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Abstract In this paper, a new computational framework is

presented for the analysis of nonlinear beam finite elements

subjected to large strains. Specifically, the methodology

recently introduced in Bonet et al. (Comput Methods Appl

Mech Eng 283:1061–1094, 2015) in the context of three

dimensional polyconvex elasticity is extended to the geo-

metrically exact beam model of Simo (Comput Methods

Appl Mech Eng 49:55–70, 1985), the starting point of so

many other finite element beam type formulations. This new

variational framework can be viewed as a continuum degen-

erate formulation which, moreover, is enhanced by three key

novelties. First, in order to facilitate the implementation of

the sophisticated polyconvex constitutive laws particularly

associated with beams undergoing large strains, a novel ten-

sor cross product algebra by Bonet et al. (Comput Methods

Appl Mech Eng 283:1061–1094, 2015) is adopted, leading

to an elegant and physically meaningful representation of

an otherwise complex computational framework. Second,

the paper shows how the novel algebra facilitates the re-

expression of any invariant of the deformation gradient, its

cofactor and its determinant in terms of the classical beam

strain measures. The latter being very useful whenever a

classical beam implementation is preferred. This is partic-

ularised for the case of a Mooney–Rivlin model although

the technique can be straightforwardly generalised to other

more complex isotropic and anisotropic polyconvex mod-

els. Third, the connection between the two most accepted
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restrictions for the definition of constitutive models in three

dimensional elasticity and beams is shown, bridging the gap

between the continuum and its degenerate beam description.

This is carried out via a novel insightful representation of the

tangent operator.

Keywords Polyconvexity · Geometrically exact beam

theory · Continuum degenerate beam formulation · Finite

elements

1 Introduction

Most classical beam theories [1–8] are based on the definition

of so called beam strain measures, namely the axial-shear

and torsional–bending strain vectors. Work conjugates to

those variables (typically denoted as resultant contact forces

and resultant contact couples [9]) can be derived from a

hyperelastic energy functional which is defined in terms of

the beam strain measures [1–8]. Other authors prefer an

alternative continuum degenerate approach [10,11] where,

typically, the Lagrangian strain tensor is retained as the main

strain measure and particularised for the kinematic descrip-

tion of the beam. In these latter formulations, the second

Piola–Kirchhoff stress tensor emerges as the work conjugate

variable and can be derived from a hyperelastic energy func-

tional expressed as a function of the Lagrangian strain tensor.

The present manuscript aims to extend the variational and

computational framework recently introduced in Bonet et

al. [12] in the context of three dimensional elasticity to the

geometrically exact Simo [13] beam model, the starting point

of so many other finite element beam type formulations [1–

7]. The variational approach proposed herein can therefore

be viewed as a continuum degenerate formulation emerging

from that presented in [12].
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The formulation by Bonet et al. [12] has been particu-

larly formulated for use in large strain scenarios [14,15],

where appropriate convexity criteria [16–18] are necessary

to ensure the well posedness of the problem. The most well-

established of these criteria is the concept of polyconvexity

[19–25] whereby the strain energy is expressed as a convex

multi-value function of an extended kinematic set defined by

the deformation gradient (fibre map), its determinant (vol-

ume map) and its cofactor (area map).

Numerous authors have previously incorporated the con-

cept of polyconvexity into computational models for both

isotropic and non-isotropic materials for a variety of appli-

cations [26–31]. However, the classical approach consists

of ensuring that the strain energy satisfies the polyconvex-

ity condition first but then proceeds towards a computational

solution by re-expressing the energy in terms of the defor-

mation gradient alone. Pioneered in [29] and [12,32,33], an

alternative framework is proposed based on maintaining as

independent variables the extended kinematic set on which

the strain energy is expressed as a convex function, namely,

the deformation gradient, its cofactor and its determinant.

In this paper, the latter approach is particularised for a

degenerate beam description. The paper also presents the

work conjugates of the extended kinematic set in the con-

text of beam theory as well as novel expressions for the

tangent operators. The present formulation utilises a novel

algebra based on a tensor cross product operation pioneered

in [34] and reintroduced and exploited for the first time in

[12,32,33] in the context of solid mechanics. The new tensor

cross product operation is particularly helpful when deal-

ing with polyconvex constitutive laws, where invariants of

the cofactor and the determinant of the deformation feature

heavily in the representation of the strain energy functional.

In addition, the paper shows how the novel algebra facili-

tates the re-expression of any invariant of the deformation

gradient, its cofactor and its determinant in terms of the

classical beam strain measures. The latter being very use-

ful whenever a classical beam implementation is preferred.

As an example, and to the best of the authors knowledge, this

is the first time that the strain energy function for a polycon-

vex Mooney–Rivlin (or Neo-Hookean) material is expressed

entirely in terms of the classical beam strain measures.

Convexity of a beam constitutive model with respect to the

classical beam strain measures is a well accepted condition

[35] that must be satisfied by admissible strain energy func-

tionals in the large strain regime. The present manuscript

shows the relationship between a polyconvex constitutive

model defined in terms of the deformation gradient, the cofac-

tor and the determinant of the mapping in the continuum and

its degenerate beam counterpart defined in terms of the beam

strain measures. Hence, the connection between the two most

accepted restrictions for the definition of constitutive models

in three dimensional elasticity and beams is shown, bridg-

ing the gap between the continuum and its degenerate beam

description.

The paper is organised as follows. Section 2 briefly revises

the computational framework developed in [12] for large

strain scenarios and especially tailored for polyconvex con-

stitutive models. Section 3 presents the new degenerate beam

formulation which extends the variational framework pre-

sented in [12] to the case of geometrically exact beam theory

where the deformation gradient, its cofactor and its deter-

minant are retained as the main strain variables. Section 4

presents the classical framework for the geometrically exact

beam theory where the physically meaningful axial-shear and

torsional–bending strain vectors are used as the main strain

measures. Additionally, a link is established between the con-

vexity criteria required for the constitutive model in both

continuum and beam descriptions. Section 5 briefly presents

the variational principle associated with the proposed con-

tinuum degenerate formulation. Section 6 presents the Finite

Element discretisation, where the use of the novel tensor

cross product algebra leads to alternative tangent operator

representations. Section 7 includes representative numerical

examples in large strain scenarios, including a comparison

against a recently published mixed continuum based for-

mulation [12]. Finally, Sect. 8 provides some concluding

remarks and a summary of the key contributions of this

paper.

2 Continuum mechanics

2.1 Continuum kinematics

Consider the three dimensional deformation of an elastic

body from its initial configuration occupying a volume V ,

of boundary ∂V , into a final configuration at volume v, of

boundary ∂v, where x represents the current position of a

particle originally at X (see Fig. 1). Virtual and incremental

variations of x will be denoted by δu and u, respectively. It

will be assumed that x, δu and u satisfy appropriate essential

(displacement) boundary conditions on ∂u V . Additionally,

the body is under the action of certain body forces per unit

undeformed volume f 0 and traction per unit undeformed

area t0 on ∂t V , where ∂t V ∪∂u V = ∂V and ∂t V ∩∂u V = ∅.

The deformation gradient tensor F (or fibre map) and its

determinant J (or volume map) are defined as [16]

F =
∂x

∂ X
= ∇0x; J = detF =

dv

dV
, (1)

where ∇0 denotes the gradient with respect to material coor-

dinates and dv and dV represent elemental volumes in the

initial and final configurations, respectively. The elemental

area vector is mapped from initial d A to final da configura-

tions by means of the cofactor tensor H (or area map), which
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Fig. 1 Deformation mapping of a continuum and associated kinemat-

ics variables: F, H , J

is related to the deformation gradient F and its determinant

J via the Nanson’s rule [16] as

da = Hd A; H = J F−T . (2)

In references [12,32], the authors employ an alternative def-

inition of the cofactor H , namely H = 1
2

F × F, which

simplifies considerably the algebra [33]. The new definition

of the area map H is based on a tensor cross product × intro-

duced in [34] and applied within the context of nonlinear

elasticity for the first time in [12]. The properties of this ten-

sor cross product developed in [12] have been included in

Appendix 1 for completeness.

Crucially, the first and second directional derivatives of H

with respect to geometry changes are now easily evaluated

as1

D H [δu] = F × D F [δu] = F × ∇0δu;

D2 H [δu; u] = D F [u] × D F [δu] = ∇0δu × ∇0u.
(3)

Similarly, the directional derivatives of the volume map J

are easily expressed with the help of (139) and (142) as

D J [δu] = H : ∇0δu;

D2 J [δu; u] = F : (∇0δu × ∇0u) .
(4)

2.2 Polyconvex elasticity

Polyconvexity is now well accepted as a fundamental math-

ematical requirement that must be satisfied by admissible

strain energy functionals used to describe elastic materials

in the large strain regime [18–22,24,25,36,37]. The strain

1 The first and second directional derivatives of the deformation gradi-

ent tensor F are well known to be D F[δu] = ∇0δu and D2 F[δu; u] =

0 [16].

energy � per unit undeformed volume must be a function

of the deformation gradient ∇0x via a convex multi-valued

function W as

� (∇0x) = W (F, H, J ) . (5)

Crucially, frame invariance (objectivity) implies that W must

be independent of the rotational components of F and H ,

which is typically achieved by ensuring that W depends on

F and H via the symmetric tensors FT F and HT H , respec-

tively. The three strain measures F, H , and J have work

conjugate stresses �F , �H , and �J defined by [12,32]

�F (F, H, J ) =
∂W

∂ F
;

�H (F, H, J ) =
∂W

∂ H
;

�J (F, H, J ) =
∂W

∂ J
.

(6)

It is then possible [12,32,33] to express the first Piola–

Kirchhoff stres tensor P in terms of the extended strain

measures {F, H, J } and conjugate stresses {�F,�H , �J }

as

P = �F + �H × F + �J H . (7)

A tangent elasticity operator D2� [δu; u] is usually needed

[16] in order to ensure quadratic convergence of a Newton–

Raphson type of solution process, derived in [12,32,33] as

follows

D2� [δu; u] =
[

(∇0δu) : (∇0δu × F) : (∇0δu : H)
]

[HW ]

⎡

⎣

: (∇0u)

: (∇0u × F)

(∇0u : H)

⎤

⎦

+ (�H + �J F) : (∇0δu × ∇0u) , (8)

where the Hessian operator [HW ] denotes the symmetric pos-

itive semi-definite operator containing the second derivatives

of W (F, H, J ) as

[HW ] =

⎡

⎢
⎢
⎢
⎢
⎣

WF F WF H WF J

WH F WH H WH J

WJ F WJ H WJ J

⎤

⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎣

∂2W
∂ F∂ F

∂2W
∂ F∂ H

∂2W
∂ F∂ J

∂2W
∂ H∂ F

∂2W
∂ H∂ H

∂2W
∂ H∂ J

∂2W
∂ J∂ F

∂2W
∂ J∂ H

∂2W
∂ J∂ J

⎤

⎥
⎥
⎥
⎥
⎥
⎦

.

(9)

Note that the first term on the right hand side of (8)

is necessarily positive for δu = u and, therefore, buck-

ling can only be induced by the second “initial stress” term
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(�H + �J F) : (∇0δu × ∇0u). Finally, it is also possible to

re-write the tangent elasticity operator (8) as

D2�[δu; u] = ∇0δu :
[

H
eq

W

]

: ∇0u

+ (�H + �J F) : (∇0δu × ∇0u) ,
(10)

where use of the tensor cross product operations (133) and

(134) yields

[

H
eq

W

]

= WF F + F × WH H × F

+ WJ J H ⊗ H + WF H × F + F × WH F

+ WF J ⊗ H + H ⊗ WJ F + (F × WH J ) ⊗ H

+ H ⊗ (WJ H × F) .

