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Abstract. This paper describes a socio-cognitive framework to study 
the interaction between designers and social groups. Experimentation 
with situational factors of creativity is presented. In particular, social 
ties in a population of adopters are shown to shape the way in which 
designers are considered as change agents of their societies. 

1. Introduction  

Creative design is widely recognised as one of the foundations for social 
change (Gero 1996). This paper explores some fundamentals of the 
relationship between designers and social groups. Our motivation is to 
understand how individual actions can be determined by collective 
conditions and in turn trigger structural changes. Conventional research 
focuses on distinct units of analysis, i.e. personal or social processes 
separately (Conte et al 2001).  

An increasingly accepted approach to the study of creativity is based on 
the relation between individual-generative and group-evaluative processes. 
Under this view, creativity is seen as a social construct (Saunders and Gero 
2001) or communal judgment (Gardner 1993) where the creative individual 
is considered not in isolation but in interaction with an environment of 
physical and social dimensions. Being socially constructed, standards of 
what constitutes creative solutions evolve (Simonton 2000). This requires a 
broader inquiry of design that extends the unit of study outside the cognitive 
dimension to include the social aspect of creativity (Amabile 1983).  

The term creativity is polysemous and ambiguous. In the literature it 
refers to aesthetic appeal, novelty, quality, unexpectedness, uncommonness, 
peer-recognition, influence, intelligence, learning, and popularity (Runco 
and Pritzker 1999). In this paper creativity is defined by a set of 
complementary processes including adoption of a solution by a population, 
nomination by specialists or gatekeepers and colleague recognition. 
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Innovation is defined by the diffusion of a solution across a population of 
adopters (Rogers 1995). This paper presents an artificial society of adopters 
and designers as an empirical test-bed where qualitative generalisations 
about the nature of creative behaviour can be grounded.  

2. Socio-Cognitive Agent Architecture  

The dominant architecture of rational agency divides the system into two 
explicit parts: agent and environment (Wooldridge 2000). The rational agent 
is the sole causal determinant of behaviour whilst changes in the 
environment may reflect the impact of actions by other agents or external 
effects. Under such view, social interaction is contained as part of the 
external state. In the prototypical ant colony, behaviour is determined by a 
fixed reaction to pheromone levels present in the environment. However, the 
behaviour of more complex and social individuals is not expected to be 
hardwired as a reaction to environmental stimuli.  

For a social agent it is important to perceive more than environmental 
expressions. Interpretations of who laid the pheromone trail and with what 
intentions become key determinants of social behaviour. Individual learning 
helps but it is not feasible for every agent to learn at all times in a complex 
environment. Individual determinants are complemented by reliance on 
group support. Societies provide collective cues that are not necessarily 
expressed in the physical environment. The main difference between a 
physical and a social environment is that the former may exist independently 
from the agents that inhabit it. Agents and physical environments can be 
explicitly defined and treated as separate entities. However, a social 
environment is a function of the aggregate effect of agent interaction over 
time. Whilst no single agent has control over its society, the emergent 
structure of a social environment feeds back and co-determines individual 
states and behaviours. 

Social norms and conventions can clearly co-determine individual 
behaviour in design. In our agent architecture there is a place for a range 
from individual to social mechanisms mediating the agent-environment 
divide. Figure 1 shows a schematic definition of our architecture where 
agent-environment interaction is mediated by layers that range from 
individual to collective characteristics.  

Agent behaviour M in an environment E can thus be defined as: 

 M = ∑ { mi-n [S(mi-n ^ E’)] }  (1) 

where individual behaviour M is determined by the sum of internal state mi-n 
and construed situation S. Internal states consists of components mi-n such as 
perceptions, goals, preferences, skills, knowledge, and actions. Environment 
E is perceived by a bounded agent as interpreted external state E’. Situation 
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S is therefore a function of the combination of internal and interpreted 
external state. For instance, a perceived external state may be a measure of 
group pressure. However, perceived group pressure by itself has no meaning, 
i.e., it is not a situation but a passive contextual feature. Perceived group 
pressure becomes part of a situation when construed in combination with a 
relevant internal state such as a certainty or extroversion threshold. 
Equivalent group pressure perceived by agents with different internal states 
may indeed lead to the construction of entirely different situations, eg. 
compliance or assertiveness. Equivalent contexts may thus generate different 
behaviours within different situations. When situational factors are strong 
determinants, agent behaviour is normalised whereas if personal factors mi 
dominate, behaviour is more differentiated across a population. Under this 
view, individual differences in isolation are insufficient to explain behaviour.  
 

