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Abstract

We study the nonparametric least squares estimator (LSE) of a multivari-
ate convex regression function. The LSE, given as the solution to a quadratic
program with O(n?) linear constraints (n being the sample size), is difficult to
compute for large problems. Exploiting problem specific structure, we propose
a scalable algorithmic framework based on the augmented Lagrangian method
to compute the LSE. We develop a novel approach to obtain smooth convex
approximations to the fitted (piecewise affine) convex LSE and provide formal
bounds on the quality of approximation. When the number of samples is not
too large compared to the dimension of the predictor, we propose a regular-
ization scheme — Lipschitz convex regression — where we constrain the norm
of the subgradients, and study the rates of convergence of the obtained LSE.
Our algorithmic framework is simple and flexible and can be easily adapted to
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handle variants: estimation of a non-decreasing/non-increasing convex/concave
(with or without a Lipschitz bound) function. We perform numerical studies
illustrating the scalability of the proposed algorithm.

Keywords: Augmented Lagrangian method, Lipschitz convex regression, nonpara-
metric least squares estimator, scalable quadratic programming, smooth convex re-
gression.

1 Introduction

Consider the task of fitting a multivariate convez function to observations {(X;, Y;) }i,
where the covariates X; € R, d > 1, and the response Y; € . This problem has
been recently considered by several authors; see e.g., Seijo and Sen (2011) and Lim
and Glynn (2012) and the references therein. Convex (concave) regression problems
are common in economics, operations research and reinforcement learning. In eco-
nomics, production functions and utility function preferences are usually known to
be concave (see Allon et al. (2007) and Varian (1984)) whereas consumer preferences
(see Meyer and Pratt (1968)) are often assumed convex. In operations research and
reinforcement learning, value functions for stochastic optimization problems can be
convex (see Shapiro et al. (2009)).

Probably the most natural estimator of the convex regression function in this
setup is the least squares estimator (LSE) ¢En, defined as a minimizer of the empirical
Lo-norm, i.e.,

b, € argmin Y _(V; — (X;))?, (1)

i=1
where the minimum is taken over all convex functions 7 : ®¢ — R. See Seijo and
Sen (2011) and Lim and Glynn (2012) for the characterization, computation and
consistency of the LSE. An appealing feature of the convex LSE over most other non-
parametric function estimation methods is that no tuning parameters (e.g., smoothing

bandwidths as in kernel regression) need to be specified in the estimation procedure.

The seemingly infinite dimensional optimization problem in (1) can indeed be
reduced to a finite dimensional one as described below. Letting 0, = ggn(Xz), for

1 = 1,...,n, we can compute 0 = (él, ...,0,) by solving the following Quadratic
Program (QP):

1
minimize -||Y — 0||?
517"'7 n; 2 H H2

s.t. 0j+<Aij7€j> S@Z, Z#]E{laanh
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where A;; (=X, —X; € RLY = (Vy,..., V)", & €RL 0= (64,...,0,)" € R, (-, )
denotes the usual inner product and || - || denotes the standard Euclidean norm. In
words, Problem (2) estimates the function values at the points X;’s and also delivers
estimates of subgradients &;’s of the function at the n points X;’s. A natural way to

extend qgn to a convex function defined on the whole of ¢ is to use the following rule:

Gul) = mas {0+ (x=X;,4) (3
Seijo and Sen (2011) used off-the-shelf interior point solvers (e.g., cvx, MOSEK, etc.) to
solve the optimization problem (2). However, off-the-shelf interior point solvers are
not scalable and quickly become prohibitively expensive for sample size n > 300 due
to the presence of O(n?) linear constraints. This motivates the present study where
we propose scalable first order methods based on modern convex optimization tech-
niques and investigate the statistical and computational issues of variants of convex
regression. During the course of this work, we became aware of the conference paper
by Aybat and Wang (2014) which studies algorithms for an approximation of Prob-
lem (2) by adding a ridge regularization on the subgradients £;’s — the authors report
computational savings over interior point methods for problem sizes up to n = 1600.
Our algorithmic approach in this paper, however, is different and we demonstrate
scalability to problems of larger size.

We summarize our main contributions below.

Algorithmic Framework: We propose, in Section 2, an algorithmic framework
based on the augmented Lagrangian method (Bertsekas, 1999; Boyd et al., 2011)
and first order optimization techniques (Nesterov, 2004) to solve the Problem (2),
which is a quadratic program (QP) with O(n?) constraints in O(nd) variables. Our
algorithmic framework is scalable, yet general enough to accommodate variants of the
problem (see the discussion below). The convergence properties of the algorithm are
subtle, and are discussed. An important aspect of our algorithm is that it heavily
exploits problem structure to enhance its computational scalability. This enables us
to compute the convex LSE for problem sizes much beyond the capacity of off-the-
shelf interior point methods. Our approach delivers moderate accuracy solutions for
n ~ 5000 within a few minutes; and scales quite easily for problems with n ~ 10000
or more. When d < n, the computational cost of our algorithm is dominated by
O(n?), stemming from matrix-vector multiplications — the cost is indeed reasonable
since Problem (2) has O(n?) linear constraints. Note that solving Problem (2) with
off-the-shelf interior point methods has a complexity of O(n?d?); see e.g., Boyd and
Vandenberghe (2004).



Smooth Estimators: A characteristic feature of the LSE ¢,, as defined in (3), is
that it is piecewise affine and hence non-smooth. This may be perceived as a possible
drawback of the LSE, since in various statistical applications, smooth estimators are
desired; see e.g., Birke and Dette (2007), Aguilera et al. (2011), Du et al. (2013) and
the references therein. Most of the existing work on function estimation under both
smoothness and shape constraints are for one dimensional functions — estimating a
smooth multivariate convex function is a challenging statistical problem. We present
in Section 3, a new approach to this problem, using tools in convex optimization —
we perform a smoothing operation on the convex LSE that retains convexity. Our
approach yields an estimator that is (a) smooth, (b) convex and (c) is uniformly close
(up to any desired precision) to the LSE. In fact, we can provide theoretical bounds
on the quality of the smooth approximation. We emphasize that our approach is very
different from the usual techniques (e.g., kernel smoothing) employed in nonparamet-
ric statistics to obtain smooth approximations of non-smooth estimators. In fact, this
technique of smoothing is quite general and applies well beyond the specific instance

of piecewise affine functions arising in the context of convex LSE.

Lipschitz Regularization: In the presence of a limited sample size the convex
LSE ngSn may lead to overfitting, especially towards the boundary of the convex hull
of the covariate domain. This is due to the fact that the fitted subgradients can take
very large values near the boundary. To ameliorate this problem we propose least
squares estimation of the convex regression function with a (user specified) bounded
Lipschitz norm and derive the statistical rates of convergence of this estimator in
Section 4. The Lipschitz convex LSE thus obtained has lower prediction error and
risk when compared to the usual convex LSE. We discuss data-dependent ways to

estimate the tuning parameter (i.e., the Lipschitz norm) in practice.

Additional Structure: In several applications of interest, e.g., while estimat-
ing production functions and supply/demand functions, it is natural to impose the
requirement that the function not only be convex/concave, but that it also be non-
decreasing/non-increasing. Our algorithmic framework can be easily adapted to con-
sider such variants of convex regression. We study such variants of our algorithm in

Section 5.

Experiments: We perform a detailed simulation study in Section 6 demonstrat-
ing the superior scalability and performance of our framework over existing publicly
available algorithms for this problem. We also consider a few real data examples and

highlight the usefulness of convex regression.



Broader Outlook and Context: Our paper is intended to be viewed as a con-
tribution to the larger literature on function estimation in the presence of “shape
constraints”. The earliest (and most extensively studied) such problem is that of
isotonic regression (in which the regression function is presumed to be monotone);
see e.g., Brunk (1955), and Ayer et al. (1955). Recently there has been an upsurge of
interest in these shape constrained problems, especially in the multivariate setting;
see e.g., Cule et al. (2010) and Seregin and Wellner (2010) for developments in the
context of density estimation, and Seijo and Sen (2011) and Hannah and Dunson

(2013) for developments in the regression context.