(11)

2.2.1 A polyconvex constitutive model: Mooney–Rivlin

material

The well known Mooney–Rivlin constitutive model is poly-

convex. An elegant representation of its strain energy func-

tional in terms of the extended kinematic set {F, H, J }

[12,32,33] is

WM R (F, H, J ) = αF : F + β H : H + f (J ), (12)

where2

f (J ) = −2αlnJ − 4β J +
λ

2
(J − 1)2 − 3(α + β), (13)

with α and β suitable non-negative material parameters and

f (J ) a convex function of J (refer to remark 1). The conju-

gate stresses {�F,�H , �J } (6) for this model are obtained

as

�F = 2αF; �H = 2β H; �J = −
2α

J
− 4β + λ (J − 1)

(14)

and the first Piola–Kirchhoff (7) results in

P = 2αF + 2β H × F −

(
2α

J
+ 4β − λ (J − 1)

)

H .

(15)

The Hessian operator [HW ] (9) adopts the following simple

expression

[

HW

]

=

⎡

⎣

2αI 0 0

0 2βI 0

0 0 2α
J 2 + λ

⎤

⎦ , (16)

2 As a particular degenerate case, the Neo-Hookean constitutive model

is obtained for β = 0.

where Ii I j J = δi jδI J and
[

H
eq
W

]

(11) is expressed as

[

H
eq
W

]

=2αI + 2β F × I × F +

(
2α

J 2
+ λ

)

H ⊗ H .

(17)

The clear benefits of employing the new tensor cross product

algebra in the context of polyconvex elasticity have been

presented in [12,32] and thoroughly detailed in [33].

Remark 1 An alternative function f (J ) to that used in (13)

is

f (J ) = −(2α + 4β) ln J +
λ

2
(J − 1)2. (18)

Following [12], the material parameters α, β and λ used in

(12) and (18) can be related to the classical Lamé parameters

μlin and λlin in linearised elasticity (in the reference config-

uration) through

2α + 2β = μlin; λ + 4β = λlin. (19)

The Poisson ratio ν in the reference configuration is related

to material parameters λlin and μlin as

ν =
λlin

2(λlin + μlin)
. (20)

Substitution of Eq. (19) into (20) leads to the following

expression for the Poisson ratio in terms of the material para-

meters α, β and λ

ν =
λ + 4β

2(λ + 6β + 2α)
. (21)

Classical beam theories do not consider dilatations or con-

tractions of the beam section. Hence, a Poisson ratio of value

ν = 0 is consistent with such kinematical description of the

beam. However, from Eq. (21), it can be inferred that it is not

possible to find any combination of non-negative (and hence,

satisfying polyconvexity) values for the material parameters

α, β and λ compatible with ν = 0. On the contrary, if the

volumetric function f (J ) in (13) is used instead, the relation

between the material parameters α, β and λ relate to μlin and

λlin as

2α + 2β = μlin; λ = λlin, (22a)

which leads to an expression for the Poison ratio νlin

νlin =
λ

2(λ + 2α + 2β)
. (23)
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The definition of f (J ) in (13) allows to model the particular

case νlin = 0 without violating polyconvexity (non-negative

values for α and β with λ = 0).

2.2.2 A non-polyconvex constitutive model: Saint

Venant–Kirchhoff material

A popular constitutive model for beams is that of a Saint

Venant–Kirchhoff material [1,3,8,10,38], where the strain

energy functional per unit undeformed volume � is defined

in terms of the Green–Lagrange strain tensor E as

�SV K (∇0x) =
λ

2
(trE)2 + μtr (E E) ;

E =
1

2
(C − I) ; C = FT F, (24)

where C is the right Cauchy–Green deformation tensor, λ

and μ the Lamé coefficients and I the identity tensor. Alter-

natively, �SV K can be expressed in terms of C as

�SV K (C) =
μ

4
(tr(CC) − 2tr(C) + 3) +

λ

8
(tr(C) − 3)2 .

(25)

As shown in [30], it is possible to re-express the term tr (CC)

in (25) as

tr (CC) = (F : F)2 − 2 (H : H) . (26)

Introduction of identity (26) into (25) enables to rewrite the

strain energy functional in terms of F and J as

WSV K (F, H) =
μ

4

(

(F : F)2 − 2 (F : F) − 2 (H : H) + 3
)

+
λ

8
((F : F) − 3)2 . (27)

The conjugate stresses {�F,�H , �J } (6) for this model are

obtained as

�F =

(

μ +
λ

2

)

(F : F)F −

(
3λ

2
+ μ

)

F;

�H = −μH; �J = 0 (28)

and the first Piola–Kirchhoff (7) results in

P =

(

μ +
λ

2

)

(F : F)F −

(
3λ

2
+ μ

)

F − μH × F.

(29)

The Hessian operator [HW ] (9) adopts the following simple

expression

[

HW

]

=

⎡

⎢
⎣

2
(

μ + λ
2

)

F ⊗ F −
(

λ
2
(3 − F : F) + μ(1 − F : F)

)

I 0 0

0 −μI 0

0 0 0

⎤

⎥
⎦.

(30)

Unfortunately this model is not polyconvex as can be

observed from the lack of positive (semi)-definiteness of the

Hessian operator in Eq. (30). Finally, the tensor
[

H
eq
W

]

(11)

is expressed as

[

H
eq
W

]

= 2

(

μ +
λ

2

)

F ⊗ F −

(
λ

2
(3 − F : F) + μ(1 − F : F)

)

I

− μF × I × F.

(31)

3 Continuum degenerate polyconvex beam

formulation

In this section, a continuum degenerate beam model is pre-

sented. Contrary to the work in [10,11], where the strain

energy functional is presented in terms of the Green–

Lagrange strain tensor, the formulation hereby presented

exploits the extended set of kinematic strain measures

{F, H, J } along with the computational framework outlined

in [12,32,33].

In addition, a co-rotational formulation in terms of an

extended alternative set of co-rotational kinematic entities is

also presented. This co-rotational approach will prove to be

a natural link between the continuum degenerate approach

and a more classical beam description where well-known

engineering strain measures feature as the main kinematic

entities.

3.1 Beam kinematics

Let us now consider that the elastic body introduced in the

previous section is a beam structural element. In particular,

it is assumed that the beam in the reference configuration has

a straight axis of length L which is completely characterised

by the position of a centre line X0(s), parametrised in terms

of s ∈ [0, L], and an orthonormal triad {D1, D2, D3} where

the vectors D1 and D2 lay parallel to the cross sectional

area A(s) of the beam (with boundary ∂ A(s)) and D3 is

aligned along the undeformed centre line, see Fig. 2. In the

following, summation over Greek indexes α ranges from 1 to

2 whereas summation over Latin indexes i ranges from 1 to

3 and Einstein’s convention is assumed for repeated indices

unless otherwise stated. The beam reference configuration is
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1x,1X

3x,3X

2x,2X

)t,X(φ=x

D1

D2 D3

d1

d2

d3

Fig. 2 Reference and current configuration of a beam

defined in terms of the convective coordinates {ηα, α = 1, 2}

[8] by

X
(

ηα, s
)

= X0 (s) + X̄; X̄ = ηα Dα. (32)

For the current configuration, an orthonormal triad

{d1(s), d2(s), d3(s)} can be introduced with d1(s) and d2(s)

laying on the cross sectional area a(s) (with boundary ∂a(s))

and with d3(s) = d1(s)×d2(s), see Fig. 2. Hence, the motion

of the beam can be defined as [8,39]

x(ηα, s) = x0 (s) + x̄(s); x̄(s) = ηαdα (s) , (33)

where the orthonormal triads defined above are related via a

rotation tensor R ∈ SO(3) defined as R = di ⊗ Di [1].

It is known that the rotation tensor R can be defined in

terms of the Rodrigues parametrisation of a rotation vector

θ [40], with associated skew symmetric second order tensor

θ̂ = I × θ ,3 as

R (θ) = I +
sin ||θ ||

||θ ||
(I × θ) +

1 − cos ||θ ||

||θ ||2
(I × θ) (I × θ) .

(34)

The deformation gradient tensor F (1) derived from the

mapping (33) is obtained as [8]

F = x′
0 ⊗ D3 + dα ⊗ Dα + ηαd ′

α ⊗ D3, (35)

where (•)′ := d(•)(s)
ds

. Above Eq. (35) in conjunction with

(34) leads to a description of the deformation gradient tensor

3 Use of the tensor cross product × between a second order tensor and

a vector has been made.

F in terms of the centre line x0 and the rotation vector θ , typ-

ically used in continuum degenerate descriptions [10,11] of

beam structural models. Notice that a computational frame-

work built upon the representation (35) of the deformation

gradient tensor is not restricted to beams with a straight axis

in the reference undeformed configuration.

It can be interesting to re-write F in a more meaningful

manner from the physical standpoint. With that in mind, fol-

lowing the algebraic manipulations in [8], the deformation

gradient tensor F (35) can be re-expressed as

F = R
(

Ŵ ⊗ D3 + K̂ X̄ ⊗ D3 + I
)

, (36)

where the beam strain measures Ŵ and K̂ are defined as

Ŵ = RT x′
0 − D3; K̂ = RT R′, (37)

with K̂ a skew-symmetric tensor that can be re-written in

terms of a vector K as K̂ = I × K .4 The beam strain measure

Ŵ is known as the axial-shear strain vector whilst K is known

as the torsional–bending strain vector. Thus, an alternative

representation of (36) expressed in terms of the beam strain

measures {Ŵ, K } is [8]

F = RŪ; Ū = B ⊗ D3 + I; B = Ŵ +
(

K × X̄
)

.

(38)

Above Eq. (38) is known as the right extended polar decom-

position of the deformation gradient F in terms of the beam

strain measures {Ŵ, K } as presented in [8]. Notice that whilst

R is a rotation tensor, the non-symmetric strain tensor Ū is

not a pure stretch tensor (as in the classical polar decompo-

sition theorem [16]). Note that Ū is only symmetric in the

case that B is colinear with D3, which only happens in the

absence of shear strain and torsion.

Formulae (38) for the representation of the deformation

gradient tensor F are very useful in the context of geometri-

cally exact beam models when the strain energy functional is

defined in terms of the classical beam strain measures {Ŵ, K }

[1,3,41]. Notice that a computational framework built upon

the representation (36) of the deformation gradient tensor

is restricted to beams with a straight axis in the reference

undeformed configuration. A more general expression for

this representation of the deformation gradient tensor can be

found in [1].

3.2 Linearisation of the beam kinematics

As stated above (33), the mapping of the beam is defined in

terms of the centre line x0 and the triad {di } (or the rota-

4 Use of the tensor cross product × between a second order tensor and

a vector has been made.
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tion vector θ ). Virtual or incremental variations of the centre

line x0 will be denoted by δu0 or u0, respectively. In addi-

tion, virtual or incremental variations of the rotation vector θ

will be denoted by δθ or �θ , respectively. All of these fields

must satisfy appropriate essential and natural boundary con-

ditions at s = 0 and/or s = L [42]. Thus, the virtual or

incremental variations of the mapping (33) are then defined

as

δu = δu0 + ηα Ddα[δθ ];

u = u0 + ηα Ddα[�θ].
(39)

The first and second directional derivatives of the triad with

respect to geometry changes are defined by5

Ddi [δθ] = δθ × di ;

D2di [δθ;�θ ] = δθ × (�θ × di ) .
(40)

Analogously, for the derivative of the triad with respect to

the beam axis, the first and second directional derivatives are

Dd ′
i [δθ] = δθ ′ × di + δθ × d ′

i ;

D2d ′
i [δθ;�θ ] = δθ ′ × (�θ × di ) + δθ ×

(

�θ ′ × di

)

+ δθ ×
(

�θ × d ′
i

)

.