Figure 1.  The social agent: behaviour is determined by a combination of individual 
and shared components 

The Asch compliance paradigm (1951) illustrates the nature of our agent 
architecture. In this widely replicated experiment test subjects that respond 
correctly in isolation tend to be influenced by associates of the experimenter 
when placed within certain social settings. In some situations subjects tend 
to comply with group judgements even when clearly wrong. Within this 
paradigm, personal factors partially determine behaviour. If a test subject has 
certain individual characteristics such as high extroversion (Eysenck 1991) it 
tends to avoid compliance. Situational factors complement the determination 
of behaviour. If a test subject is asked to respond earlier in the task or if a 
previous participant differs and breaks unanimity the subject tends to differ 
and provide an independent response. Resulting behaviour can only be 
explained by a combination of individual and situational conditions. 

Different insights were extracted from the verbal account of yielding 
subjects from the original experiment after conditions were revealed (Asch 
1951). Influence effects fell into three categories: distorted perception, 
distorted judgement, and distorted action. These sources of behaviour can be 
mapped onto internal components mi-n of complier subjects as a function of 
their appraisal of the situation: 

M = ∑ {        A : perceptioni[S(E'i)] 
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 B : judgementi[S(E'i)] 
 C : actioni[S(E'i)]                          }  (2) 
where E'i represents a perceived collective state of unanimity and S the 

complier's appraisal of a situation within which sufficient conditions exist 
for distortion. Individuals from group A have their perceptions distorted and 
their behaviour M is subsumed by group influence. Judgements and actions 
are distorted in groups B and C respectively. The first two resemble 
informative influence whilst the third is a type of normative influence. 

2.1. MULTI-AGENT SYSTEM  

The defining characteristics of social agents would have no relevance 
separate from a social group. Figure 2 shows a diagram of our multi-agent 
system where components mn,i become part of the group structure. As agents 
interact group structures emerge and mediate their interaction with the 
environment.  

 

 Figure 2.  Socio-cognitive architecture where behaviour components become part 
of emergent group structures 

These structures are shared by agents at different times causing them to 
exhibit different degrees of normalised behaviour. For instance, perceptions 
may become collectively biased, preferences may be emphasised by groups 
at different times, and socially permissible actions may be established. The 
collective state of a society N can thus be defined as: 

 N = { Mi-n[Si-n] } (3) 

where state N is a function of agents’ behaviour Mi-n codetermined by 
internal states and their situation Si-n. A situation can be defined at the 
individual level as shown in eq. 1 and it can also be shared by a group as 
defined in eq. 3 above. A shared situation is perceived by a group of agents 
as a result of the combination of internal states and perceived external state. 
Extending the previous example, at the individual level a situation may be 
one of compliance whilst at the group level it may be a situation of 
unanimity. These are corresponding interpretations of one common 
collective structure, i.e., group pressure. 
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Individual behaviour under this view is defined as a function of the agent 
and the situation. This approach supports equivalent agents acting differently 
within different situations, and different agents acting similarly within 
similar situations. 

Social agents inhabit more than one social space, i.e. they have adjacency 
relations to other agents in multiple social environments simultaneously. For 
instance, an individual may have different positions in kinship and work 
structures. Other approaches like cellular automata conflate physical and 
social location into a notion of neighbourhoods (Schelling 1971). Each social 
space can be modelled with different parameters: social tie strength and 
number of ties are the structural properties addressed in this paper. 