2 Algorithm for Multivariate Convex Regression

In this section we investigate a scalable algorithm for computing the LSE defined
in (2). We first give a brief discussion as to why Problems (2) and (1) are equivalent.
Observe that any solution £!’s and 6" of Problem (2) can be extended to a convex
function by the interpolation rule (3). Note that ¢,(x) thus defined is convex in R
and has the same loss function as the optimal objective value of Problem (2). Thus

solving Problem (2) is equivalent to solving (1).

We will employ a prototypical version of the alternating direction method of mul-
tipliers (ADMM) algorithm; see Bertsekas (1999); Boyd et al. (2011). For this we

consider the following equivalent representation for (2):

1
minimize ~[|Y — |3
1ekni®m 2 (4)

where 7 = ((1;5)) € R™*" is a matrix with (¢, j)’th entry n;;. Define the augmented

Lagrangian corresponding to the above formulation as

1
Lo((&r- - &niOim)iv) = SIY — 0113+ vij (mis — (6; + (Aij, &) — 6,))

i?j

+ gz (mj — (0 + (A, &) = 0)° (5)

where v € R™"™ is the matrix of dual variables. We will employ a multiple-block
version of ADMM for the above problem following Boyd et al. (2011). This requires
the following sequential updates as described in Algorithm 1.



Algorithm 1 Multiple-block splitting ADMM for (4)

Initialize variables (£§1), o ,5;1)), 0V nW and M.
Perform the following Steps 1—4 for k£ > 1 till convergence.

1. Update the subgradients (§4,...,&,):

(€1, gl ) e argmin £, (€1, 6,00 W) . (6)

1oeee n
2. Update the function values 6:

6%+ ¢ argmin £, << gk—&-l),”_7££lk+1);0;n(k)>;u(k)> _ (7)
0

3. Update the residual matrix n:

e argmin £, (€, gl 00 ) ()
1 :1i;<0, Vi,j

4. Update the dual variable:

VI e p (Y = (08 Ay ) — 0 )i =1 (9)

2.1 ADMM with three blocks: Algorithm 1

We now describe the computations of the different steps appearing in Algorithm 1.

2.1.1 Performing the Updates of Algorithm 1
Updating the subgradients: solving Problem (6)

Problem (6) is an unconstrained QP in nd variables, where the variables are §; €
R4 j =1,...,n. Solving such a problem naively has complexity O(n3d?). However,
the problem is separable in §;’s — hence it suffices to consider the updates for each
&, asynchronously, over different j’s. For every j, the subgradient vector §; can be

computed as follows:

P ey 2 . -1 _

§; € arggmmz (75 — (A, &))" = & = (Z AijAv;Tj) (Z Az’jﬁij) (10)
i =1 i i

where 7;; = v;;/p+mn;; — (0; —0;), which is a least squares regression problem for every

7=1,...,n. If n > d and the design points come from a continuous distribution, éj



is unique with probability one. We note that the matrices Zj = (El AijA:j)_l =
1,...,n, need not be computed at every iteration, they can be computed offline at the
onset of the algorithm: computing >, A,-inTj takes O(nd?) and the inversion O(d?)
for every j. Thus, the total cost for all j values would be O(n%d?>+nd?), a computation
that can be done once in parallel at the onset of the algorithm. Once the inverses are
computed, computing é’ ; for all j requires an additional cost of O(n*d + nd*) — this
is due to the cost of computing the 7;;’s, the matrices ), A;;7;; and the subsequent
matrix multiplications leading to éj. Since we typically have d < n, the cost per

iteration is O(n?).

Updating the function values: solving Problem (7)

We introduce the following notations:

(DO} i 1ynyj = (05 — 0:), {vec(V)}i—1nti = Vijs {vec(n) Fa-1nrs = (M5 — (A, &),

for i,5 =1,...,n, where D is a sparse n? x n matrix. Using the above notation, the
optimization problem (7) reduces to the minimization of the following function (with

respect to 6):
1 2 P - 2
SIY = 0113 = (vec(), DB) + £ |[vec() — D,
which is equivalent to solving the following system:

(I+pD'D)8 =Y + D vec(v) + pDvec(s) . (11)

Computing the vector v will cost O(n?) flops. The matrix appearing on the
left-hand side of the above equation, (I + pD"D), has dimension n x n. A direct
inversion of the matrix to solve for € will have a complexity of O(n?). We show below
that the cost can be reduced substantially by exploiting the structure of the linear
system (11). From the definition of D we have D'D = 2nl,», — 2 117, where 1
denotes the n x 1 vector of all ones and I,,,, is the identity matrix of order n. Thus
we have (I+ pD'D) = (1 + 2np)I — 2p117 and

1 2p
I+yD'D)!= I 11" 12
(T+p ) (1+2np +1+2np )’ (12)



using which the system (11) can be solved for 6:

o 1 2p T A~ 1
o— I N )ve = — (vi+205 w0 ). (13
(1+2np 1T o >V (1 + 2np) <”+ p;“) (13)

The above computation can be done quite efficiently in O(n) flops, given v. Thus the

total cost per iteration in computing 6 is O(n?2).

Updating the residuals: solving Problem (8)

Updating the residuals, i.e., 7;;’s, are simple — due to the separability of the objective
function the partial minimization splits into n? independent univariate optimization

problems. It suffices to consider the following update rule for any (i, j):
. . 1 .
7;; = min {Hj + (A, &) — 0 — —Vij,()} o, g=1,...,n. (14)
p

Note that the inner products (A;;,§;) are already available as a by-product of the 8
update, while solving Problem (7); hence they need not be computed from scratch.
Thus, the cost for performing this operation is O(n?), since there are n? many variables
to be updated.

Computational Complexity: Note that updating the dual variable v using (9)
requires O(n?) flops. Thus, gathering the discussion above, the cost per iteration of
Algorithm 1 is O(max{n*d,nd*}), with an additional O(n?d* 4+ nd?) for the offline
computation of matrix inverses for Problem (6). If d < n, the total cost is O(n?),

which seems reasonable since the optimization problem involves O(n?) constraints.

2.1.2 Optimality Conditions for Problem (2)

Let 8%, n;; and &, for 4,5 € {1,...,n}, denote optimal solutions to Problem (2), or
equivalently, Problem (5), and let * denote an optimal dual variable. The optimality
conditions for the problem (Boyd and Vandenberghe, 2004; Boyd et al., 2011) are



given by:

n — (07 + (A, &) —07) =0, i,j=1,...,n, (15a)
iufinj =0, j=1,...,n, (15b)
i=1

(0" —Y) — D vec(v*) = 0, (15¢)
n;‘j—min {772}—%1/{},0} =0, ,7=1,...,n, (15d)

where (15a) is the primal feasibility condition, (15b) is the optimality condition with
respect to &;’s, (15¢) is the optimality condition with respect to 8 and (15d) denotes
the optimality condition with respect to 7.

2.2 Convergence properties

Algorithm 1 is a direct application of the schematic multiple-block (with three blocks)
ADMM algorithm described in Boyd et al. (2011) — it is quite simple and easy to
implement. There is, however, one caveat. As soon as the number of blocks becomes
larger than two, the multiple block version of ADMM however, does not necessarily
converge — see e.g., Chen et al. (2014) for a counter example. Multiple block ver-
sions of ADMM, however, can be shown to be convergent, under certain restrictive
assumptions on the problem and by possibly modifying the algorithm; see e.g., Hong
and Luo (2012). While a thorough convergence analysis of multiple block ADMM
is not the main theme or focus of this paper, it is indeed quite simple to check if
Algorithm 1 has converged or not by verifying if the conditions of optimality (15)
are met. In all of our experiments, Algorithm 1 was indeed found to converge. Nev-
ertheless, we discuss a simple variant of Algorithm 1 that has superior convergence
guarantees. The main principle behind the modification(s) is quite simple: since a
three block version of the ADMM is not guaranteed to converge, one can resort to a
two-block version of the ADMM. One way to obtain a two-block version of ADMM
is by combining the serial updating of @ and n, i.e., Problems (7) and (8) into one
that jointly optimizes over both 6 and 7, i.e.,

(0(k+1)7 n(k+1)) € argmin £, ((55’““), .. ,551“1)5 0;n); V(k)> : (16)

0,m: 1;; <0,Yi,j

The update in §;’s and the dual variable update remains the same. Convergence

guarantees of the resultant two block variant of Algorithm 1 are described in Boyd



et al. (2011). Note that update (16) can be performed by using block coordinate
descent (see e.g., Bertsekas (1999) and Friedman et al. (2007)) on the blocks 8 and
1, which is essentially equivalent to performing updates (7) and (8) sequentially till

convergence.