(41)

The first and second directional derivatives of the deforma-

tion gradient F can be obtained as

D F[δu0, δθ ] = δu′
0 ⊗ D3 + Ddα[δθ] ⊗ Dα

+ ηα Dd ′
α[δθ ] ⊗ D3;

D2 F [δu0, δθ; u0,�θ ] = D2dα[δθ;�θ ] ⊗ Dα

+ ηα D2d ′
α[δθ;�θ ] ⊗ D3.

(42)

where the directional derivatives of the triad were previously

computed in (40)–(41). Notice how the kinematics of the

beam introduces, in contrast to the continuum formulation,

additional non-linearities into the problem through the non-

vanishing second directional derivative of F (recall that this

term vanishes in the more general continuum description).

The first and second directional derivatives of the cofactor

H are computed as

5 These directional derivatives need to comply with the orthogonality

condition di · d j − δi j = 0 [1].

D H[δu0, δθ ] = F × D F[δu0, δθ ];

D2 H[δu0, δθ; u0,�θ ] = D F[δu0, δθ ] × D F [u0,�θ ]

+ F × D2 F [δu0, δθ; u0,�θ ] .

(43)

Finally, the first and second directional derivatives of the

determinant J are computed as

D J [δu0, δθ ] = H : D F[δu0, δθ ];

D2 J [δu0, δθ; u0,�θ ]

= F : (D F[δu0, δθ ] × D F[u0,�θ ])

+ H : D2 F [δu0, δθ; u0,�θ ] .

(44)

Due to the kinematics introduced by the beam problem,

further nonlinearities are observed in (43) and (44) with

respect to (3) and (4), respectively. Alternatively, a formula-

tion exclusively in terms of the centre line x0 and the triad

{di } has been presented in references [1,3]. This formulation

avoids relating directional derivatives of the triad {di } with

respect to the rotation vector θ as in Eq. (40).

3.3 Transition from polyconvex continuum model to

polyconvex beam theory

For the case of a polyconvex constitutive model satisfying

Eq. (5), it is possible to express the internal virtual work as

follows

P : D F[δu0, δθ ]

= D�[δu0, δθ ]

= DW [D F[δu0, δθ ], D H[δu0, δθ ], D J [δu0, δθ ]]

= �F : D F[δu0, δθ ] + �H : D H[δu0, δθ ]

+ �J D J [δu0, δθ ]

= �F : D F[δu0, δθ ] + �H : (F × D F[δu0, δθ ])

+ �J H : D F[δu0, δθ ]

= (�F + �H × F + �J H) : D F[δu0, δθ ],

(45)

which leads to an identical expression for the first Piola–

Kirchhoff stress tensor P as in (7). The tangent elasticity

operator is obtained as

D2�[δu0, δθ; u0,�θ ] = D F[δu0, δθ ] : C : D F [u0,�θ ]

+ P : D2 F[δu0, δθ; u0,�θ ],

(46)

where C = ∂ P
∂ F

= ∂2�
∂ F∂ F

. Use of Eq. (45) yields
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D2�[δu0, δθ; u0,�θ ]

= [Sδ]
T
W [HW ] [S�]W

+ (�H + �J F) : (D F[δu0, δθ ] × D F [u0,�θ ])

+ (�F + �H × F + �J H) : D2 F[δθ;�θ ],

(47)

where

[Sδ]T
W

=
[

D F[δu0, δθ ] : (D F[δu0, δθ ] × F) : D F[δu0, δθ ] : H
]

;

[S�]W =

⎡

⎣

: D F [u0, �θ ]

: (D F [u0,�θ ] × F)

D F [u0, �θ ] : H

⎤

⎦ .

(48)

Note that the first term on the right hand side of (47) is nec-

essarily positive for δu0 = u0 and δθ = �θ and therefore

buckling can only be induced by the “initial stress” term asso-

ciated with the last two terms on the right hand side of (47).

In comparison with Eq. (8), an extra nonlinearity present in

above Eq. (47) can be observed, namely the last term on the

right hand side.

Finally, proceeding as in Sect. 2.2, it is possible to re-

express Eq. (47) in terms of the alternative Hessian operator

[H
eq
W ] defined in Eq. (11) as

D2�[δu0, δθ; u0,�θ ]

= D F[δu0, δθ ] :
[

H
eq
W

]

: D F [u0,�θ ]

+ (�H + �J F) : (D F[δu0, δθ ] × D F [u0,�θ ])

+ (�F + �H × F + �J H) : D2 F[δθ;�θ ].

(49)

3.4 Polyconvex co-rotational beam formulation

In this Section, an alternative polyconvex co-rotational for-

mulation is presented. This new approach will prove to be

very useful establishing a link between the continuum degen-

erate description and a classical beam description in terms

of the beam strain measures Ŵ and K defined above. Taking

into consideration the right extended decomposition theorem

(38) and the necessary objectivity requirement, an equivalent

energy functional to W (F, H, J ) can be defined in terms of

the strain tensor Ū = RT F (38), its cofactor W̄ = RT H and

its determinant J ,6 namely Ŵ (Ū, W̄ , J ). Notice that both

representations W (F, H, J ) and Ŵ (Ū, W̄ , J ) have identi-

cal expressions in their own arguments. Analogously to (6),

a new set of stress variables {�Ū ,�W̄ , �J } conjugate to

{Ū, W̄ , J } can be defined as

6 Notice that the determinants of F and Ū are equal, namely J =

detF = detŪ .

�Ū

(

Ū, W̄ , J
)

=
∂Ŵ

∂Ū
= RT ∂W

∂ F
;

�W̄

(

Ū, W̄ , J
)

=
∂Ŵ

∂W̄
= RT ∂W

∂ H
;

�J

(

Ū, W̄ , J
)

=
∂Ŵ

∂ J
=

∂W

∂ J
.

(50)

Considering the right extended decomposition theorem (38),

the internal virtual work can be written as

P : D F[δu0, δθ ] = P : RDŪ[δu0, δθ ]

+P : D R[δu0, δθ ]Ū . (51)

Conservation of angular momentum in the continuum implies

P : D R[δu0, δθ ]Ū = FS : D R[δu0, δθ ]Ū

= Ū
T

SŪ
︸ ︷︷ ︸

Symmetric tensor

: RT D R[δu0, δθ ]
︸ ︷︷ ︸

Skew symmetric tensor

= 0 (52)

where S is the second Piola–Kirchhoff stress tensor. Hence,

an alternative co-rotational representation for the internal vir-

tual work (51) is as follows

P : D F[δu0, δθ ] = P̄ : DŪ[δu0, δθ ]; P̄ = RT P,

(53)

which results in

P̄ : DŪ[δu0, δθ ]

= D�[δu0, δθ ]

= DŴ [DŪ[δu0, δθ ], DW̄ [δu0, δθ ], D J [δu0, δθ ]]

= �Ū : DŪ[δu0, δθ ] + �W̄ : DW̄ [δu0, δθ ]

+ �J D J [δu0, δθ ]

= �Ū : DŪ[δu0, δθ ]

+ �W̄ : (Ū × DŪ[δu0, δθ ]) + �J W̄ : DŪ[δu0, δθ ]

= (�Ū + �W̄ × Ū + �J W̄) : DŪ[δu0, δθ ],

(54)

which leads to the following expression for the co-rotational

stress tensor P̄

P̄ = �Ū + �W̄ × Ū + �J W̄ . (55)

Following a similar procedure to that of Eq. (47), an alterna-

tive expression for the tangent operator of the energy � can

be obtained in terms of {Ū, W̄ , J } as follows
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D2�[δu0, δθ; u0,�θ ]

= [Sδ]
T

Ŵ

[

H
Ŵ

]

[S�]
Ŵ

+
(

�W̄ + �J Ū
)

: (DŪ[δu0, δθ ] × DŪ [u0,�θ ])

+
(

�Ū + �W̄ × Ū + �J W̄
)

: D2Ū[δθ;�θ ],

(56)

where

[Sδ]T

Ŵ

=
[

DŪ[δu0, δθ ] : (DŪ[δu0, δθ ] × Ū) : DŪ[δu0, δθ ] : W̄
]

;

[S�]
Ŵ

=

⎡

⎣

: DŪ [u0, �θ ]

:
(

DŪ [u0, �θ ] × Ū
)

DŪ [u0,�θ ] : W̄

⎤

⎦

(57)

and with the Hessian operator [H
Ŵ

] denoting the symmetric

positive semi-definite operator containing the second deriv-

atives of Ŵ
(

Ū, W̄ , J
)

as

[

H
Ŵ

]

=

⎡

⎢
⎢
⎢
⎢
⎢
⎣

ŴŪŪ ŴŪ W̄ ŴŪ J

ŴW̄Ū ŴW̄ W̄ ŴW̄ J

ŴJ Ū ŴJ W̄ ŴJ J

⎤

⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

∂2Ŵ

∂Ū∂Ū

∂2Ŵ

∂Ū∂W̄

∂2Ŵ

∂Ū∂ J

∂2Ŵ

∂W̄∂Ū

∂2Ŵ

∂W̄∂W̄

∂2Ŵ

∂W̄∂ J

∂2Ŵ

∂ J∂Ū

∂2Ŵ

∂ J∂W̄

∂2Ŵ
∂ J∂ J

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

(58)

As mentioned above, the identical representation of

the energy functionals W (F, H, J ) and Ŵ (Ū, W̄ , J ) with

respect to their respective arguments results in identical

expressions of the Hessian operators
[

HW

]

and
[

H
Ŵ

]

in their

respective arguments. Therefore, both Hessian operators
[

HW

]

and
[

H
Ŵ

]

will be positive semi-definite, provided that

W (F, H, J ) and hence, Ŵ (Ū, W̄ , J ) satisfy polyconvexity.

The latter representation of the strain energy functional will

be further pursued in the next Section.

4 Relationship with the classical beam formulation

Alternatively to continuum degenerate based formulations,

as that presented in Sect. 3, classical beam formulations

employ a kinematical description based on the strain mea-

sures {Ŵ, K } by means of the definition of the deformation

gradient tensor presented in Eq. (38).

The objective of this Section is twofold. On the one

hand, the strain energy per unit undeformed volume (i.e.

W (F, H, J ) = Ŵ (Ū, W̄ , J )) will be re-written in terms

of the alternative beam strain vector B defined in (38). Fur-

ther manipulations will lead to the introduction of the strain

energy per unit undeformed length in terms of the beam strain

measures Ŵ and K . On the second hand, relationships will

be established between the tangent operators of the different

energy representations to relate the concept of polyconvexity

at a continuum and beam level.

4.1 Beam kinematics and linearisation

4.1.1 The classical beam strain measures

Manipulation of equations in (37) enable the strain measures

{Ŵ, K } to be expressed in terms of the centre line and the

triads [1] as

Ŵ =
(

di · x′
0

)

Di − D3; K =
1

2
(di · d ′

j )(D j × Di ).