This architecture is used to implement a model of design beyond internal 
thinking processes. Key actors including consumers or adopters of artefacts, 
opinion leaders and designers are modelled as social agents. Individual and 
situational factors are included in the design of experiments to inspect 
phenomena related to creativity and innovation.  

3. Adoption Framework  

A multi-agent system is implemented based on a population of adopter 
agents and their social interaction. Adopter behaviour consists of evaluating 
available solutions and deciding to adopt or abstain. Solutions are formulated 
in a simple linear representation as shown in Figure 3(a). This representation 
is chosen because it provides a number of intuitive geometric features as 
well as multiple interpretations and emergence. The objective is to support 
compromise in a multi-objective decision making and negotiation of 
requirements, which are typical of design problems (Goel 1994). 

Adopters evaluate artefacts according to individual perception V and 
preference F values. Variation of perception enables different interpretations 
across a population as shown in Figure 3(b). Variation of preferences (0.0 ≤ 
F ≤ 1.0) enables different decisions based on shared interpretations.  

Perception is implemented by a shape-recognition algorithm executed 
independently by every individual adopter. Every adopter agent executes a 
search for closed shapes with a branch limit V. This search renders a set of 
closed shapes G that stands for the artefact’s features perceived by each 
adopter. Perception traits V are assigned from a Gaussian distribution. This 
reasoning mechanism is computationally expensive and is scheduled at 
intervals of adoption. Adopters do not learn individually at every time-step 
but base their decisions on approximations that they update regularly. This 
representation refers to the idea that in human populations there may be a 
number of distinct but overlapping views of an artefact’s features, i.e. 
adopter segmentation. Variation of percepts across a population is controlled 
by the standard deviation of V. Different studies may consider different 
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percept variation assuming more subjective or more normalised 
interpretation across a target population. 

 
Figure 3.   (a) Sample artefact and (b) a range of shapes that adopters may perceive 

3.1. ADOPTION DECISION 

The adoption decision process consists of a multivariate evaluation where 
adopters seek to maximise conflicting criteria. Criteria attached to this 
representation include factors such as number of shapes, ratio of shapes 
aligned along horizontal and vertical axes, preferred number of sides, 
intersection or overlapping of shapes and similar shape bounds. The 
performance of an artefact is estimated by each adopter following: 

P = { [ (G/Gmin) + (V(+-2)/G) + (alignX/G) + (alignY/G) + (ints/G) 
+ (bounds/G)]  / (G2-G)  } (4) 

where artefact performance P provides a measurement based on an 
individualised set G of perceived features. The sum of number of shapes 
(size of G), ratio of shapes with V(+-2) number of sides, ratio of shapes 
horizontally aligned (alignX), ratio of shapes vertically aligned (alignY), 
ratio of shape intersection (ints) and ratio of similar bounds (bounds) 
normalised over the combinatorial size of G.  

Ratings P of artefacts under evaluation are compared by each adopter 
reaching an adoption decision where Gmax is the artefact with preferred 
features as follows: 

 Gmax = { Ci-n [(Pmax - Pmean) (Bi-n)] } (5) 

where adoption choice Gmax refers to the artefact’s perceived features that 
lead in the criterion Ci-n, i.e. with the largest performance differentiation 
(Pmax - Pmean). Biases Bi-n are weights between 0.0 and 1.0 that adopters 
incorporate in the form of individual preferences or can be externally 
manipulated by the experimenter. The shape of Gmax shows an implicit 
‘novelty’ criterion by which adopters tend to choose artefacts that they 
perceive to have the highest differentiation from others. Adoption is 
therefore a function of how competing artefacts compare at that time. To be 
adopted an artefact needs to perform well in a criterion that other artefacts do 
not meet and it helps if such criterion is positively biased by adopters’ 
preferences. Preferences evolve over time following a mechanism of 
habituation U. As adopters choose the best available artefact, their 
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preference for the criterion best satisfied by that artefact is gradually 
increased.  