If we collapse all the variables (&, ...,&,,,80,n) into one block ¢ (say) then Prob-
lem (5) may be thought of as an augmented Lagrangian in the variable ¢, for which
one may apply the augmented Lagrangian Method of Multipliers — a method for
which convergence is relatively well understood (Bertsekas (1999)); also see the re-
cent work of Aybat and Iyengar (2012). We briefly describe this method below.

Algorithm 2

1. Update: ¢*+V .= (55’“”, . ,52"’“),0(“1),17(’““)) as:

¢ Y ¢ argmin L(¢v™Y st n; <0, Vi j=1,...,n. (17)
517"'7571,79777

2. Update: v*1 asin (9).

We make some remarks about Algorithm 2 below.

e The joint optimization (17) with respect to ¢ can be done via block coordinate

descent by updating &,’s, @ and 1 sequentially as per the update rules (6), (7) and (8).
e The bottleneck in Algorithm 2 is the optimization Problem (17), since it needs

to be performed for every iteration k. The problems, however, can be warm-started
by using the estimates from the previous iteration for the current iteration. Since Al-
gorithm 1 has excellent practical performance, i.e., the block updates are fairly cheap
to carry out, we found it useful to initialize Algorithm 2 with a solution obtained from
Algorithm 1. This hybrid version enjoys the convergence guarantees of Algorithm 2
as well as the good practical performance of Algorithm 1; see Section 6 where our

experimental results are described.

e The step-size p can be updated dynamically and the optimization subprob-
lems (17) can be solved inezactly such that the overall algorithm converges to an
e-optimal and e-feasible solution in O(%) operations, as shown in Aybat and Iyengar
(2012).

10



3 Smoothing Non-smooth Convex estimators

For simplicity of notation, in this section, we will write ¢, as ¢. Problem (2) describes
a method to estimate the unknown convex regression function at the given covariate
values X;’s. Although (3) describes a way of extending it to the whole of R?, the
obtained estimator is neither smooth nor unique (as 3 ;s are not unique). While there
are several ways in which the LSE can be defined beyond the data points, we briefly

describe below a natural alternative that produces a unique estimator.

Let X := {Xy,...,X,} and let Conv(A) denote the convex hull of a set A. We
can take the nonparametric LSE to be the function ¢ : R — R defined by

P(x) == inf{Zakék : Zak =1, Zaka =X, ap, >0Vk= 1,...,n} (18)
k=1 k=1 k=1

for any x € R¢. Here we take the convention that inf(()) = +o0o. The function ¢ is
well-defined and is finite on Conv(X). In fact, ¢ is a polyhedral convex function (i.e.,
a convex function whose epigraph is a polyhedron; see Seijo and Sen (2011)). It is
easy to see that ¢ is unique (as it only depends on the 6;’s); in fact, ¢ is the largest

convex function satisfying the constraints gzvﬁ(Xk) =0k, for k =1,...,n; see Seijo and
Sen (2011).

We describe below a novel approach to obtaining smooth approximations to the
convex regression estimators ngﬁ and ¢ with provable theoretical bounds on the quality
of approximation. Our approach is different from the usual methods in nonparametric
statistics to obtain smooth estimators under known shape restrictions; see e.g., Muk-
erjee (1988), Mammen (1991), Birke and Dette (2007), Aguilera et al. (2011), Du
et al. (2013) and the references therein.

We propose a method of finding a smooth approximation ¢ to the piecewise
affine LSE ¢ (or ¢) with the following properties:

1. ¢ is differentiable and its gradient V¢5™(-) is Lipschitz continuous with pa-
rameter £, i.e., [V ™ (x1) — V@™ (x9) |2 < L]|x1 — Xa]|2 for x1,x, € RE

2. ¢3™ is uniformly close to ¢ in the following sense: sup,, [¢°™(x) — d(x)| < 7(L),
where, 7(L£) is a function of the global Lipschitz gradient parameter L.

In the next section we briefly describe the general technique for smoothing non-smooth

functions and then in Section 3.2 (and Section 3.3) we specialize to the case of ¢ (and

0)-

11



3.1 Smoothing structured convex non-smooth functions

Preliminaries. We start with some notation. Consider %¢ with a norm || - || and
denote its dual norm by |[s||* := max,,,=1(s, z), where (-,-) denotes the usual inner
product.

Definition 1. We say that a function f : R% — R is smooth with parameter L if

it is continuously differentiable and its gradient is Lipschitz with parameter L, i.e.,
IVf(x) = VI < Llx =yl for all x,y € R

The framework described below follows the methodology introduced by Nesterov
(2005) who describes an elegant smoothing procedure for the minimization of non-
smooth functions having favorable geometrical structures. For the sake of complete-
ness we present the general framework below. We consider the spaces ¢ and R? with
norms || - ||x and || - |+ respectively. For a matrix A,.,, define its matrix norm || A4+

induced by the norms || - ||, || - ||+ as
1ALt = max {(Au, v) : flully = 1, [v]y =1, w € RT, v € 77}
where (-, -) denotes the usual Euclidean inner product. It is easy to see that
1A = IA [l = max{[[Aul[} : [[ully = 1} = max{|[ATv[l}, : [Iv]ly = 1}.

Let @ C R? be a closed convex set and p(-) be a proximity (prox) function (see
e.g., Nesterov (2005, 2004)) of the set (). We will assume that p(-) is continuously
differentiable and strongly convex on @) (with respect to the norm || - ||y) with strong

convexity parameter one, i.e.,

1
p(ui) > p(uz) + (Vp(uz), uz —uy) + §Hu2 —wf}

for any u;,uy € Q. In particular, this implies that if wy € argmingc, p(w) then for

any w € ), we have
1
plw) = plswo) > S lw — w2
Without loss of generality we can take the prox(imity) center wy to satisfy p(wq) = 0.

Consider a function v : R? x (0,00) — R given by

(i 7) i= max {(Az, w) — 7p(w)} (19)

weQr

where 7 > 0 is a regularization parameter. To motivate the reader, let us consider a

12



simple example with @ given by the unit ¢;-ball, i.e., Q@ = {w : ||w]||; < 1}. Note that
if 7 =0 and @ as described above, 7(z;0) = || Az|| which is a non-smooth function.
The non-smoothness arises precisely due to the fact that w € argmaxco(Az, w)
is not unique. One can get rid of the non-smoothness by using the modification
suggested in (19). Since the optimization problem in (19) involves the maximization
of a strongly concave function over a closed convex set, its maximum is attained and is
unique. Thus the presence of the perturbation term 7p(w) with 7 > 0 has interesting
consequences — it makes the function z — ~(z; 7) smooth (as in Definition 1) and
the amount of smoothness imparted via the regularization can be precisely quantified.

In this vein, we have the following theorem.

Lemma 1. For any fized T > 0, the function v(z;7), defined in (19), is differentiable
inz and its gradient is given by' Viy(z;7) = ATW™, where W™ € arg maxy,c(, {(4z, w) — 7p(w)}.
Furthermore, the gradient map z — V17(z; T) is Lipschitz continuous with parameter
1AJ12
We also have the following bounds describing how close v(z; 7) is to the unper-
turbed function ~(z;0):

Wz:7) > sup(Az,w) —Tsup p(w) = (z:0)—Tsupp(w), ()
weQ weQ weQ
and
v(z;7) = sup{(Az, w) — 7p(w)} < sup(Az, w) = 7(z;0), (21)
weQ weQ

where the last inequality follows as a consequence of the non-negativity of the prox

function.