(59)

From equations in (59), the first and second directional deriv-

atives of the beam strain measures {Ŵ, K } follow as

DŴ[δu0, δθ ] =
(

Ddi [δθ] · x′
0 + di · δu′

0

)

Di ;

D2Ŵ[δu0, δθ; u0, θ ] =
(

Ddi [δθ ] · u′
0 + Ddi [�θ] · δu′

0

+D2di [δθ ,�θ ] · x′
0

)

Di ,

(60)

and

D K [δu0, δθ ]

=
1

2

(

Ddi [δθ ] · d ′
j + di · Dd ′

j [δθ ]
)

(D j × Di );

D2 K [δu0, δθ; u0,�θ ]

=
1

2

(

Ddi [δθ ] · Dd ′
j [�θ ] + Ddi [�θ] · Dd ′

j [δθ]

+ D2di [δθ;�θ ] · d ′
j + di · D2d ′

j [δθ;�θ ]
)

(D j × Di ).

(61)

4.1.2 The strain vector B

The directional derivative of the strain vector B defined in

(38) can be written as

D B[δu0, δθ ] = DŴ[δu0, δθ ] + D K [δu0, δθ ] × X̄

=
[

I −I × X̄
]
[

DŴ[δu0, δθ ]

D K [δu0, δθ ]

]

;

D2 B[δu0, δθ; u0,�θ ] = D2Ŵ[δu0, δθ; u0,�θ ]

+ D2 K [δu0, δθ; u0,�θ ] × X̄

=
[

I −I × X̄
]
[

D2Ŵ[δu0, δθ; u0,�θ ]

D2 K [δu0, δθ; u0,�θ ]

]

(62)

where use of the tensor cross product formula (130) has been

made above.

123



286 Comput Mech (2016) 57:277–303

4.1.3 Co-rotational strain measures

It is possible to obtain explicit expressions of the strain tensor

Ū , its cofactor W̄ and its determinant J in terms of the strain

vector B (linearly related to Ŵ and K ). Recalling equation

(38) which gives an explicit representation of the strain tensor

Ū = B ⊗ D3 + I in terms of the strain vector B, the cofactor

W̄ can be evaluated making use of property (143) as

W̄ =
1

2
Ū × Ū

=
1

2
(B ⊗ D3 + I) × (B ⊗ D3 + I)

=
1

2
(B⊗ D3)× (B ⊗ D3) + (B ⊗ D3) × I

+
1

2
I × I

=
1

2
(B × B)
︸ ︷︷ ︸

0

⊗ (D3 × D3)
︸ ︷︷ ︸

0

+ (B ⊗ D3) × I + I

= (B ⊗ D3) × I + I,

(63)

where use of the properties (141) and (144) has been made.

Similarly, the determinant J can be computed by means of

the property (142) and using the above result (63)

J =
1

3
W̄ : Ū

=
1

3
[(B ⊗ D3) × I + I] : [B ⊗ D3 + I]

=
1

3
[[(B ⊗ D3) × I] : (B ⊗ D3)

+ [(B ⊗ D3) × I] : I + B · D3 + 3]

=
1

3
[(B × B)
︸ ︷︷ ︸

0

· (D3 × D3)
︸ ︷︷ ︸

0

+ [(B ⊗ D3) × I] : I
︸ ︷︷ ︸

2B·D3

+ B · D3 + 3] = B · D3 + 1,

(64)

where use of properties (139), (141) and (144) has been made.

The directional derivatives of {Ū, W̄ , J } are obtained from

above equations as

DŪ[δu0, δθ ] = D B[δu0, δθ ] ⊗ D3;

D2Ū[δu0, δθ; u0,�θ ] = D2 B[δu0, δθ; u0,�θ ] ⊗ D3,
(65)

DW̄ [δu0, δθ ] = (D B[δu0, δθ ] ⊗ D3) × I;

D2W̄ [δu0, δθ; u0,�θ ]

= (D2 B[δu0, δθ; u0,�θ ] ⊗ D3) × I,

(66)

and

D J [δu0, δθ ] = D B[δu0, δθ ] · D3;

D2 J [δu0, δθ; u0,�θ ] = D2 B[δu0, δθ; u0,�θ ] · D3.
(67)

4.2 Polyconvex beam theory

It is customary in classical beam formulations to define

a strain energy functional per unit undeformed length

Wb(Ŵ, K ) dependent on the classical beam strain mea-

sures Ŵ and K . However, it is insightful to obtain the

relationship between the strain energy functional per unit

undeformed length Wb(Ŵ, K ) and the strain energy func-

tional per unit undeformed volume W (F, H, J ) (5) (or its

alternative equivalent representation Ŵ (Ū, W̄ , J )) defined

previously.

Moreover, by use of Eq. (38), where the strain tensor Ū is

expressed in terms of the strain vector B, in conjunction with

the definitions of the cofactor (143) and the determinant of

a tensor (142), it is feasible to obtain an explicit expression

of the strain energy functional in terms of the strain vector

B (linearly related to Ŵ and K ), namely W̄ (B(Ŵ, K )). The

relationship between the alternative strain energy functionals

can be summarised as

Wb(Ŵ, K ) =

∫

A(s)

W̄ (B(Ŵ, K ))d A;

W̄ (B(Ŵ, K )) = Ŵ (Ū, W̄ , J ) = W (F, H, J ).

(68)

4.2.1 Convexity in terms of the strain vector B

In the context of beam mechanics, an appropriate restric-

tion for a constitutive model is convexity with respect to the

beam strain vector B. Essentially, the strain energy � per

unit undeformed volume of the beam must be a function of

the deformation gradient via a convex function W̄ as

� (∇0x) = W̄ (B) , (69)

where W̄ is convex with respect to its three variables, namely

the 3 × 1 components of B. Following a similar approach to

that in Sect. 2.2, it is possible to define a new work conjugate

stress vector �B to the beam strain vector B as

�B (B) =
∂W̄

∂ B
. (70)

This set of conjugate measures enables the directional deriv-

ative of the strain energy W̄ to be expressed as

DW̄ [D B[δu0, δθ ]] = �B · D B[δu0, δθ ]. (71)

Recalling that the directional derivative of the strain energy

� fulfils

D�[δu0, δθ ] = P̄ : DŪ[δu0, δθ ], (72)
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enables, after comparison of Eqs. (72) and (71) (making use

of Eq. (65)), to conclude

�B = P̄ D3. (73)

It transpires from Eq. (73) and the definition of P̄ in (53)

that the stress vector �B represents the traction vector on

the cross section of the beam rotated back to the reference

underformed configuration.

Alternatively to Eqs. (47) and (56), the tangent operator

for the strain energy � can be re-expressed in terms of the

directional derivatives of the strain vector B as

D2�[δu0, δθ; u0,�θ ]

= D(�B · D B[δu0, δθ ])[u0,�θ ]

= D B[δu0, δθ ] ·
[

HW̄

]

D B [u0,�θ ]

+ �B · D2 B[δu0, δθ; u0,�θ ],

(74)

where the Hessian operator [HW̄ ] denotes the symmetric pos-

itive semi-definite operator containing the second derivatives

of W̄ (B)

[

HW̄

]

=
∂2W̄

∂ B∂ B
. (75)

Note that the first term on the last right hand side of Eq. (74) is

necessarily positive for δu0 = u0 and δθ = �θ . Therefore,

buckling can only be induced by the “initial stress” term

in (74) defined by �B · D2 B[δu0, δθ; u0,�θ ], where the

second directional derivatives of the beam strain vector B

were previously evaluated in (62).

4.2.2 Polyconvexity in terms of the beam strain measures Ŵ

and K

Equivalently, an appropriate restriction for a constitutive

model is polyconvexity with respect to the beam strain mea-

sures {Ŵ, K } [35]. It is well known that this condition ensures

ellipticity of the static problem and, equivalently, hyperbol-

icity of its dynamic counterpart [35]. Essentially, the strain

energy �b
7 per unit undeformed length of the beam must be

a function of the deformation gradient via a convex multi-

valued function Wb as

�b (∇0x) = Wb (Ŵ, K ) , (76)

where Wb is convex with respect to its 6 variables, namely,

the 3 × 1 components of Ŵ and K . Moreover, invariance

with respect to rotations is automatically satisfied since Ŵ

7 It is possible to relate the strain energy per unit undeformed length

�b with the strain energy per unit of undeformed volume � as �b :=
∫

A(s)
�d A, where A(s) is a generic beam cross sectional area.

and K are defined in the reference configuration. Following

a similar approach to that in Sect. 2.2, it is possible to define

work conjugates �Ŵ and �K to the beam strain measures Ŵ

and K , respectively, as

�Ŵ (Ŵ, K ) =
∂Wb

∂Ŵ
; �K (Ŵ, K ) =

∂Wb

∂ K
. (77)

It is easy to realise that �Ŵ represents the axial-shear force

vector rotated back to the reference undeformed configu-

ration, whilst �K is the torsional–bending moment rotated

back to the reference undeformed configuration, work con-

jugates of the axial-shear strain vector Ŵ and the torsional–

bending strain vector K , respectively. This set of conjugate

measures enables the directional derivative of the strain

energy Wb to be expressed as

DWb [DŴ[δu0, δθ ], D K [δu0, δθ ]] = �Ŵ · DŴ[δu0, δθ ]

+�K · D K [δu0, δθ ].

(78)

Recalling the relation between the strain energies Wb and

W̄ in (68) and hence, between �b and � and Eq. (71), it is

possible to obtain the following expression for the directional

derivative of �b

D�b[δu0, δθ ] =

∫

A(s)

D�[δu0, δθ ] d A

=

∫

A(s)

�B · D B[δu0, δθ ] d A. (79)

The directional derivative of B can be expressed in terms of

the directional derivatives of {Ŵ, K } through Eq. (62), leading

to the following modified version of Eq. (79)

D�b[δu0, δθ ] =

∫

A(s)

�B d A · DŴ[δu0, δθ ]

−

∫

A(s)

�B d A · (I × X̄)D K [δu0, δθ ]

=

∫

A(s)

�B d A · DŴ[δu0, δθ ]

+

∫

A(s)

(X̄ × �B) d A · D K [δu0, δθ ]

(80)

where use of the tensor cross product formula (130) has been

made. Comparison of Eq. (80) with (78) leads to the relation

between the conjugate beam measures �Ŵ and �K (77) with

�B (70) as

�Ŵ =

∫

A(s)

�B d A; �K =

∫

A(s)

X̄ × �B d A. (81)
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Note that the tangent operator of the strain energy Wb natu-

rally emerges as

D2Wb[δu0, δθ; u0,�θ ]

=

∫

A(s)

D2�[δu0, δθ; u0,�θ ] d A

=
[

Sδ

]T

Wb

[

HWb

] [

S�

]

Wb

+ �Ŵ · D2Ŵ[δu0, δθ; u0,�θ ]

+ �K · D2 K [δu0, δθ; u0,�θ ],

(82)

with

[

Sδ

]T

Wb
=
[

DŴ[δu0, δθ ]· D K [δu0, δθ ]·
]

;

[

S�

]

Wb
=

[

DŴ[u0,�θ ]

D K [u0,�θ ]

]

. (83)

and the Hessian operator [HWb
] is

[

HWb

]

=

[
∂2Wb

∂Ŵ∂Ŵ
∂2Wb

∂Ŵ∂ K
∂2Wb

∂ K∂Ŵ
∂2Wb

∂ K∂ K

]

(84)

4.3 Relationship between tangent elasticity operators

Use of Eqs. (62) and (81) in the second term on the right hand

side of Eq. (82) enables both geometric terms of the tangent

operators for Wb(Ŵ, K ) and W̄ (B) to be related as

�Ŵ · D2Ŵ[δu0, δθ; u0,�θ ] + �K · D2 K [δu0, δθ; u0,�θ ]

=

∫

A(s)

�B · D2 B[δu0, δθ; u0,�θ ] d A (85)

Hence, the constitutive term for the tangent operators for both

Wb(Ŵ, K ) and W̄ (B) must coincide, namely

[

Sδ

]T

Wb

[

HWb

] [

S�

]

Wb
= D B[δu0, δθ ] ·

[

HW̄

]

D B[u0,�θ ].