 U = { Fi += Ci} (6) 

3.2. VERIFICATION 

This adoption framework provides a method to manipulate perceptions V 
and preferences F for verification purposes. Figure 4 shows a verification 
run where a set of artefacts is randomly generated and made available to a 
population of 100 adopters. 

 

 
Figure 4.  A verification run where the weight of criterion FalignX is externally 

increased. As a result, a majority (83 of a 100 population) chooses the artefact that 
performs best in the horizontal alignment criterion. 

The group’s preference for shapes aligned in the horizontal axis is externally 
increased by assigning extra weight to the criterion FalignX. As a result of this 
bias, adopters tend to choose the artefact with the highest performance in this 
criterion, i.e. where all shapes are horizontally aligned. However, not all 
adopters’ decisions converge since perceptions V are not homogeneous.  

3.3. ADOPTION SATISFACTION 

Adopter satisfaction is computed as a measure of quality. In the adoption 
decision, if the choice criterion Ci-n equals the leading preference of an 
adopter, its satisfaction level is set to a maximum discrete value. Else, if the 
choice criterion is one standard deviation above the mean of the adopter's 
preferences, then the satisfaction level is set to a medium level. Otherwise, 
the agent has adopted an artefact that performs best in a criterion that is of 
little relevance to the adopter and its satisfaction level is set to a minimum. 
An adopter may abstain from adoption if no difference is perceived between 
artefacts, i.e. iff Pi-n is equal for all artefacts and Gmax = �. 

3.4. SOCIAL INTERACTION 

At every iteration step, adopters rely on social interaction to validate their 
perceptions, spread preferences and in general to conduct their adoption 
decisions. To this end different social spaces L are defined where adopters 
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interact. At initial time adopter agents are randomly assigned a location on 
each space. These social spaces have different rules of interaction and 
development. Two aspects addressed in this paper are social tie strength (T) 
and neighbourhood size (H).  

Ties are interaction links between nodes in a social network and represent 
the relationship between adopter agents (nodes) in a social space 
(Wasserman and Faust 1994). T is determined by the probability that 
associated nodes may interact over a period of time (Granovetter 1973). 
Strong social ties exist between nodes in a kinship network, whilst weak ties 
exist in networks where casual encounters occur between strangers or 
acquaintances. H is determined by the number of links from a node -also 
called ego-centred networks (Wasserman and Faust 1994). In our framework 
we implement a basic notion of tie strength as a probability 0.0 ≤ T ≤ 1.0 
that any possible pair of adopter agents will remain in adjacent positions at 
the next time step. T ≈ 0.0 brings higher social mobility, i.e. adopter agents 
are shuffled more often and get to interact with different adopters over any 
given period. In contrast, T ≈ 1.0 bonds adopter together causing a decrease 
in social mobility, i.e. adopter agents remain in their same neighbourhoods 
interacting with the same agents for longer periods of time. 

3.5. INFLUENCE DOMINANCE 

A social space L1 in this framework is set where adopters exchange 
preferences F. Within a second social space L2 percepts G are traded. A 
third space is set where agents exchange adoption decisions Gmax. In all 
spaces H has an initial value of 2 that varies during a system run according 
to the influence that an adopter exerts on others. More influential adopters 
have larger neighbourhoods. Adopters can be located in social spaces with 
particular assumptions according to the hypothesis under inspection. For 
instance, the purchase of cars may be shaped by influence interaction in 
kinship networks whilst that of mobile phones may be strongly influenced by 
peer networks. Figure 5 shows a sample influence structure where an adopter 
with high dominance D has a large neighbourhood H = 6.  