Lemma 2. For any T > 0, the perturbation v(z;7) of v(z;0) satisfies the following

uniform bound over z:

7(2;0) — Tilégp(W) < y(z;7) < 7(20). (22)

We present below a summary of the smoothing procedure described above:

e The function z — ~v(z;0) may be non-smooth in z. For 7 > 0, z — ~(z;7)
is smooth (by Theorem 1), convex and has Lipschitz continuous gradient with
parameter L = O(1/7).

1V1v(z; 7) refers to the partial derivative of (z; 7) with respect to z.

13



e The smooth function v(z; 7) serves as a uniform approximation to y(z;0); the
quality of approximation is quantified in Lemma 2. The approximation error is
(upper) bounded by 7sup,,cq p(W) — a quantity that depends on ) and the

choice of the function p(-).

e For a given p(-) and @, the smoothness of the function z — ~(z; 7) is O(1/7),

which is inversely related to the order of approximation error, given by, O(1).

3.2 Smooth post-processing of the convex LSE

We will use the above framework to smooth the convex function estimators. Consider
first, the piecewise affine estimator é For x € ¢, we can always represent gzg as defined
in (3) as:

$(x) = max {alx+bi,...,a,x+by}. (23)

The special case of ¢ as defined in (3) can be expressed with a;, b;’s, fori = 1,...,m,

with m = n, chosen as:

Observe that qg admits the following pointwise representation:

gg(x) = max Z w; (a:x + bi) s.t. Zwi =1lw; >0,2=1,...,m. (25)
i=1 =1

Let us denote the unit simplex appearing in the constraint set of the above opti-
mization problem by A, :={w: > .w;, =1, w; >0,i=1,...,m}. Observe that the
non-smoothness in the function ¢(-) arises due to the non-uniqueness of W where w
is a maximizer of the linear optimization problem appearing in (25).

Following the framework developed in the previous section, it is easy to see that
v(x;0), as defined in (19), is indeed the function ¢(x) and Q is A,, (with a suitable
renaming of variables and adjusted dimensions). The smooth approximation gz; of the

non-smooth function ¢ is thus obtained by the construction (19):

¢(x;7) = max i w; (afx +b;) — Tp(w)
i=1

- (26)
st > w;=1lLw; >0,i=1,...,m,
i=1

where p(w) is a prox function on the m dimensional unit simplex. In the following
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we examine the consequences of using two different choices for the prox function.

3.2.1 Smoothing via the squared error prox function

A natural choice for smoothing comes from the squared error prox function, i.e.,
p(w) =1|w— %1“; for which both norms || - ||+, || - ||« (as appearing in Section 3.1)
are taken to be the standard Euclidean norms. The smoothed approximation ¢(x;7)
can be obtained by solving problem (26) with the squared error prox function. The

optimization problem in (26) is equivalent to the following convex program:

m m m
e . 1 2 ~ o .
mmgmze 3 5 w; — g W;C; s.t. 5 w, =1,w; >20,e=1,...,m,

where ¢; = (a/x + b;)/7 — 1/m, for all i = 1,...,m. The above problem is exactly
equivalent to the Euclidean projection of € := (¢4, .. ., ;) onto the unit m dimensional
simplex. Though there does not exist a closed form expression for this projection
operation, it can be computed quite efficiently with complexity O(mlogm) requiring
a sorting operation on m numbers; see Michelot (1986). The approximation error

associated with this smooth approximation ¢(x;7) of ¢(x) is given by (see Lemma 2)

- ~ 1

sup [0(x;7) — o(x)| < 7 sup Sllw —1/mll; = 7(1—1/m) (27)
xeRd weA,

and the Lipschitz constant of the gradient is || A]|3 /7 = Amax(ATA)/7, since [|A[|3, =

Amax(AT A), the maximum eigenvalue of AT A, where A is the m x (d+1) matrix whose

i’th row is (b;,a; ). Suppose that one seeks to obtain a smooth approximation o(x;7)

to ¢(x), with approximation error given by e. This leads to a choice of 7 that results
in a bound of the Lipschitz constant of the gradient by Apax(ATA)(m — 1)/(me).

3.2.2 Smoothing via the Entropy prox function

Let us next consider the entropy prox function on the unit simplex, i.e., p(w) =
o, wilog(w;) + logm and let || - ||y and || - |4 be the ¢;-norm in R™. This prox
function is strongly convex with respect to the standard ¢;-norm. For a simple proof
of this fact, note that for any h € R™ we have (VZp(w)h,h) = > h?/w;. By the
Cauchy-Schwarz inequality it follows that (32, h?/w;) (32, wi) > (32, |hi|)? which im-

plies strong convexity of the entropy prox function p(-) with respect to the ¢;-norm.
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Figure 1: Plots of the data points and the convex LSE qg with the bias corrected smoothed
estimators for four different choices to 7 using the squared error prox function (left panel)
and entropy prox function (right panel).

Furthermore, it can be shown that for this choice of prox function

sup [¢(x;7) — ¢(x)| <7 sup p(w) = Tlogm (28)
XE%d wEA,
and the Lipschitz constant of the gradient is given by [|A||7,/7 = (max; |Aij)? /7.
Thus, for an approximation error budget of €, the corresponding Lipschitz constant of
the gradient is given by (max; |Aij|)2 logm/e. For the entropy prox function, there

is a simple analytic expression for the smoothed approximation ¢(-;7) of ¢(-), given
by

qz;(x; T) = sup {Z w; (a;rx + bi) -7 (Z w; log(w;) + log m) }

weAm, i—1
" a'x + b
= | = = — 7l .
7 log (;1 exp ( . > Tlogm

Figure 1 shows the smoothed convex estimators obtained from the two procedures
(after a bias correction, described in Section 3.4) for different values of 7 when n = 50
and d = 1. We see that both smoothing methods yield similar results and can produce
estimators with varying degrees of smoothness. A similar phenomenon is observed

when d exceeds 1.

The results described in Section 3.2.1 and Section 3.2.2 lead to the following

theorem.
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Theorem 1. Let ¢(x;7), as defined via (26), be a smoothed approzimation of the

~

piecewise affine convexr LSE fit ¢p(x) as in (23) such that the following holds:

sup [P m) = $(x)| < e,

for some fixed pre-specified € > 0. Then, we have the following:

(a) if p(w) is the squared error prox function (see Section 3.2.1), then ¢(x;T) has
a Lipschitz continuous gradient with £ = Apax (AT A)(m — 1) /(me).

(b) If p(w) is the entropy prox function (see Section 3.2.2) then (ZS(X; T) has a
2
Lipschitz continuous gradient with £ = (max ]Al-j\) logm/e.
27‘7

Remark 1. Note that there is a trade-off between the smoothness of the function
b(x;7) and its accuracy in approzimating QB(X) Its smoothness, measured by the

Lipschitz constant of its gradient is O(%) and the approximation error is O(e).