(86)

Use of Eqs. (83) and (62) into (86) finally yields

[

HWb

]

=

[
∂2Wb

∂Ŵ∂Ŵ
∂2Wb

∂Ŵ∂ K

∂2Wb

∂ K∂Ŵ
∂2Wb

∂ K∂ K

]

=

∫

A(s)

[

I

I × X̄

]
[

HW̄

] [

I −I × X̄
]

d A.

(87)

Equation (87) establishes a relationship between the tan-

gent operators
[

HWb

]

and
[

HW̄

]

for the internal energies

Wb(Ŵ, K ) and W̄ (B), respectively. Notice that these two

energies are defined in terms of the classical beam strain

measures. In addition, it is also possible to relate these two

Hessian operators with that of the energy Ŵ (Ū, W̄ , J ) (56)

defined in terms of the more general continuum strain mea-

sures. This can be obtained by re-expressing the tangent

operator for the energy Ŵ (Ū, W̄ , J ) (56) in terms of the

strain vector B.

Notice first that consideration of Eq. (65) enables the sim-

plification of the second term in the right hand side of Eq. (56)

as

(

�W̄ + �J Ū
)

: (DŪ[δu0, δθ ] × DŪ [u0,�θ ])

= (D B[δu0, δθ ] × D B [u0,�θ ])

·
(

�W̄ + �J Ū
)

(D3 × D3) = 0.

(88)

Regarding the third term on the right-hand side in Eq. (56),

use of Eqs. (55), (73) and (65) leads to the following identity

(

�Ū + �W̄ × Ū + �J W̄
)

: D2Ū[δθ;�θ ]

= �B · D2 B̄[δθ;�θ ].
(89)

Finally, introduction of the expressions in (65), (66) and (67)

for the directional derivatives of Ū , W̄ and J , respectively,

together with Eqs. (88) and (89) enables both constitutive

terms in Eqs. (56) and (74) to be related as

D B[δu0, δθ ] ·
[

HW̄

]

D B[u0,�θ ] = [Sδ]
T

Ŵ

[

H
Ŵ

]

[S�]
Ŵ

,

(90)

with the Hessian operator
[

HW̄

]

(75) related to the Hessian

operator
[

H
Ŵ

]

via

[

HW̄

]

=
[

H
eq

Ŵ

]

D3 D3

;

[
[

H
eq

Ŵ

]

D3 D3

]

I J

= D3 K D3L

[

H
eq

Ŵ

]

I K J L
(91)

where

[

H
eq

Ŵ

]

= ŴŪŪ + I × ŴW̄ W̄ × I + ŴJ J I ⊗ I

+ ŴŪ W̄ × I + I × ŴW̄Ū

+ ŴŪ J ⊗ I + I ⊗ ŴJ Ū +
(

I × ŴW̄ J

)

⊗ I

+ I ⊗
(

ŴJ W̄ × I
)

.

(92)

Notice the similarities between above equation (92) and (11),

where the second order tensors F and H have been replaced

with the identity tensor I .

The relationship between the different tangent operators

[HW̄ ], [H
Ŵ

] and [HWb
] as summarised in above Eqs. (85)

and (91) establishes an elegant link between the beam and

the more general continuum models. For a given continuum

polyconvex constitutive model (characterised by positive

semi-definite Hessian operators [H
Ŵ

] (58) and [HW ] (9)),

the associated (beam) Hessian operators [HW̄ ] (91)–(92)
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and [HWb
] (87) will be positive semi-definite too. There-

fore, as expected, satisfaction of the ellipticity condition

[19] in the continuum through a polyconvex constitutive law

implies satisfaction of the ellipticity condition [35] in the

consistently derived beam problem. The opposite cannot be

inferred. Further inclusion of suitable growth conditions into

the constitutive model guarantees well posedness of the over-

all problem [19].

4.4 Polyconvex constitutive models in classical beam

theory

In general, given an arbitrary objective energy functional

expressed as a function of the extended kinematic set

{Ū, W̄ , J }, it is possible to obtain an equivalent expression

in terms of the strain vector B (and hence in terms of {Ŵ, K })

after some algebraic manipulations.8

4.4.1 A Mooney–Rivlin constitutive model

As presented in Appendix 2, an expression for the strain

energy functional W̄ (B) can be obtained for a Mooney–

Rivlin model (154) as (where use has been made of the

function f as defined in (18))

W̄ (B) = α (B · B + 2B · D3 + 3)

− 2 (α + 2β) ln (B · D3 + 1) +
λ

2
(B · D3)

2

+ β(2B · B − (D3 × B) · (D3 × B)
︸ ︷︷ ︸

ξ

+ 4B · D3 + 3).

(93)

As shown in Appendix 2, the stress vector �B is obtained as

�B = 2α (B + D3) + 2β [(I + D3 ⊗ D3) B + 2D3]

+

[

λ (B · D3) −
2 (α + 2β)

(B · D3 + 1)

]

D3,
(94)

and the Hessian operator [HW̄ ] as

[

HW̄

]

= 2α I + 2β (I + D3 ⊗ D3)

+

[

λ +
2 (α + 2β)

(B · D3 + 1)2

]

D3 ⊗ D3. (95)

Hence, convexity is guaranteed provided that the material

parameters α, β and λ are non-negative. Therefore, conform-

ing to the conclusions obtained in Sect. 4.3, both Hessian

operators
[

HW

]

(16) and
[

HW̄

]

(95) are positive semi-

definite for the Mooney–Rivlin model.

8 Algebraic operations are greatly facilitated via application of the prop-

erties of the tensor cross product as presented in 2.

For the degenerate case of a Neo-Hookean model (α =

μ/2, β = 0), the stress vector �B and the Hessian operator

[HW̄ ] are obtained as

�B = μ (B + D3) +

[

λ (B · D3) −
μ

(B · D3 + 1)

]

D3;

[

HW̄

]

= μI +

[

λ +
μ

(B · D3 + 1)2

]

D3 ⊗ D3.

(96)

4.4.2 A Saint-Venant constitutive model

The Saint-Venant–Kirchhoff strain energy in Eq. (24) can

be expressed in terms of the strain vector B using Eq. (38)

E =
1

2
(B ⊗ D3 + D3 ⊗ B) +

1

2
(B · B) D3 ⊗ D3. (97)

Introduction of Eq. (97) into (24) leads to a final expression of

the strain energy W̄SV K in terms of B. Successive derivations

of this expression yield the following Hessian operator
[

HW̄

]

[

HW̄

]

= λ[(D3+ B) ⊗ (D3 + B)+(B · D3+
1

2
B · B)I]

+ μ[D3 ⊗ D3 + I + 2(B · D3)I

+ 2(B ⊗ D3 + D3 ⊗ B)

+ 2B ⊗ B + (B · B)I].

(98)

Notice that for the particular case of B = −D3

[

HW̄

]∣
∣

B=−D3
= −

λ

2
I − μD3 ⊗ D3. (99)

which is clearly non positive semi-definite. Since positive

semi-definiteness of HW̄ is not guaranteed for all values of

the strain vector B, it can be concluded that the constitutive

model is not convex in B. In order to overcome this short-

coming, it is customary [8] to neglect the higher order terms

in (97) (last term on the right hand side of (97)) resulting in

a linearised version of the Saint Venant–Kirchhoff model as

W̄ lin
SV K (B) =

λ

2
� lin

1 + μ� lin
2 , (100)

where

� lin
1 = (B · D3)

2 � lin
2 =

1

2

[

(B · D3)
2 + (B · B)

]

.

(101)

The Hessian operator HW̄ (75) for the linearised Saint-Venant

constitutive model is finally computed as:

[

HW̄

]

=(2λ + μ)D3 ⊗ D3 + μI . (102)
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Therefore, this linearised version of the Saint-Venant–

Kirchhoff constitutive model is convex with respect to B

and hence, according to Sect. 4.3, Wb(Ŵ, K ) will be con-

vex with respect to {Ŵ, K }. However, on the contrary to the

Mooney–Rivlin and Neo-Hookean models, the energy func-

tional � lin
SV K still fails to satisfy adequate growth conditions,

namely the coercivity condition9 [30,36]

lim
J (∇0 x)→0+

� (∇0x) → ∞. (103)

Hence, under high compression scenarios, the Saint Venant–

Kirchoff constitutive model does not perform well. Given

the limitations of this model in large strain scenarios, more

suitable constitutive laws need to be considered.

5 Variational formulation

The objective of this section is to succinctly present the

variational formulation of the geometrically exact beam the-

ory following a continuum degenerate approach. This will

be used as a starting point when describing the discretisa-

tion strategy employed. As a starting point, let us consider

the following standard total energy minimisation variational

principle

M (x0
∗, θ∗)

= min
x0, θ

⎧

⎨

⎩

∫

V

� (∇0x)| x = x0 + x̄,
di = R(θ)Di

dV − W ext| x = x0 + x̄,
di = R(θ)Di

⎫

⎬

⎭
.

(104)

where x0
∗ and θ∗ denote the exact solution and W ext the

work done by external forces. The stationary condition of

this functional leads to the principle of virtual work, written

as10

DM [δu0, δθ ] =

∫

V

P : D F[δu0, δθ ] dV

− DW ext[δu0, δθ ] = 0.

(105)

Following the continuum degenerate approach described in

Sect. 3, substitution of D F[δu0, δθ ] by its expression in

Eq. (42) allows to re-write the first time on the right hand

side of (105) as

9 The more general strain energy functional �SV K also fails to satisfy

the coercivity condition.

10 The expression of the external virtual work DW ext[δu0, δθ ] is well

known and, hence, omitted.

Dint
M [δu0, δθ ] =

∫ L

0

δu′
0 ·

[∫

A(s)

P D3 d A

]

ds

+

∫ L

0

Ddα[δθ ] ·

[∫

A(s)

P Dα d A

]

ds

+

∫ L

0

Dd ′
α[δθ ] ·

[∫

A(s)

ηα P D3 d A

]

ds,

(106)

where the first Piola–Kirchhoff stress tensor P is evaluated

via Eq. (7) in terms of the conjugate stresses �F , �H and �J .

An iterative11 Newton–Raphson process is applied to obtain

the solution. This is usually achieved by solving a linearised

system for the increments {u0,�θ} as [1]

D2M (xk
0, θ

k)[δu0, δθ; u0,�θ ]

= −DM (xk
0, θ

k)[δu0, δθ ], (107)

where the update of the position of the center line x0 and of

the rotation matrix R is obtained via

xk+1
0 = xk

0 + u0; Rk+1 = R (�θ) Rk;

dk+1
i = Rk+1 Di . (108)

and with the rotation matrix R (�θ) obtained particularising

Eq. (34) to the incremental rotation vector �θ . Finally, in the

absence of follower loads, the second derivative of the total

energy functional is given by

D2M (xk
0, θ

k)[δu0, δθ; u,�θ ]

=

∫

V

D2�(xk
0, θ

k)[δu0, δθ; u,�θ ] dV , (109)

where the tangent operator is evaluated using Eq. (49).