Figure 5.   Influence structure in a sample space. Adopters are represented by 
rectangles, influence dominance by arrows. Vertical axis plots influence dominance 

D. Neighbourhood size increases with dominance. 



 A COMPUTATIONAL FRAMEWORK TO STUDY CREATIVITY 507 

 

The distribution of influence dominance D in an adopter population is 
measured by the Gini coefficient, a summary statistic of inequality. The Gini 
coefficient γ is used in studies of wealth distribution where group resources 
are limited and exchanged among members of a population. Influence can be 
seen as analogous to wealth in that it is generated by the interaction between 
two agents where one may increase its share at the expense of another. When 
γ ≈ 1.0 influence is concentrated by a few adopters and more stable 
dominance hierarchies exist. In contrast, when γ ≈ 0.0, influence is more 
distributed among adopters. More formally, 

 γ  = { ∑ [(|di - di+1|) / Dmean] / (2 D2) } (7) 

where the difference of every possible pair of dominance values (di - di+1) is 
divided by the mean of the entire dominance set of the population (Dmean). 
The relative mean difference (γ) is obtained by dividing the sum of pair 
differences by the square of the size of the dominance set (D2) (Dorfman 
1979). 

At initial time agents are randomly assigned extroversion thresholds X in 
every social space (Eysenck 1991). An adopter agent is assigned different X 
in different social spaces. Extroversion values are not fixed during a system 
run but change as a result of exerting influence over other agents.  

Exchange between any pair of adopters starts by a comparison of their 
extroversion thresholds X. In the social space where preferences F are 
exchanged, the adopter agent with the higher extroversion of the pair 
influences the less extrovert adopter on the criterion with the highest 
preference. A negotiation process occurs by which the influenced adopter 
increases its preference by half the difference between their preferences. 
However, if the chosen artefact of both adopters is the same and their 
preferences too similar, the more extrovert changes its focus of attention by 
shifting its preference to another criterion. This is a way to implement 
uniformity-avoidance and novelty-seeking behaviour, i.e. “pi is an adopter’s 
top preference until it perceives that pi is commonplace”. Within other social 
spaces different content is exchanged following a similar approach. More 
formally influence I between adopters i and j is of the form: 

 Ii-j = |Xi - Xj| { Fj += [(Fi - Fj) (0.5)] }   (8) 

where the more extrovert adopter i influences less extrovert j. Negotiation 
occurs as the target preference F of agent j approaches agent i by a ratio of 
their difference. The exchange of percepts V and adoption choices Gmax in 
their corresponding social spaces takes place in the same form. 

Whilst the details of this interaction can be fine-tuned to match a theory 
or observations, the key idea is that adopter agents exchange building blocks 
of their adoption process. This way even if an influential adopter is 
successful in spreading its preferences and percepts, the adoption decisions 
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of influenced adopters need not converge. Namely, adopters with equal top 
preferences may still perceive artefacts differently and therefore reach 
different adoption decisions as shown in Figure 4.  

In ergodic systems such as 2-dimensional cellular automata, a population 
converges from any initial random configuration. In contrast, when exchange 
occurs in more than one social space, the population may not converge as 
time � ∞ due to random walks being transient (Sosa and Gero, 2003). 

3.6. OPINION LEADERSHIP AND GATEKEEPING 

Promoters are opinion leaders whose dominance D increases at least one 
standard deviation above the mean as a result of social interaction. At initial 
time the set of promoters R is empty. As a result of social interaction over 
time, adopter populations form social structures of hierarchy. These 
structures can be determined by various exchange processes.  An adopter 
population may have characteristics that enable many agents to gain opinion 
leadership temporarily or may generate only a limited number of stable 
opinion leaders. Whilst in the former γ ≈ 0.0 supports social mobility, the 
latter exhibits social stability and γ ≈ 1.0. Namely, 

 R = { di > (Dmean + Dstdev) } (9) 

where a promoter R consists of every adopter whose dominance is greater 
than one standard deviation above the mean of group dominance D. The role 
of promoters in this framework is to form a two-way bridge between 
adopters and designers. Firstly, they serve as adoption models providing 
designers with positive feedback for reinforcement learning. Secondly, 
promoters become gatekeepers of the field given their ability to nominate 
artefacts for entry into the artefact repository Y, i.e. a collection of artefacts 
that defines the material culture of a population (Feldman et al 1994). 