3.3 Smoothing for scheme (18)

We will now consider smoothing schemes for the interpolant which is given by the
linear program (LP) in (18) with optimization variables ay, ..., a,. Observe that the
smoothing scheme described above in (23) works for convex functions that admit a
maz-like representation. The function (18), on the other hand, admits a min-like
representation, hence the smoothing scheme of Section 3.2 does not directly apply.
To circumvent this we consider the dual representation of the LP appearing in (18),

which is given by the following LP:
d)(X) = max [_ﬂ - <C7 X>] s.t. él +p+ <Ca X2> > 07 1=1,... ) T (29)

where the optimization variables are € R, ¢ € R?. Consider a modified version of
the estimator (29) obtained by adding a strongly convex prox function to the objective

in problem (29). This leads to the following convex program:

™ (x) = max [—p — (¢, X) —7p(p, €)] st O+ p+ (¢, X)) >0, i=1,...,n,
(30)
with variables p € R,¢ € R?. For simplicity, consider the Euclidean prox function,
ie., p(p,¢) = 3 (1* +||¢||3) with the respective spaces endowed with the standard
Euclidean || - [|o-norm. It follows from Theorem 1 that the function ¢ (x) is differ-
entiable in x with Lipschitz continuous gradient —&T, where (ﬂT,é’T) is the unique

optimal solution to problem (30).
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3.4 Bias correction

Although (27) and (28) provide a two-sided bound for the maximal deviation between
¢ (or ¢) and the smoothed estimator ¢ (or ¢°™), Lemma 2 (see (22)) shows that the
smoothed estimator is always less than ng) This bias of the smoothed estimator can
be easily corrected for. It can be easily shown that the fitted 0 always has the
same average as the sample mean (see e.g., Seijo and Sen (2011, Lemma 2.4)), i.e.,
S 6 =3" Y, Let @ = (6,,...,6,) denote the vector of values of the smoothed
estimator at the X,’s. It is natural to enforce that the bias corrected smoothed
estimator should also have the same mean as the sample mean. This leads to the bias
corrected smoothed estimator defined as ¢pc(x) 1= d(x) + %Z?Zl(él — 0;). We can
similarly define the bias corrected smoothed estimator obtained using ¢°. Figure 1

shows the bias corrected estimator along with the LSE when n = 100.

4 Lipschitz Convex Regression

The LSE described in (2) suffers from over-fitting, especially near the boundary of
the convex hull of the design points X;’s. The norms of the fitted subgradients él-’s
near the boundary can become arbitrarily large as the sample size grows and there
can be a large proportion of data points near the boundary, for d > 1. This, in turn,
can deteriorate the overall performance of the LSE. In fact, even when d = 1 it is
expected that the convex LSE will be inconsistent at the boundary; see Balabdaoui

(2007) for a proof in the context of density estimation.

As a remedy to this over-fitting problem we propose LS minimization over the
class of convex functions that are uniformly Lipschitz with a known bound. For a
convex function ¥ : X — R, let us denote by 0i(x) the subdifferential (set of all
subgradients) at x € X, and by ||0v¥(x)|| the maximum || - ||;-norm of vectors in
IN(x), i.e., [0Y(X)]| := supeegyx) [I€ll2. For L > 0, consider the class Cy, of convex

functions with Lipschitz norm bounded by L, i.e.,
Cr = {w : X — R | ¥ is convex, sup |0y (x)] < L} ) (31)
xeX

Let an 1, denote the LSE when minimizing the sum of squared errors over the class

CL, i.e.,
n

Gnr € argmin Y _(V; — 1(X,))?. (32)
velL o
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The above problem is an infinite dimensional optimization problem. Fortunately, as
before, the solution to the above problem can be obtained by solving the following

finite dimensional convex optimization problem:

1
minimize ~[[Y — 0|3
0 2

nig
st 0+ (A, &) <05 i j=1,...m (33)
Hﬁj“2§L7 leuvn

To see that Problems (32) and (33) are equivalent, it suffices to consider a solution
to Problem (33) and extend it to a member of the set Cy, using (3). Such an exten-
sion does not change the loss function and satisfies the feasibility condition of both
problems (32) and (33).

We present the following result (proved in Section A.5) concerning the asymptotic
rate of convergence of the convex Lipschitz LSE (i.e., Problem (33)).

Theorem 2. Consider observations {(X;,Y;) : i =1,...,n} such that Y; = ¢(X;) ¢,
where ¢ : R — R is an unknown convex function. We assume that (i) the support of
X is X = [0,1]%; (i) ¢ € Cr, for some Ly > 0; (i) the X; € X’s are fized constants;
and (iv) €;’s are independent mean zero sub-Gaussian errors (i.e., there exists o* > 0
such that for every t € R one has E[e'!] < e 12). Given data from such a model,

we have for any L > Ly,

n

1

3 (Bun(X0) — G(X)) = Os(ry), (34)
i=1
where
p=2/(d+4) ifd=1,2,3,
=< n Y4(logn)Y? ifd =4, (35)
n1/d if d > 5.

Remark 2. The above result follows from known metric entropy bounds on the class
of all convex functions that are uniformly bounded and uniformly Lipschitz (under the
uniform metric) and the theory on the rates of convergence of LSEs; see e.g., Van de
Geer (2000, Theorem 9.1). Note that the class of all convex functions is much larger
(in fact, the set is not totally bounded) and thus finding the rate of convergence of the

conver LSE (see (3)) is a much harder problem; in fact it is still an open problem.

Remark 3. The assumption that X = [0,1] can be extended to any compact subset

of R4.
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Remark 4. Recently, during the preparation of the manuscript, we became aware of
the work of Baldzs et al. (2015) and Lim (201/), where LSEs obtained over different
sub-classes of convex functions are proposed and studied. Baldzs et al. (2015) propose
Lipschitz convex regression (where instead of the || - ||a-norm on the subgradients, the
authors study the ||-||s-norm) with an additional boundedness constraint and study the
rates of convergence of the obtained LSE. Lim (2014) studies || - ||oo-Lipschitz convex
regression and the main result in the paper is similar to Theorem 2. We, of course,
deal with a different formulation as we constrain the || - ||2-norm of the subgradients.
Moreover, the proof of Theorem 2 can be mimicked to give a shorter and simpler proof
of the main result in Lim (2014).

The following lemma (proved in Section A.1) shows that the estimator obtained
upon applying the smoothing method to the estimator obtained from Problem (33)
lies in Cy,.

Lemma 3. Let é(x; T) be the smoothed estimator obtained via the scheme in Sec-
tion 3.2 for estimator (23) with 0;,€,’s obtained as solutions to Problem (33). Then
IVé(x;7)ll2 < L.

4.1 Algorithm for Problem (33)

The convex optimization problem (33) can be solved by interior point methods. How-
ever, as in the case of Problem (2) off-the-shelf interior point methods have difficulty
scaling to large n. In this vein, we propose a simple variant of the ADMM algorithmic
framework described for Problem (2) that can be applied to solve Problem (33). To

see this we consider the following equivalent representation of Problem (33):

1
minimize —=||Y — 0|3
§1~~-7§n§9;77 2” H2
st my =0+ (A, &) — 0;; (36)
ni; <0;i=1,...,n, 7=1,...,n

and the corresponding augmented Lagrangian similar to (4). We use an ADMM algo-

rithm with a similar block splitting strategy as in Algorithm 1 — the main difference

with Algorithm 1 being update (6) where, we need to solve:
Step 1. Update the subgradients (&;,...,&,):

€MV e argmin L,((€y,- ., €,:0% @) ™). (37)
617"'v£n:|‘§j||2§[/7vj

20



The above problem is a QP in nd variables with nd constraints. Note that the
optimization problem is separable in the variables £;’s, for j = 1,...,n. Thus solving
Problem (37) is equivalent to solving for each j the following constrained variant of

the convex problem (10):

n

minimize Y (7 — (85.€,))° st (]2 < L (38)

J i=1

The above problem, unlike Problem (6), does not admit a closed form solution. How-
ever, Problem (38) is a Second Order Cone Program (SOCP) with d variables and
since d is typically quite small (e.g., 10 or 20), solving it is quite cheap. Problem (38)
can thus be solved by using an off-the-shelf interior point method. It can also be
solved via specialized algorithms — we develop our own algorithm for Problem (38)

that we describe in Section A.2.

Risk Training Error
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Figure 2: [Left panel]: the simulated risk of the Lipschitz convex estimator as the Lipschitz
bound L varies (L = Inf gives the usual convex LSE) for 5 different dimension values (d).
[Right panel]: the training error as the Lipschitz bound L varies, for the same examples
appearing in the left panel.

In Figure 2 we show the performance of Lipschitz convex regression when n = 100,
#(x) = ||x||3 and d varies in {3,4,6,8,10}. The left panel illustrates that a proper
choice of L can lead to substantial reduction in the risk of the estimator (as measured
by By S0 (0.1 (X;) — ¢(X;))?) in estimating ¢. The right panel shows that as the
dimension d grows, the usual convex LSE overfits the data (for d = 10 the training

error is essentially 0).