6 Finite element discretisation

Traditional finite element discretisations based on rotations

do not satisfy objectivity [1,2,4,6]. In order to circumvent

this shortcoming, a formulation in which the nodal degrees

of freedom correspond to displacements of the centre line

x0 and the director triad {d1, d2, d3} is considered following

reference [1,6]. In this approach, x0 and the director vectors

are interpolated as

x0 = xa
0 N a

u (s) ; di = da
i N a

d (s) . (110)

11 The letter k will indicate iteration number.
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where N a
u and N a

d are standard Finite Element shape func-

tions. Using a Galerkin approach

δu0 = δua
0 N a

u (s) ; Ddi [δθ ] = Dda
i [δθ]N a

d (s) . (111)

Particularisation of Eqs. (40) to the triads dk collocated at

the nodes of the underlying mesh, it results in

Dda
i [δθa] = δθa × da

i ;

D2da
i [δθa;�θb] = �θa(δθa · da

i )δab − da
i (δθa · �θa)δab

(112)

where the cross product property a × (b × c) = b (a · c) −

c (a · b) has been used in Eq. (112) in order to obtain the

expression for D2da
i [δθa;�θb].

6.1 Discretised kinematics

Based on the discretisation presented and making use of

Eq. (112), the discretised form of the first and second direc-

tional derivatives of F in Eq. (42) can be obtained as

D F[δua
0, δθa] = δua

0 ⊗ N a′
u D3 + (δθa × da

α) ⊗ Qa
α;

D2 F[δua
0, δθa; ub

0,�θb]

= (�θa(δθa · da
α)δab − da

α(δθa · �θa)δab) ⊗ Qa
α,

(113)

with

Qa
α =

(

N a
d Dα + ηα N a′

d D3

)

. (114)

6.2 Discretisation of the weak forms

Substitution of the discretisation expressions for x0 and dk

and its virtual variations in (110) and (111) respectively, into

(106) leads to the final discretised form of the principle of

virtual work as

Dint
M [δua

0, δθa] = δua
0 ·

∫ L

0

N a′
u

[∫

A

P D3 d A

]

ds

+ δθa · da
α ×

∫ L

0

[∫

A

P Qa
α d A

]

ds.

(115)

where P is evaluated according to Eq. (7). Notice that the first

term in the right hand side of Eq. (115) can be identified as

the weak form of conservation of linear momentum whereas

the second term can be identified as the weak form of the

conservation of angular momentum.

6.3 Discretisation of linearisations

Bearing in mind Eq. (49), the discretisation of the second

directional derivative of the potential M in Eq. (109) will

be presented in this section. For instance, second derivatives

with respect to the displacement of the centre line are discre-

tised as

D2M [δua
0; ub

0] =

∫

V

D F[δua
0] :

[

H
eq
W

]

: D F[ub
0] dV

+

∫

V

�g :
(

D F[δua
0] × D F[ub

0]
)

dV ,

(116)

where �g = �H +�J F. Equation (116) can be equivalently

expressed as

D2M [δua
0; ub

0] = δua
0 · K ab

uu ub
0, (117)

where the stiffness matrix K ab
uu is obtained as

K ab
uu =

∫ L

0

N a′
u N b′

u

[∫

A(s)

(
[

H
eq

W

]

D3 D3
+E

: �g (D3 × D3)
)

d A
]

ds,

(118)

where E is the third order permutation tensor. It is easy to

observe that the second (geometric) term in (118) vanishes,

leading to the final expression for K ab
uu as

K ab
uu =

∫ L

0

N a′
u N b′

u

[∫

A(s)

D3 :
[

H
eq

W

]

: D3 d A

]

ds. (119)

Similarly, the discretisation of the cross derivatives of the

potential M with respect to changes in the displacement of

the centre line and rotations would lead to an expression of

the form

D2M [δua
0;�θb]

=

∫

V

D F[δua
0] :

[

H
eq

W

]

: D F[�θb] dV

+

∫

V

�g :
(

D F
[

δua
0

]

× D F
[

�θb
])

dV ,

(120)

which can be written equivalently as D2M [δua
0;�θb] =

δua
0 · K ab

uθ�θb, with the stiffness matrix K ab
uθ being

K ab
uθ = −

∫ L

0

N a′
u

(∫

A(s)

D3 :
[

H
eq

W

]

: Qb
α d A

)

× db
α ds

+

∫ L

0

[∫

A(s)

(

db
α ⊗ bab

α −
(

db
α · bab

α

)

I
)

d A

]

ds,

(121)

where

bab
α = �g

(

N a′
u D3 × Qb

α

)

. (122)
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Finally, the discretisation of the second derivatives with

respect to changes in rotations is obtained as

D2M [δθa;�θb] =

∫

V

D F[δθa] :
[

H
eq
W

]

: D F[�θb] dV

+

∫

V

�g : (D F[δθa]×D F[�θb]) dV

+

∫

V

P : D2 F[δθa;�θb] dV .

(123)

Equation (123) is equivalent to D2M [δθa;�θb] = δθa ·

K ab
θθ�θb, with the stiffness matrix K ab

θθ being defined as

Kab
θθ = −

∫ L

0

(∫

A(s)
Qa

α :
[

H
eq
W

]

: Qb
β d A

)

×

(

da
α ⊗ db

β

)

ds

+

∫ L

0

[∫

A(s)

(

E : �g

(

Qa
α× Qb

β

))

×

(

da
α ⊗ db

β

)

d A

]

ds

+

∫ L

0

[∫

A(s)

(

da
α ⊗ P Qa

α −
(

da
α · P Qa

α

)

I
)

δab d A

]

ds.

(124)

7 Numerical examples

Note that it is not the primary aim of this paper to propose a

new finite element discretisation. Nevertheless, the objective

of this section is to present a series of numerical examples

in order to show the applicability of the variational and com-

putational frameworks presented in Sects. 3, 5 and 6. For

all the examples included, linear shape functions have been

used for the interpolation of the centre line and the direc-

tor triad as presented in [1]. The consideration of dynamic

effects for one of the examples presented has been imple-

mented in a straightforward manner [4] and thus, it is not

further discussed. Reduced numerical integration [1] of the

internal virtual work contributions has been carried out in

order to alleviate locking effects, whilst exact integration of

the inertial contributions has been implemented. For the last

example presented, a comparison of the beam model against

a sophisticated mixed continuum polyconvex computational

framework as reported in [12] is carried out.

7.1 Bending test

This example consists of a straight cantilever beam of

length L with squared cross sectional area of side 1
25

m.

This example has already been reported in [1,3] using a

linearised Saint Venant–Kirchhoff constitutive model (100)

with λlin = 1 N/m2 and μlin = 1
2

N/m2 the Lamé coeffi-

cients of the material defined in the reference configuration.

With these parameters, the Young’s modulus is computed

Fig. 3 Bending test example. Geometry and boundary conditions. L =

1 m and h = 1
25

m

as E = 1 N/m2. The geometry and boundary conditions

of the problem are shown in Fig. 3. The maximum bending

moment applied at the free end of the beam is defined by

Mmax = 2π E I
L

, where I denotes the second moment of area

of the beam.

For this example, four nonlinear constitutive models

are compared by employing the computational framework

described above. For consistency with the reference [1,3], the

material characterisation of the different constitutive mod-

els employed is carried out at the origin utilising the Lamé

coefficients λlin and μlin defined above. Specifically, the

four nonlinear constitutive models are: (i) a Saint Venant–

Kirchhoff model defined in (27) with material parameters

λSV K and μSV K ; (ii) a Mooney–Rivlin model defined in

(12)–(13) with material parameters αM R , βM R and λM R ;

(iii) a Neo-Hookean model defined in (12)–(13) with mater-

ial parameters αN H , βN H = 0 and λN H , and iv) a modified

Mooney–Rivlin model defined by the expression

WM M R (F, H, J ) =
αM M R

4

(

(F : F)2 − 9
)

+
βM M R

4

(

(H : H)2 − 9
)

+ f (J );

f (J ) = − (αM M R + 2βM M R) ln (J )

+
λM M R

2
(J − 1)2 .

(125)

The strain energy defined defined above in Eq. (125)

has been extracted from a modified Mooney–Rivlin model

given in [29]. Material characterisation renders the following

equivalences between the respective material parameters and

those of the linearised model (i.e. λlin and μlin), as

μSV K = μlin; λSV K = λlin;

αN H = μlin; λN H = λlin;

2αM R + 2βM R = μlin; λM R = λlin;

αM M R + βM M R = μlin;

λM M R = λlin − 2/3αM M R − 14/3βM M R .

(126)

In order to close the definition of the material pareme-

ters for the Mooney–Rivlin and modified Mooney–Rivlin
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Fig. 4 Bending test for a

discretisation of 24 linear

elements (25 × 6 degrees of

freedom defined in the variables

x0 and �θ ). Results shown for a

Saint Venant–Kirchhoff

constitutive model defined in

(27) with material properties

μSV K and λSV K defined in

(126). a Deformed shape for

M = Mmax . b Contour plot of

the hydrostatic pressure

distribution p (N/m2) for

M = 0.8Mmax
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Fig. 5 Bending test for a Mooney–Rivlin model defined in (12) and

(13) with material properties αM R , βM R and λM R defined in (126). a

Order of accuracy for the variables x, x0, R, �F , �H and �J . Two

meshes analysed for the maximum applied moment M = Mmax : 80

and 160 linear elements. Reference solution taken from a 640 element

mesh. b Quadratic convergence of the Newton–Raphson algorithm

(a) (b)

Fig. 6 Beam with slope discontinuity. a Geometry and boundary

conditions. L = 1 m and h = 0.1 m. b Absolute value of the tip dis-

placement versus absolute value of the applied force F (N). Material

parameters of μlin = 0.5 × 106 N/m2 and ν = 0 in the reference

configuration. Results shown for the Mooney–Rivlin model defined in

Eqs. (12) and (13) for a discretisation of 18 linear elements (19 × 6

degrees of freedom)
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Fig. 7 Beam with slope

discontinuity. Reference

configuration (shadowed) and

deformed configuration.

Contour plot of a hydrostatic

pressure p (N/m2), b Jacobian

J , c stress component

σ 11 (N/m2) and d stress

component σ 22 (N/m2).

Material parameters of

μlin = 0.5 × 106 N/m2 and

ν = 0 in the reference

configuration. Results shown for

the Mooney–Rivlin model

defined in Eqs. (12) and (13) for

a discretisation of 480 linear

elements (481 × 6 degrees of

freedom)

models, the following choice of material parameters is pre-

ferred αM R = βM R = μlin and αM M R = 3/4μlin and

βM M R = μlin/4.

As reported in reference [43], for a linearised Saint

Venant–Kirchhoff model (100) with Poisson ratio ν = 0 and

an applied moment of value M = Mmax , the beam closes on

itself forming a closed loop which can be described with an

available analytical solution. In general, for a nonlinear con-

stitutive model (or when the Poisson ratio ν is not equal to

zero), the exact closure of the beam configuration cannot be

a priori guaranteed. Figure 4a shows the deformed shape of

the beam for the general nonlinear Saint Venant–Kirchhoff

model (27). As can be observed in this figure, there can be

observed a small interpenetration due to the nonlinearity of

the considered model.

With respect to the stress distribution, Fig. 4b shows the

contour plot of the hydrostatic pressure for the Saint Venant–

Kirchhoff constitutive model. For the other three constitutive

models, the hydrostatic pressure distribution is almost iden-

tical, with hardly any differences, and is thus not displayed.

This can be explained due to the moderate strains undergone

through the deformation process. For this particular example,

the choice of a specific model does not seem to be relevant

for the overall solution.

