of the reported antigenic variant groups in the

influenza antigenic cartography.

Window size determination. In order to reduce the

temporal bias in HI matrices, we adopt a sliding window

approach in the matrix completion step. The rational for sliding

window matrix completion is that the temporal bias effect becomes

much smaller in temporally grouped sub-matrices than in the

entire HI matrix. This means that the effect of temporal bias will

be reduced when we complete each sub-matrix separately.

Therefore in our approach low rank matrix completion will be

performed separately in each HI sub-matrix. In order to complete

the entire matrix, the algorithm will slide yearly along with both

the dimensions of antigen and antisera to ensure the time

difference between all antigen and antisera are within a certain

window size W . The missing values or low reactors in HI matrix

are estimated as the mean value of the recovering values from the

associated sub-matrices. If the missing values or low reactors are

not covered by any of the sub-matrices, they will be estimated

through matrix completion using the entire HI matrix. The

selection of window size W is based on minimizing the RMSE

values from 10-fold cross validation. For H3N2 HI dataset, we

have tested different values of W [ f4,8,12,16,20,24g.
Temporal based MDS for Type II data. Multidimensional

scaling (MDS) is a statistical technique widely used in information

visualization. It embeds a set of data into low dimension vectors

while preserving their pair-wise distances. The projection of

viruses into two or three dimensional space can be viewed as an

analog of a geographic cartography; thus this is referred to as

influenza antigenic cartography. Due to the temporal bias effect in

HI tables, we have to incorporate a temporal model into the MDS

algorithm to reconstruct global distances more accurately. In this

work, we consider a biologically motivated temporal regularization

criterion. The regulation in our temporal model is based on the

fact that the influenza antigens continue to evolve under the

accumulating immune pressures of human population [9]. In

order to evade the herd immunity, an influenza virus will most

likely evolve into a strain with different antigenicity from recently

circulating strains in human population. Thus, within a certain

time period (e.g. 20 years, which is within one human generation),

Influenza Antigenic Cartography Construction
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the antigenic distances among viruses tend to become larger in

temporal order.

This intuition is mathematically incorporated into our temporal

regularization condition. Specifically we assume that on the 2D

cartography, influenza viruses tend to evolve along (approximate)

straight-line segments during short time spans; that is, they tend to

evolve in directions as far away from recently appeared viruses as

possible. The concrete mathematical formulation is described

below.

First we denote by Dij the average distance between virus i and

virus j using the completed matrix from step 1, and let ti denote

the isolation year of virus i. We partition all influenza viruses

into n groups based on their temporal ordering. If a dataset covers

year c to year czn, then the n groups are viruses in year

fc,cz1g,fcz1,cz2g, � � � ,fczn{1,czng. This grouping choice
is due to the fact that each influenza season in the northern

hemisphere spans two years. Therefore without additional infor-

mation, it is appropriate to assign every virus to the neighboring

years as well. For instance, it is natural to assume that the A/

Beijing/32/92(H3N2) virus belongs both to group f91,92g, and to

group f92,93g. Denote by Gi the viruses in the i-th group. In 2D

cartography, we represent each virus by a two dimensional vector.

Let dij be the distance between virus i and virus j in the cartography;

let ci be the center coordinate of group i and hence daci is the

distance between virus a [Gi to the center ci, and dcicj is the

distance between two centers ci and cj . The temporal MDSmethod

in our experiments attempts to minimize the following error

function:

X

0ƒti{tjƒw

(Dij{dij)
2
zl1

X

a[Gi

d2
aci
zl2

X

p1ƒj{i~k{jƒp2

(dcicjzdcjck{dcjck )
2:

The first term is the standard MDS. The second term means

that viruses within each group should be close to each other. The

third term is the mathematical formulation that formalizes the

biological intuition that viruses tend to evolve along straight-line

segments during short time spans.

Besides the above error function, we impose constraints on

global distances that can be derived from the original dataset. We

know that each reference antiserum is associated to an antigen. Let

the reference antiserum be ai and its corresponding antigen be vi.

If antigen vj has low reactor (Type II) with this reference antiserum

ai and antigen vk has relatively high reactor with ai, we can

naturally assume that in the 2D cartography, the distance between

vi and vk should be smaller than the distance between vi and vj . In

our experiments, if a HI value is equal to or more than 160 (4-fold

higher than the Type II threshold 40), we call it a relatively high

reactor. The four parameters l1, l2, p1, p2 are optimized using

10-fold cross validations. The configuration that achieves the best

RMSE for reconstructing local pairwise distances while satisfying

all constraints is selected. The source codes for this implementa-

tion are available upon request.

Metric MDS for influenza antigenic cartography

construction. The metric MDS method is developed by

Smith et. al. [8] to construct antigenic cartography. This method

attempts to minimize an error function of the form
P

e(DE
ij ,X

E
ij ).

Here DE
ij is set to bj{log2(Hij) where Hij is the observed value

and bj is the log2 of the maximum reaction for antiserum j. The

error function is defined as

e(DE
ij ,X

E
ij )~

(DE
ij{XE

ij )
2 Dij [Type I data

(DE
ij{1{XE

ij )
2g(DE

ij{1{XE
ij ) Dij [Type II data

(

where g(x)~
1

1ze{10x
.

Similar to AGD , this algorithm also requires a pre-defined

dimension (rank) L as input; that is, each virus or antiserum is

represented by an L-dimensional vector. Let vi~fvi1,vi2, � � � ,viLg
and aj~faj1,aj2, � � � ,ajLg represent virus i and antiserum j,

respectively. The Xij is defined as the Euclidean distance between

the vector vi and aj : Xij~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXL

l~1
(vil{ajl)

2
q

. The algorithm

generates the random initial vector for each virus or antiserum and

the solution is found through conjugate gradient optimization with

multiple random restarts.
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