To choose an optimal tuning parameter L, the Lipschitz constant that minimizes
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the risk, we advocate the use of cross-validation; see e.g., Hastie et al. (2009). In our
extensive simulation studies we observed that tenfold cross-validation works quite
well. We use the “one-standard error” rule in cross-validation where we choose the
smallest L whose error is no more than one standard error above the error of the best

Lipschitz parameter.

5 Convex Functions with Coordinate-wise Mono-

tonicity

In this section we consider a variation of the problem proposed in (1), where the under-
lying convex regression function, restricted to each of its coordinates, is assumed to be
monotone (i.e., increasing or decreasing). Estimation of such functions have a wide
range of applications, especially in demand and production frontiers in economics;
see e.g., Varian (1982), Varian (1984), Matzkin (1994), Yatchew (1998), Kuosmanen
(2008) and the references therein.

To fix ideas, let us assume that the function to be estimated is known to be convex
and non-decreasing coordinate-wise and we have data {(X;,Y;) : ¢ =1,...,n}. This

leads to the following infinite dimensional optimization problem:
inimize » (Y; —¢(X;)) 39
minimiz ZZI( (X)) (39)

where the minimization is carried over all convex functions ¢ that are non-decreasing
in each of its coordinates, i.e., Vy1(x) > 0 for all x and for all £ = 1,...,d (here
Vi (x) denotes the k’'th coordinate of a subgradient of ¢ at x). Not surprisingly, this
seemingly infinite dimensional optimization problem can also be cast as the following
(finite dimensional) QP:

1
minimize §||Y — 0|3

1S n»
s.t. Gj—i—(AU,f])SH“ i:l,...,n,j:17...,n, (4())
fji ZO, jzl,...,n, izl,...,d,
where the notations used above are the same as in Problem (2) with £;;,i =1,...,d,

being the coordinates of the subgradient §;. Note that the constraints ;; > 0, for
7 =1,...,n, represent that the i’th coordinate of the subgradients of the function

evaluated at the data points X;’s are non-negative. This is equivalent to the function
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restricted to the 2'th coordinate being non-decreasing. The above formulation resem-
bles Problem (2) with the exception of the additional nd constraints £; > 0 for all
1,7.

To see why Problems (40) and (39) are equivalent, observe that any solution
{&}n, and 0" of Problem (40) can be extended to a convex function on R¢ by the
rule (3). Note that c;ASn thus defined is convex in R¢. Any subgradient of the function
én when restricted to the k’th coordinate is non-negative and hence the function &n
is non-decreasing in each coordinate. Furthermore, this function has the same loss
function as the optimal objective value of Problem (40). Thus solving Problem (40)

is equivalent to solving Problem (39).
We use an ADMM type algorithm to solve (40) in a similar manner as (4), by
considering the following equivalent representation for (40):
D 1 9
pimipize 1Y~ 0
st my =05+ (A, &) — 0 (41)
n; <0;i=1,...,n; 7=1,...,n,
;>0 7=1,...,n;1=1,...,d,

where m = ((1;;)) € R™" is a matrix with (¢, 7)'th entry 7;;. We then consider the
augmented Lagrangian corresponding to the above formulation, similar to (5), and
employ a multiple block version of ADMM along the lines of Algorithm 1. The main
difference with Algorithm 1 is the update (6) — we now need to consider the following

constrained QP:

Step 1. Update the subgradients (&;,...,&,):

€MV gy e argmin L,((€y, ..., €,;0%n®) 0P (42)
51 ..... gn:gjizo,w,j

The above problem is a QP in nd variables with nd constraints. Note that the
optimization problem is separable in the variables £;’s, for j = 1,...,n. Thus solving

Problem (42) is equivalent to solving for each j the following non-negative LS problem:

L . ~ (1
minimize sz Z AiinTj £ —2 Z <V¢j + i — (05 — 91)> Aij,§;
& i=1 im1 \F (43)

st. &p>0, k=1,....d

Unlike Problem (6), Problem (43) does not admit a closed form solution. However,
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Problem (43) is a QP with d variables and since d is typically small, solving it is quite
cheap. Problem (43) can be solved by using an off-the-shelf interior point method for
each 7. We however use our own implementation of one-at-a-time coordinate descent

for the above optimization problem. The procedure is described in Section A.3.

Remark 5. Note that the framework described above can easily accommodate other
variants of (40). For example, if the convex function restricted to each of the coordi-
nate directions is assumed to be non-increasing then one needs to use the constraints
&j <0 foralli,j — which can be addressed by using a minor variant of Problem (43).
Simalarly, it is also possible to accommodate the case where the function is assumed

to be non-decreasing in some of the coordinates and non-increasing in some others.

The following lemma (proved in Section A.4) shows that our smoothing operation

does not change the sign of the coordinate-wise subgradients of the function.

Lemma 4. Let (E(X; T) be the smoothed estimator obtained via the scheme in Sec-
tion 3.2 for the estimator (23), with éz,éz 's obtained as solutions to Problem (40).
Then ngz;(x; T) >0, for k =1,...,d, i.e., the smooth estimator is also coordinate-

wise 1MCreasing.

6 Numerical Experiments

Description of datasets

In all the synthetic examples below, we generate n samples as y; = p;+¢€;,1 = 1,...,n,
where 11; := ¢(X;) is the value of a function i evaluated at the i’th datapoint X; € R¢.
The errors ¢;’s are assumed to be i.i.d. N(0,02), for i = 1,...,n. We define the
Signal to Noise Ratio (SNR) as SNR = Var(u)/Var(e). The different examples that

are studied are given below.

Example 1: Here, we took n = 500,d = 2 and the covariates were generated from
a random Uniform ensemble with mean zero. We took ¢(z) = ||| and the value of
0? was adjusted so that SNR = 3. Both the features and the response were mean-

centered and standardized to have unit || - ||o-norm before being fed into the solvers.

Example 2: This is similar to Example 1 with a larger problem size: n = 1000, d =
10.

Example 3: This is a real dataset with n = 473 and d = 4. The dataset, which
appears in the paper Wang and Wang (2013), was downloaded from the link http://
www.nber.org/data/nbprod2005.html. Here, we took the response as the total value
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Example 1 (n=500,d=2) Example 2 (n=1000,d=10) Example 6 (n=3449,d=4)
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Figure 3: The evolution of Algorithm 1 with time, for three different examples: the right
panel is a real-data example, the remaining are synthetic. The top panel shows the primal
feasibility convergence with time and bottom panel shows the evolution of the || - ||2-norm
of the gradient with respect to 8. Three different p values, denoted by ‘rhol’, ‘rho2’; ‘rho3’,
were taken to be 0.1/n,1/n,10/n respectively. Note that all the algorithms were allowed
to run for a long time and hence the solutions obtained have high accuracy ~ 1075. The
figures show that lower accuracy solutions are obtained faster, see also, Table 1.

of shipment. The four independent variables were: total real capital stock, production
worker hours, number of non-production workers and number of production worker
hours. Based on exploratory data-analysis, we took a log-transform of each of the
covariates. We mean-centered and scaled each of the covariates and the response, so

that they have unit || - ||2-norm.

Example 4: In this example, n = 558 and d = 3. This dataset was taken from
the link http://www.econ.kuleuven.ac.be/GME (see Verbeck (2008)) and contains
production data for 569 Belgian firms, from the year 1996. The response was taken
as the negative logarithm of the value added by a worker. The predictor variables
were: amount of capital (in terms of total fixed assets at the end of 1995), labour and
wages®. As in the other cases, both the features and response were mean-centered

and standardized to have unit || - ||o-norm.

Example 5: In this synthetic example, we took n = 1000 and d = 5, with SNR=3.