The objective of this example is also to demonstrate the

p-order of accuracy of the formulation, as a function of the

chosen finite element approximation spaces. For this pur-

pose, and particularising for the Mooney–Rivlin model, the

beam is initially discretised with 80 elements and, subse-

quently, h-refinement is carried out generating a total of 3
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discretisations. As a closed form solution is not available

for this problem (due to the nonlinearity of the constitutive

model adopted), the finest mesh is used to generate numer-

ically the so-called “benchmark” solution for comparison

purposes. The two coarsest meshes are compared against the

finest mesh. The error between the benchmark solution and

the other discretisations is measured in the L2 norm for all

the unknown variables. Let us define for a tensor (e.g. scalar,

vector or second order) field, the L2 norm as

‖ζ‖L2 =

[∫

V

(ζ : ζ ) dV

]1/2

(127)

associated with the magnitude of the tensor field ζ . Although

the integrands associated to the internal virtual work have

been underintegrated along the centre line, the integral

defined in Eq. (127) for the evaluation of the error is com-

puted exactly. Notice that in the evaluation of the error norm,

a reconstruction of the continuum is carried out. In our case,

ζ can be any of the kinematic or kinetic variables, namely

x,12 x0, R = di ⊗ Di �F , �H and �J . This enables the

definition of the following error norm ‖ζ i − ζ b‖L2/‖ζ b‖L2 ,

where ζ b stands for the benchmark solution and ζ i the solu-

tion of the i-th mesh, with i = 1, . . . , (b − 1). This can then

be used to assess the convergence of the algorithm under

h-refinement.

Figure 5a shows the order of accuracy of the variables x,

x0, R, �F , �H and �J . The convergence observed is p + 1

in x, x0, R and �J , and p for �F , �H . As expected, pri-

mary variables lead to p + 1 order of convergence whereas,

with the exception of �J for this particular example, derived

magnitudes (i.e. stresses) lead to a reduced order of conver-

gence p. For completeness, the quadratic convergence of the

Newton–Raphson algorithm is shown in Fig. 5b.

7.2 Beam with slope discontinuity with zero Poisson

ratio

In this example, a series of interconnected beams with a

Young modulus of E = 106 N/m2 and a Poisson ratio of

ν = 0 are considered. The geometry and boundary condi-

tions of the problem are shown in Fig. 6a. In order to model

the connection between the beams at any angle, continuity of

the incremental rotation angle �θ is strongly imposed. This

example has been presented in [3] using the linearised Saint

Venant–Kirchhoff constitutive model (100). In this case, the

Mooney–Rivlin constitutive model defined in Eqs. (12) and

(13) is considered, with material parameters obtained after

material characterisation in the undeformed reference con-

figuration and the consideration of αM R = βM R .

12 Note that x is computed according to Eq. (33) namely x = x0 + x̄.
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Fig. 8 Beam with slope discontinuity: order of accuracy of the x, x0,

R, �F , �H and �J . Mooney–Rivlin model defined in (12) and (13).

Two meshes analysed: 120 and 240 linear elements. Reference solution

taken from a 480 element mesh

Fig. 9 Constrained torsion–compression example. Geometry and

boundary conditions. L = 20 m and h = 1 m

The objective of this example is to demonstrate the use of

a polyconvex model with null Poisson ratio in the reference

configuration for the case of a non-straight beam configu-

ration. Notice the excellent agreement between the results

presented in reference [3] for a linearised Saint Venant–

Kirchhoff model and those for the current Mooney–Rivlin

model in Fig. 6b.

Figure 7 shows the contour plot for different representative

variables, namely the hydrostatic pressure p, the Jacobian J

and different stress components (i.e. σ 11 and σ 22) (notice

that axis in reference {O X1, O X2, O X3} and deformed
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Fig. 10 Constrained

torsion–compression example.

From left to right: Saint

Venant–Kirchfoff with 30 % of

total loading, Neo-Hookean

(100 % of the loading),

Mooney–Rivlin (100 % of the

loading) and modified

Mooney–Rivlin (100 % of the

loading) models. Contour plot

of a stress component

σ 32 (N/m2), b conjugate stress

�F 11 (N/m2), c conjugate stress

�H 22 (N/m2) and d conjugate

stress �J (N/m2). Material

parameters μlin = 1/2.7 N/m2

and E = 1 N/m2 in the

reference configuration. Results

for a discretisation of 50 linear

elements (51 × 6 degrees of

freedom associated to the spatial

coordinates x0 and incremental

rotations �θ )

{ox1, ox2, ox3} are coincident). In order to emphasize the

high deformation that the beam is subjected to, a shadowed

representation of the beam in its undeformed configuration

is included. For visualisation purposes, the different spans

of the structural system in the deformed configuration are

shown slightly disconnected, enabling a clearer observation

of the contour plot of the different variables.

Finally, Fig. 8 shows the expected p +1 order of accuracy

for the primary variables x, x0 and R, and the reduced p

order of accuracy for the derived magnitudes �F , �H and

�J , where two meshes of 120 and 240 elements are com-

pared with a reference solution defined from a mesh of 480

elements.
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Fig. 11 Constrained torsion–compression example. Curve relating the

absolute value of the compressible load at the free end of the beam

and its associated displacement in the O X3 axis. Saint-Venant model

(SV), Neo-Hookean model (NH), Mooney–Rivlin model (MR) and

Modified Mooney–Rivlin model (MMR). Material parameters μlin =

1/2.7 N/m2 and E = 1 N/m2 in the reference configuration. Results

for a discretisation of 50 linear elements (51 × 6 degrees of freedom

associated to the spatial coordinates x0 and incremental rotations �θ )

7.3 Constrained torsion–compression example:

coercivity of the models

In this example, a straight beam is subjected to high com-

pressive and torsional effects. The objective of this example

is to show the un-realistic behaviour of the Saint Venant–

Kirchhoff (24) model specially under high compression

scenarios in contrast to that of the Neo-Hookean, Mooney–

Rivlin (12)–(13) and the modified Mooney–Rivlin (125)

models.

The beam configuration and geometry and the boundary

conditions of the problem are shown in Fig. 9. The free end

is subjected to a compressive force F = −9 × 10−1 N in the

O X3 axis and to a torsional moment M = −2.7 × 10−2 Nm

about the O X3 axis. The displacement of all the nodes along

the centre line is constrained to remain aligned with the

straight axis of the undeformed beam (i.e. x0 · Dα = 0).

In this way, physical buckling is prevented and the lack of

coercivity of the models can be explored. The material prop-

erties in the reference configuration are E = 1 N/m2 and

ν = 0.35.

Figure 10a shows the contour plot of σ 12 (notice that axis

in reference {O X1, O X2, O X3} and deformed {ox1, ox2,

ox3} are coincident) and the deformed configuration of the

beam for 100 % of the total load for the Neo-Hookean,

Mooney–Rivlin and modified Mooney–Rivlin models. For

the Saint Venant–Kirchhoff model, only 30 % of the total

loading has been applied. Figure 10b–d shows the contour

plot for some representative conjugate stresses for the differ-

Fig. 12 Twisting column. L = 6 m, h = 1 m and Dirichlet boundary

conditions described in Eq. (128) for the static case in Sect. 7.4.1. L =

15 m, h = 1 m and initial angular velocity �0 for the dynamic case in

Sect. 7.4.2

ent constitutive models. Note that the conjugate stress �H 22

vanishes for the Neo-Hookean model (see Fig. 10c) whilst

the conjugate stress �J vanishes for the Saint-Venant model

(see Fig. 10d).

Figure 11 displays the curve relating the absolute value

of the displacement in the O X3 axis of the free end of the

beam versus the absolute value of the force F applied. For

small strains, the constitutive response of the four constitutive

models is, as expected, almost identical. However, the lack

of the required coercivity and convexity requirements for

the Saint Venant–Kirchhoff constitutive model leads to the

unphysical buckling observed in Fig. 11.

7.4 Static and dynamic twisting column

7.4.1 Static twisting column

This example includes the twisting of a cantilever beam of

length L = 6 m and a squared cross sectional area of side

a = 1 m as shown in Fig. 12. The beam is clamped at X3 = 0

and subjected to a torsion on its free end, namely X3 = 6.

The torsion at the free end is generated through Dirichlet

boundary conditions as follows

(I − D3 ⊗ D3) x = θ D3 × X, (128)

where θ is the angle of rotation. As can be observed, the

section is not restricted to in-plane torsion and zero Neu-

mann boundary conditions are imposed normal to the cross

sectional area. The material properties of the beam are

compatible with a shear modulus and Poisson ratio in the

reference configuration of E = 1 Pa and ν = 0.35, respec-
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θ = 5π

4
θ = 11π
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Fig. 13 Static twisting column. Comparison between beam and con-

tinuum representations. Contour plot of stress �F 13 (N/m2) for (left) a

Hu–Washizu mixed formulation [12] with 3969×3 degrees of freedom

associated to the displacement x, 2304 × 4 × 9 degrees of freedom for

F, H �F and �H , 2304 degrees of freedom associated to J and �J ;

(right) results displayed for the beam model with a discretisation of 24

linear elements (25 × 6 degrees of freedom associated to the spatial

coordinates x0 and incremental rotations �θ )

tively. A similar example has been presented by the authors

in previous reference [12].

The objective of this example is to benchmark the cur-

rent beam formulation testing the capabilities of the beam

representation against a very robust and precise continuum

formulation. In particular, a mixed formulation associated

to a special Hu–Washizu type of variational principle as pre-

sented in reference [12] is considered for that purpose. In this

mixed formulation, the unknowns are displacements x, the

fibre, area and volume maps {F, H, J } and their stress conju-

gates {�F,�H , �J }. Regarding the selection of functional

spaces: continuous quadratic interpolation of the displace-

ment field x, piecewise linear interpolation of the strain and

stress fields F, H , �F and �H and piecewise constant inter-

polation of the Jacobian J and its associated stress conjugate

�J are considered.

The Mooney–Rivlin model defined in (12)–(13) has

been considered. Despite the obvious differences between

beam and continuum formulations (i.e. different kinematical

description, different interpolation spaces), Fig. 13 shows

reasonable agreement between both beam and continuum

representations in terms of tangential stresses. This agree-

ment is excellent for stages of the deformation in which the

kinematical assumptions of the beam model are applicable.

Hence, when warping of the cross section of the column is

pronounced, as in Fig. 13c, the comparison is still reason-

able but not as accurate, as expected. The warping of the

cross sectional area shown by the continuum representation

leads eventually to the buckled configuration represented in

Fig. 14. Appropriate incorporation of warping effects into

Fig. 14 Static twisting column.

Comparison between beam and

continuum representations.

Contour plot of stress

�H 32 (N/m2) for a

Hu–Washizu mixed formulation

[12] with 3969 × 3 degrees of

freedom associated to the

displacement x, 2304 × 4 × 9

degrees of freedom for F, H

�F and �H , 2304 degrees of

freedom associated to J and �J

the kinematics of the beam [9] would enable to capture this

nonlinear behaviour.