Since the number of promoters is by definition a small ratio of the 
adopter population, they are more likely to spend more real and 
computational resources in analysing available artefacts. With an adopter 
background, promoters follow the standard adoption decision process 
described above but also gain access to more detailed evaluation criteria.  

The artefact repository Y is initialised with an entry threshold ε = 0. 
During a system run ε is increased supporting a notion of group progress by 
which the entry bar is raised with every entry. Two possible entry modes are 
addressed in this paper. Promoters can nominate artefacts that either increase 
the population's threshold of entry ε or perform well in different criteria than 
existing entries. Promoters evaluate artefacts using geometric descriptions 
like orthogonal rotation, uniform scale, and reflective symmetry. The 
nomination of artefacts by promoters occurs at a control rate specified by the 
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experimenter. Figure 6 shows sample repository entries as nominated by 
promoters based on their geometric relationships. 

Entry threshold ε to repositories has a decay mechanism A of the form: 

 A = { ε −= (0.05ε) } (10) 

where ε decays marginally over time. A is executed when promoters fail to 
nominate qualified entries above ε.  
 

Figure 6.  Sample entries to the repository. Geometric relationships can be 
recognised within artefact shapes including scale, rotation, and symmetry. 

Adopters and promoters provide the first elements of our definition of 
creativity. A creative design must be recognised and adopted by a 
population. Cumulative adoption of artefacts addresses a notion of 
popularity (Simonton 2000). It must also be selected by gatekeepers, i.e. 
experts representative of their social group. This selection is based on rules 
of entry that evolve as artefacts and societies change. Critics’ choice 
addresses the idea that creativity is judged by relevant arbiters (Gardner 
1993; Feldman et al 1994). Lastly, adopter categories enable classification 
on the basis of when they choose an artefact (Rogers 1995). 

4. Design Behaviour  

At initial step, the size of a group of designer agents is determined as a ratio 
of the adopter population. Initial artefacts are configured and assigned to 
each designer. Designer agents are given a set of standard constraints to 
which their artefacts must comply. Designers’ knowledge and adopter bases, 
recognition levels, and repository entries are all set to zero at the beginning 
of a system run. Knowledge base refers to domain rules that designer agents 
generate and apply during a simulation. Adopter base is defined by 
cumulative adoption. Recognition is given by peer designers that imitate 
features of an existing solution. At initial time the role of designer agents is 
to present their artefacts for adopters’ assessment. The details of the design 
task are determined by the adopter group decisions and the ability of 
competing designers to generate solutions. The goal of designers in this 
system is to consistently generate artefacts that are chosen by adopters, are 
selected by critics, and are imitated by peers.  

The execution of design behaviour can be parameterised according to the 
hypotheses under consideration. Namely, design update and adoption rates 
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can be assumed to be periodical or synchronous. In this paper we assume 
that design occurs at adoption intervals during which adopters execute their 
decisions and interact socially. Variations of these assumptions are required 
to model different product markets and industries, requiring particular 
experimentation scenarios.  

Designers may engage in different types of behaviour at any given time 
depending on a number of internal and external factors. Contingent design 
strategies can be seen as the product of the confluence of these conditions. 
The term strategy is used as adaptation of behaviour that appears to serve an 
important function in achieving the goal of being adopted, short-listed and 
influential. As determined by a strategy, design behaviour seeks to increment 
adopters’ satisfaction levels and extend adopter base by capitalising on 
relative superiority (competition), by exploiting weaknesses of competitors, 
or by seeking artefact differentiation or diversification. 

Designer agents seek a type of contingent strategy where they learn a 
design rule, i.e. an instance of domain knowledge tied to the artefact 
representation. In this case a design rule is made of artefact feature, target 
criterion and target perception. Rules are generated based on the designer’s 
model of the population's adoption process. In order to do this, designers 
establish contracts with promoters that adopt their artefacts. This is a way to 
implement positive feedback since otherwise a designer would not have 
access to target criteria and target perception, i.e. a promoter may be an 
adopter of a competing artefact or may be abstaining from adopting. Having 
access to a framework of adoption, a designer can emulate the collective 
decision process by generating hypotheses of possible alternative artefacts.  