2Upon exploratory analysis, we found some possible outliers in the covariate-space, which were
discarded via some simple pre-processing method.
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Example 2 (n = 1000, d = 10) Example 3 (n =473,d = 4)

Primal Feas Gradient Algorithm 2 Algorithm 1 | | Primal Feas Gradient Algorithm 2 Algorithm 1
Error Error  Time (secs) Time (secs) Error Error  Time (secs) Time (secs)
1e-03 Le-02 2.043 2.240 1e-03 Le-02 0.523 0.535
Le-03 1e-03 15.444 20.224 le-03 1e-03 3.413 3.537
1e-03 le-04 28.546 40.457 1e-03 le-04 17.034 17.290
le-04 1le-02 14.146 14.373 le-04 le-02 1.870 1.935
le-04 le-03 15.444 20.224 le-04 le-03 3413 3.537
le-04 le-04 28.546 40.457 le-04 le-04 17.034 17.290

Example 4 (n = 558,d = 3) Example 5 (n = 1000,d = 5)

Primal Feas Gradient Algorithm 2 Algorithm 1 | | Primal Feas Gradient ~Algorithm 2 Algorithm 1
Error Error  Time (secs) Time (secs) Error Error  Time (secs) Time (secs)
le-03 le-02 0.988 0.976 le-03 le-02 2474 2.486
1e-03 le-03 16.116 16.074 1e-03 le-03 62.338 62.493
le-03 le-04 143.181 103.888 le-03 le-04 1226.499 516.286
le-04 le-02 7.295 7.282 le-04 le-02 39.143 39.951
le-04 1e-03 16.116 16.074 le-04 1e-03 62.338 62.493
le-04 le-04 156.612 103.888 le-04 le-04 1226.499 516.286

Example 6 (n = 3449,d = 4) Example 7 (n = 1500,d = 4)

Primal Feas Gradient Algorithm 2 Algorithm 1 | | Primal Feas Gradient Algorithm 2 Algorithm 1
Error Error  Time (secs) Time (secs) Error Error  Time (secs) Time (secs)
1e-03 le-02 73.743 75.738 1e-03 le-02 12.171 12.304
1e-03 1e-03 448.043 459.826 1e-03 1e-03 66.701 67.982
le-03 le-04 3445.433 2392.528 le-03 le-04 324.665 330.774
le-04 le-02 118.601 122.275 le-04 le-02 28.217 28.691
le-04 1e-03 448.043 459.826 le-04 1e-03 66.701 67.982
le-04 le-04 3445.433 2392.528 le-04 le-04 324.665 330.774

Table 1: Table showing the times (in secs) taken for Algorithm 1 and Algorithm 2 to
reach solutions of different accuracy levels of the primal feasibility gap and the norm of the
gradient, as defined in the text. For Algorithm 1 we took the choice p = 1/n. Observe that
the performances of Algorithms 1 and 2 are quite similar in most instances.

Here, the underlying convex function was taken as: ¢(x) = (5z1 + 0.5z + 23)* +
V23 + 2%, where, x; refers to the i’th feature, with i =1,..., d.

Example 6: This is a real-data example with n = 3449 and d = 4. This dataset,
taken from the paper Mekaroonreung and Johnson (2012), was downloaded from http:
//ampd.epa.gov/ampd/. The response was the amount of heat input with the co-
variates corresponding to the amounts of emissions of S02, NOx, C02 (in tons) and
the NOX rate. There were some samples with missing values that were removed from
the dataset. We took a logarithmic transformation of the covariates and observed
(based on exploratory analysis) that the relationship between the response and the

individual covariates seemed to be modeled well via a convex fit. Both the response
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and features were centered and scaled as in the aforementioned instances.

Example 7: This example is a smaller subset of the dataset in Example 6. Here we
took the first 1500 samples giving us: n = 1500, d = 5.

Software Specifications: All our computations were performed in MATLAB, (R2014a
(8.3.0.532) 64-bit (maci64)) which was interfaced with some of the matrix operations
coded in C on a OS X 10.8.5 (12F45) operating system with a 3.4 GHz Intel Core 15
processor with 32 GB Ram, processor speed 1600 MHz and DDR3 SDRAM.

For all the examples above, we applied Algorithm 1. We observed that the algo-
rithm converged in all the instances, which was verified by checking that the conditions
of optimality (see (15)) were satisfied (approximately) up to algorithmic precision.
The convergence speed was, however, found to be sensitive to the choice of p. We
observed that after the data was standardized, i.e., features and responses set to have
unit || - ||2 norm, a value of p of the order of 1/n performed quite well. Figure 3 shows
some of the results for different values of p € {0.1/n,1/n,10/n}; additional examples

are presented in the appendix, see Figure 4 in Section B.

Primal feasibility is measured by ||T'||r/n, where, I' = ((vi;)) with ~v;; = nj; —
(07 + (A, &) —07), as defined in (15a) and ||T'||» denotes the Frobenius norm of
['. The gradient condition with respect to @ is measured by the || - ||o-norm of the
vector (0" —Y)—D "vec(v*), as defined in (15c). These are the two metrics that have
been considered in Figure 3 and Figure 4. Figure 3 shows that there is no clear best
choice of p, but there is however, one systematic pattern: a small choice of p leads to
faster changes in the objective value across iterations, but the primal feasibility goes
to zero at a slower rate. Similarly, for a larger value of p we observe that the primal
feasibility is (approximately) satisfied early on in the iterations, but it takes longer
for the objective values to stabilize. As mentioned before, we typically found a choice

of p of the order of 1/n to work quite well in our experiments.

In addition to Algorithm 1, we have also considered Algorithm 2 which is the-
oretically guaranteed to converge. Numerical results showing the performance of
Algorithm 1 versus Algorithm 2 is presented in Table 1. We have observed in our
experiments that Algorithm 2 has similar empirical behavior as Algorithm 1. In the
implementation of Algorithm 2, we took a dynamically decreasing tolerance in pri-
mal feasibility and the gradient condition, following Aybat and Iyengar (2012). For
Algorithm 2, the first 500 (outer) iterations (as many dual variable updates) were
taken to be identical to Algorithm 1; after which each inner loop was executed till a

tolerance of d; and this tolerance was made tighter via the schedule 9; < 79;, with

27



the starting value of §; = 107!, Whenever the dual variable was updated, the value
of p was increased by a factor 1/7. We took 7 = 0.9954 and the algorithm was run
for a maximum of 3000 outer iterations with an upper cap of 50 iterations for every
inner loop. We find Algorithm 1 to be more appealing than Algorithm 2 because of
its simplicity and its stable behavior for large values of n. However, if one indeed
seeks a method with established convergence properties, we recommend the use of

Algorithm 2. We consider these two methods to be close cousins of one another.

A Appendix

A.1 Proof of Lemma 3

Proof. The proof follows by observing that qu(x; T) = Y ', W;a;, where w is a

maximizer of the optimization Problem (26). Now, observe that

Vo)l = || D dbsai| < abillalla <L, (44)
i=1 2 =l i=1

where, above, we used the triangle inequality and the fact that ||a;||s < L for all i.
The latter follows from the simple observation that each a; = €, and ||€,]|2 < L (since
£,’s are solutions to Problem (33)). We thus have, from (44), that ||V (x; 7|y <
S L = L. O

A.2 Algorithm for Solving SOCP (38)

Problem (38) can be rewritten as the following optimization problem:

1
winimize || A;6, ~ byl st g1 < 17 (45)
i
where A 1= [Ay;; Agj;...; A, ] is formed by stacking the vectors A;;’s (for fixed j)
into a matrix of size n x d; b, is obtained by vectorizing 7;;,7 = 1,...,n. Observe
that the optimization Problem (45) can be equivalently written in the Lagrangian
version:

o 1
wingnize (31.4,6, - b3 + X 12 (a6

J
with Lagrangian parameter \;. In fact, there is a choice of A’ for which Problems (46)

and (45) are equivalent. We describe how to find A} from L by using a root-finding
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algorithm. Note that the solution to (46) is given by