7.4.2 Dynamic twisting column

Finally, a beam with geometry depicted in Fig. 12 is con-

sidered. In this time dependent problem, an initial angular

velocity �0 = 35 sin
(

π X3
2L

)

D3 compatible with the bound-

ary conditions is prescribed. The material properties of the

beam are compatible with a shear modulus and Poisson

ratio in the reference configuration of E = 0.0179 GPa and

ν = 0.3, respectively. A similar example has been presented

by the authors in reference [32].
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t = 0.07 s t = 0.16 s t = 0.21 s

Fig. 15 Dynamic twisting column. Contour plot of stress σ 31 (N/m2)

for (left) a Hu–Washizu mixed formulation [12] with 3969 × 3 degrees

of freedom associated to the displacement x, 2304 × 4 × 9 degrees of

freedom for F, H �F and �H , 2304 degrees of freedom associated to

J and �J . Generalised alpha method with ρ∞ = 1 and �t = 10−3 s;

(right) results displayed for the beam model with a discretisation of

30 linear elements (31 × 6 degrees of freedom associated to the spa-

tial coordinates x0 and incremental rotations �θ ). Generalised alpha

method with ρ∞ = 1 and �t = 10−2 s

t = 0.05 s t = 0.07 s t = 0.13 s

Fig. 16 Dynamic twisting column. Contour plot of stress

�H 31 (N/m2) for (left) a Hu–Washizu mixed formulation [12]

with 3969 × 3 degrees of freedom associated to the displacement x,

2304 × 4 × 9 degrees of freedom for F, H �F and �H , 2304 degrees

of freedom associated to J and �J . Generalised alpha method with

ρ∞ = 1 and �t = 10−3 s; (right) results displayed for the beam model

with a discretisation of 30 linear elements (31 × 6 degrees of freedom

associated to the spatial coordinates x0 and incremental rotations �θ ).

Generalised alpha method with ρ∞ = 1 and �t = 10−2 s

The objective of this section is to benchmark the current

beam formulation with the continuum formulation described

in Sect. 7.4.1 in a time dependent problem. For both the con-

tinuum and beam degenerate problems, a generalised alpha

method time integrator is employed [44].

The Mooney–Rivlin model defined in (12)–(13) is con-

sidered with material parameters defined in (126). Figures

15 and 16 compare well in terms of displacements between

the continuum and beam descriptions. In addition, Figs. 15

and 16 also show a good agreement between the contour
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plots of the tangential stress σ 31 (notice that axis in refer-

ence {O X1, O X2, O X3} and deformed {ox1, ox2, ox3} are

coincident) and the conjugate stress �H 31, respectively, for

the continuum and beam models. However, as expected,

the simplifications introduced in the kinematical descrip-

tion of the beam model (lack of contraction/expansion of

the cross section of the beam) lead to different results

between both continuum and beam models regarding nor-

mal stresses.

8 Concluding remarks

This paper has provided a novel variational and com-

putational approach to formulate polyconvex large strain

geometrically exact beam theory, extending the original ideas

introduced by Bonet et al. [12]. In addition, three key novel

contributions are incorporated in the present work. First,

the deformation gradient, its cofactor and its determinant,

namely {F, H, J } are used for the first time as the main

strain measures in the context of beam theory. Their respec-

tive work conjugates, namely {�F,�H , �J } also feature for

the first time in a geometrically exact beam formulation.

Moreover, their co-rotational strain {Ū, W̄ , J } and stress

{�Ū ,�W̄ , �J } counterparts are also presented.

For the first time, the strain energy of a Mooney–Rivlin

model has been presented in terms of the classical beam

strain measures {Ŵ, K } by taking advantage of the novel

algebra associated to the tensor cross product operation pre-

sented in [12] and thoroughly detailed in [33]. Notice that

this re-expression procedure can be generalised to more

complex constitutive models (i.e. anisotropy, higher nonlin-

earities).

Finally, the authors have shown that polyconvexity of

a continuum constitutive model defined via a continuum

strain energy functional W (F, H, J ) implies convexity

with respect to the classical beam strain measures of the

equivalent beam strain energy functional Wb(Ŵ, K ), stating

explicitly the relationship between alternative tangent oper-

ators.

Further extension of our work will include multi-physics

electro-magneto-mechanical effects.
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Appendix 1: Tensor cross product

One of the key elements of the framework proposed in [12]

and extended to geometrically exact beam theory is the exten-

sion of the standard vector cross product to define the cross

product between second order tensors and between tensors

and vectors [34]. For instance, the left cross product of a

vector v and a second order tensor A to give a second order

tensor denoted v × A is defined so that when applied to a

general vector w gives:

(v × A) w = v × (Aw) ; (v × A)i j = Eiklvk Al j (129)

where Eikl denote the standard third order alternating tensor

components, repeated indices indicate summation and × is

the standard vector cross product. The effect of the above

operation is to replace the columns of A by the cross products

between v and the original columns of A. Similarly, the right

cross product of a second order tensor A by a vector v to give

a second order tensor denoted A × v is defined so that for

every vector w the following relationship applies:

(A × v) w = A (v × w) ; (A × v)i j = E jkl Aikvl . (130)

The effect is now to replace the rows of A by the cross prod-

ucts of its original rows by v. Finally, the cross product of two

second order tensors A and B to give a new second order ten-

sor denoted A× B is defined so that for any arbitrary vectors

v and w gives:

v · (A × B) w = (v × A) : (B × w) ;

(A × B)i j = EiklE jmn Akm Bln . (131)

In this paper, the tensor cross product will be mostly

applied between two-point tensors. For this purpose, the

above definition can be particularised to second order two-

point tensors or material tensors as:

(A × B)i I = Ei jkEI J K A j J BkK ;

(A × B)I J = EI K LEJ M N AK M BL N . (132)

When applied to a second order tensor A and a fourth order

tensors H, two possible operations are defined as:

(H × A)pPi I = E i jkE I J K HpP j J AkK ;

(A × H)i I pP = E i jkE I J K A j J HkK pP . (133)

Moreover, the double application of the tensor cross product

between a fourth order tensor and two second order tensors

is associative, namely:

A × H × B = (A × H) × B = A × (H × B) . (134)
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Remark 2 It is easy to show using simply algebraic manip-

ulations based on the permutation properties of E or the fact

that Ei jkEkln = δilδ jn − δinδ jl , that the above tensor cross

products satisfy the following properties (note that v, v1, v2,

w, w1 and w2 denote arbitrary vectors and A, A1, A2, B,

B1, B2 and C are second order tensors):

A × B = B × A (135)

(A × B)T = AT
× BT (136)

A × (B1 + B2) = A × B1 + A × B2 (137)

α (A × B) = (α A) × B = A × (αB) (138)

(A × B) : C = (B × C) : A = (A × C) : B (139)

A × I = (trA) I − AT (140)

I × I = 2I (141)

(A × A) : A = 6 detA (142)

CofA =
1

2
A × A (143)

(v1 ⊗ v2) × (w1 ⊗ w2) = (v1 × w1) ⊗ (v2 × w2) (144)

v × (A × w) = (v × A) × w = v × A × w (145)

A × (v ⊗ w) = −v × A × w (146)

(A × B) (v × w) = (Av) × (Bw) + (Bv) × (Aw) (147)

(A1 × A2) (B1 × B2)

= (A1 B1) × (A2 B2) + (A1 B2) × (A2 B1) (148)

(A1 B) × (A2 B) = (A1 × A2) CofB (149)

Appendix 2: Transformation of invariants for the

Mooney–Rivlin model in terms of the beam strain

measures

The objective of this section is to re-express the strain

energy functional for a Mooney–Rivlin constitutive model

WM R(F, H, J ), as presented in Eq. (12), in terms of the

beam strain measures Ŵ and K , namely W̄M R(Ŵ, K ). Notice

first, that an intermediate equivalent expression for (12) can

be obtained in terms of the strain tensor Ū , its cofactor W̄

and its determinant J , namely ŴM R(Ū, W̄ , J ).13 By making

use of (38), it can be shown that

Ū : Ū = B · B + 2B · D3 + 3. (150)

13 It is easy to show from the use of the right extended polar decompo-

sition theorem (38) that F : F = Ū : Ū , H : H = W̄ : W̄ .

Similarly, it can be shown that

W̄ : W̄ = [(B ⊗ D3) × I + I] : [(B ⊗ D3) × I + I]

= [(B ⊗ D3) × I] : [(B ⊗ D3) × I]
︸ ︷︷ ︸

ξ

+ 2 [(B ⊗ D3) × I] : I
︸ ︷︷ ︸

2B·D3

+3.

(151)

where use of properties (139), (141) and (144) has been made.

The ξ term above (151) can be further manipulated as follows

ξ = tr([(B ⊗ D3) × I]T [(B ⊗ D3) × I])

= tr([(D3 ⊗ B) × I] [(B ⊗ D3) × I])

= tr([(D3 ⊗ B) (B ⊗ D3)] × I + (D3 ⊗ B) (B ⊗ D3))

= [[(D3 ⊗ B) (B ⊗ D3)] × I] : I
︸ ︷︷ ︸

2[(D3⊗B)(B⊗D3)]:I

+ [(D3 ⊗ B) (B ⊗ D3))]
︸ ︷︷ ︸

(D3×B)⊗(B×D3)

: I

= 2 (B · B) (D3 · D3)
︸ ︷︷ ︸

1

−(D3 × B) · (D3 × B)

= 2 (B · B) − (D3 × B) · (D3 × B)

(152)

where use of properties (136), (148), (139), (141) and (144)

has been made (in that order). Substitution of (152) into (151)

leads to

W̄ : W̄ = 2B · B − (D3 × B) · (D3 × B) + 4B · D3 + 3.

(153)

Finally, substitution of (150), (153) and (64) into (12) leads

to

W̄ (B (Ŵ, K )) = α (B · B + 2B · D3 + 3)

+ β (2B · B − (D3 × B) · (D3 × B)

+ 4B · D3 + 3) + f (B · D3 + 1),

(154)

where B = Ŵ +
(

K × X̄
)

. The stress vector �B can then be

obtained following Eq. (70) as

�B = 2α (B + D3) + β

[

4B −
∂ξ

∂ B
+ 4D3

]

︸ ︷︷ ︸

χ

+

[

λ (B · D3) −
2 (α + 2β)

(B · D3 + 1)

]

D3.

(155)

where the partial derivative term contained within the second

term on the right hand side of above Eq. (155) can be further
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manipulated to give

∂ξ

∂ B
= 2(D3 × B) ·

∂

∂ B
(D3 × B)

= 2(D3 × B) · (D3 × I)B

= 2(D3 × I)T (D3 × I)B

= −2(I × D3)(I × D3)B,

(156)

where use of the relationships (I × D3)
T = (D3 × I)T =

−(I × D3) = −(D3 × I) has been made for the last step in

above Eq. (156).

Furthermore, use of the identity I × D3 = −D1 ⊗ D2 +

D2⊗D1 and the subsequent relationship (I × D3) (I × D3)

= −D1 ⊗ D1 − D2 ⊗ D2, enables to write the second term

on the right hand side of above Eq. (155) as

χ = 2B + 2B −
∂ξ

∂ B
+ 4D3

= 2B + 2B + 2(I × D3)(I × D3)B + 4D3

= 2B + 2B − 2(D1 ⊗ D1 + D2 ⊗ D2)B + 4D3

= 2B + (D3 ⊗ D3)B + 4D3

= 2(I + D3 ⊗ D3)B + 4D3.

(157)

Substitution of Eq. (157) in above Eq. (155) yields

�B = 2α (B + D3) + 2β [(I + D3 ⊗ D3) B + 2D3]

+

[

λ (B · D3) −
2 (α + 2β)

(B · D3 + 1)

]

D3.
(158)

The Hessian operator
[

HW̄

]

(75) is then obtained as

[

HW̄

]

= 2α I + 2β (I + D3 ⊗ D3)

+

[

λ +
2 (α + 2β)

(B · D3 + 1)2

]

D3 ⊗ D3. (159)
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