£:(0\) = (AJA; + X.1) " Al by, (47)
We will now simplify the above expression further. Consider the singular value de-
composition of A; = U]-I‘]-VjT where U; and V; are n x d and d x d orthogonal matrices
respectively and I'; is a d x d diagonal matrix with diagonal entries v;,7 = 1,...,d.
Then
T -1 T
(Aj A+ /\;I) = VT,V (48)

where I, = diag((7§ + A;) ..., (v + ;) 7"). We have

&) = VIV OVil;U, by = VT (\)U by, (49)
where T/()\;) = IT)I'; = diag(71/(7F + Aj), .-, (7a/(73 + X)), and we used the fact
that V'V, = Iy, the d x d identity matrix. Note that [|£;();)]3 is given by

1€\ 12 = b UL (AU b, 0

where, T'/'(A;) = diag(vi/(7F + Aj)%, -+ -,73/ (73 + Aj)?). We need to find a value of
Aj for which [|€5(A;)[l2 = L, if such a value exists. Of course, the equality will not
hold if L > ||€7();)]]2 for all values of A. Note that the largest value of [|€();)]]2 is
when \; = 0, which corresponds to the unconstrained least squares solution [|£7(0)]|2.
Thus given a value of L we first need to check if L is larger than [|£7(0)||2. If yes, then
the solution to Problem (45) will be £7(0). Otherwise, there exists a value of \; >0
for which the equality [|£}();)|l2 = L holds — this corresponds to the case where the
Lipschitz regularization is effective. For finding the value of A; > 0 that corresponds
to the given L, we employ a standard Newton-Raphson type root-finding method (see
e.g., Nesterov (2004)) to search for \; that satisfies the equality bjTUjI‘;”()\j)Uijj =
L?, up to numerical precision. Once the A¥ that satisfies ||} (\})[l2 = L is obtained,

the corresponding £7(A}) gives us a solution to Problem (38).

Note that the main computational cost in this problem lies in doing an SVD of
A; with cost O(nd?) (assuming n > d). However, this can be pre-computed before
running the ADMM algorithm. The b;’s need to be updated after every ADMM
iteration, but once the vectors U;'b;’s are computed with cost O(nd), the different
Newton-Raphson iterations cost O(d) for computing the function values and gradi-
ents. Thus, the overall cost of the algorithm described above is O(nd), in addition
to the SVD computations which can be done off-line. Note that there are n different

vectors ;s that need to be updated leading to an overall cost of O(n?d) for the
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update in all the &,’s.

A.3 A coordinate descent algorithm for Problem (43)

Problem (43) is a special instance of the following non-negative LS problem:

miilégzize u' Qu+ (a,u) st u>0, (51)
which involves the minimization of a convex quadratic () = 0 function with separable
constraints. Due to the smoothness of the convex objective function and separability
of the constraints, one-at-a-time coordinate descent can be employed for the problem;
see e.g., Luo and Tseng (1992), Friedman et al. (2007).

Algorithm 2 Coordinate descent for Problem (43)

1. Start with u' > 0. For m > 1 do the following until |[u™"! —u™||; < TOL|u™||
for some predefined tolerance “TOL”.

2. Assign u < u™ and for k € {1,...,d} do the following
(a) Fix u, for £ # k and update

. _ ag,
U, = arg min (qkku2 + aku) = max {——, 0} ,
u>0

where a; = 2 Z#k qreve + ay and Q = ((gij))-

m+1

3. Assign u < u and go to Step 2.

Note that the vector a = (ay,...,aq) is defined as a := Qu + a and once the k’th
coordinate wuy, is updated by d; (say), then a «— a+ @[, k|0, where, Q[, k] denotes the
k’th column of the matrix ) and the whole update in a can be performed in O(d)
operations. Thus for one full cycle over the d coordinates the total cost is O(d?). Note
that in the process of updating the coordinates u; many of the coordinates that were
at zero stay at zero, thus no updating is required for that coordinate — this leads to
sparse updating rules in u; and often leads to significantly improved computational
performance. More precisely, if out of the d coordinates a few of the coordinates need
to be updated the total cost of performing Step 2 reduces to O(d). The interested
reader can also see Friedman et al. (2007) for related computational tricks employed

in ¢;-regularized problems.

30



Note that Step 1 of the algorithm requires a starting vector u'. Since the above
algorithm is used as a part of the ADMM algorithm, the current solution of Prob-
lem (43) can be used as a warm-start for the above algorithm. This often leads to

performing fewer cycles across the d coordinates.

A.4 Proof of Lemma 4

Proof. The proof follows by observing that V&(x; T) = Y ', W;a;, where W is a
maximizer of the optimization Problem (26). Since w € A,,, every coordinate of
Vé(x; 7) is a convex combination of the coordinates of ay, . .., a,,. Note that by (24),
for every i = 1,...,m, we have a; = £, > 0 (since it is a solution to Problem (40)).
Thus, for every coordinate k, we have qug(x; 7) > 0. This completes the proof of

the lemma. N

A.5 Proof of Theorem 2

Proof. The theorem follows from known metric entropy results on the class of uni-
formly bounded convex functions that are uniformly Lipschitz in conjunction with
known results on the rates of convergence of LSEs; see e.g., Van de Geer (2000,
Theorem 9.1). We give the details below.

The notion of covering numbers will be useful. For ¢ > 0 and a subset S of
functions, the e-covering number of S under the metric ¢, denoted by N(S,¢€;¢), is
defined as the smallest number of closed balls of radius e (under the metric ¢) whose

union contains S.

Fix any B > 0 and L > Ly. We define the class of uniformly bounded convex

functions that are uniformly Lipschitz as

Crp:={YeCr:|v]x < B}, (52)

where |||z := sup,cx [¥(x)|. Using Theorem 3.2 of Guntuboyina and Sen (2013)
(also see Bronshtein (1976)) we know that

B +dL\?
- ) | (53)

log N (Crp,€;ls) < (
€

for all 0 < € < ¢y(B + dL), where ¢y > 0 is a fixed constant and £ is the uniform

metric. Let g%n,L, p denote a LSE of ¢ in the class C; 5. Routine calculations and
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Theorem 9.1 of Van de Geer (2000) now yields
1~ -
~ > (6nL5(X3) = $(X1))* = Op(ra), (54)
i=1

where 7, is defined as in (35).
Define the event A, := {max,_i __, |¢n(X;)| < By}. Next we show that there

exists By > 0 such that
P(A,) — 1, as n — 00. (55)

From the characterization of the projection on the closed convex set Cr, we know that

n

Z(Yi — Gn, (X)) (VX)) — Snr(X4)) <0,

i=1
for all v € Cp. Letting e = 1 denote the constant 1 convex function, note that for
any ¢ € R, ce € Cy,.. Hence simple algebra yields 327 (V; — ¢,..(X:))e(X;) = 0, i.e.,
S Y =3 60(X,). Now, letting ¥ = S0 ¥;/n, for any x € X,

(G (X)] < bnr(x) = Y|+ Y] dnt ——Z%L )| +1Y]

IA

an L( )

+1Y|

< EZ||X_XjI|2+||¢||X+|€|
=1
< VdL+k+1= By,

a.s. for large enough n, where we have used the fact that ||x — X,z < Vd, ||¢]|x < &
for some x > 0, and that € := ), ¢;/n — 0 a.s. As Cp g, C Cp, we trivially have

D (np(Xi) = Yi)* <3 (Do (Xi) = V)"

If A,, happens, an,L € Cr.B,, and thus,

n

Z(%L 2> Z G153, (X)) — Yi)2.

i=1

From the last two inequalities and the uniqueness of the projections it follows that if
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A, occurs, then ¢, = an,L,Bo at the data points. Now using (55), (35) immediately
follows from (54). O

B Additional Computational Results

Example 3 Example 4 Example 5 Example 11

o tho=rhot o tho = rhot o tho =rhot o tho = rhot
o rho=rho2 o rho =rho2 . o rho =rho2 o rho =rho2
tho = rho3 : tho = rho3 tho =rho3 . tho = rho3

s
i

log,(Gradient)
-4
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Figure 4: Figure showing the convergence characteristics of Algorithm 1 for different
examples, as described in the text. The legends have the same meanings as in Figure 3.
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