Designers evaluate and change the configuration of their artefacts in 
order to improve performance along the modelled adoption criteria provided 
by promoters. Namely, designers sort the lines of their artefacts according to 
their contribution to the formation of perceived shapes. Designers are able to 
delete or generate new lines as a function of adopter perception V. 
Hypotheses consist of informed changes to current artefacts. In particular 
features that do not contribute to good performance are randomly replaced. 
Hypotheses are then evaluated following the multi-criteria adoption function 
of equations 4 and 5. A design rule λ consists of artefact changes that 
increase its performance along a target criterion. 

 λ = { Gh = ∆P : Ci } (11) 

where a hypothesised feature Gh results in an increment of artefact 
performance P in a presumed criterion Ci. The positive value of ∆ stands for 
the improvement ratio of λ.  

Processing abilities and synthetic abilities are assigned at initial time to 
each designer. Processing refers to the capacity of designers to generate and 
retrieve domain rules, whilst synthesis controls the number of hypotheses 
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that designers can generate before having to transform their artefacts. In this 
paper designers are assigned constant abilities at initial time. However, 
abilities gradually increase as a function of design behaviour. These two 
parameters determine individual differences across designers. This enables 
experimentation with the impact of individual factors on creativity, but is 
beyond the scope of this paper.  

If a designer is not able to generate new domain knowledge, it seeks a 
strategy to apply existing design rules λ. Here two assumptions can be 
implemented: domain knowledge may have private or public access. If 
private, every designer agent only has access to their own rules, whilst in 
public mode all designers have access to all existing rules.  

 Apply = { λ = ∆P : Ci } (12) 

where an existing rule λ that improves performance P in a target criterion C 
is applied to an artefact. If a designer is not able to generate or apply relevant 
knowledge, the last option is to imitate other designers. Imitation is the 
simplest form of collective learning, i.e. blind learning since information 
about features, criteria, and perception is missing. Imitation is defined as the 
transfer of a random feature G. Designers whose artefacts have low adoption 
rates imitate artefacts with higher rates. This is acknowledged as peer 
recognition given to the designer of the source artefact. Recognition from 
colleagues indicates the influence of a designer and further extends its 
processing and synthetic abilities. 

Designers may address the perceived group’s choice criterion Ci or they 
may determine an alternative target criterion. This choice is a function of 
perceived adopter preferences F and estimated artefact performance P. If a 
designer considers that its artefact’s performance is competitive (i.e. equal or 
above mean adopter preference) capitalisation is chosen and alternatives are 
sought to improve performance on the choice criterion (exploit relative 
superiority). If estimated performance is instead low on adopter preferences 
then designers seek to differentiate their artefacts from the highly 
competitive industry by selecting their best performing criterion.  

 Competition = P ≥ Fmean  (13) 

 Differentiation = P < Fmean  (14) 

Designer agents in this system are not equipped with creative abilities per 
se. The aim is not to introduce special traits to assess the effects of agents’ 
creativeness as assessed by the experimenter. Instead, all designers are 
assigned equivalent sets of mechanisms. No extraordinary process within the 
individual is hardwired but in time agent interaction renders a social self-
organised construct of how a designer may exhibit behaviour considered 
creative within its society. 
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Strategic Differentiation Index (SDI) is an index estimated collectively 
by adopters that reflects the perceived differentiation across the available 
artefacts (Nattermann 2000). With a design system initialised in a converged 
state, SDI = 0.0. As designers seek to generate artefacts that differ from 
other available artefacts SDI > 0. 

 SDI = { ∑ (Pvar / Ci-n) } (15) 

where SDI is the sum of mean performance variance for all criteria as 
estimated by the adopter population.  

This social framework encapsulates some of the characteristics of design 
problems including ill-structuredness and interpretation; decomposability; 
incremental solutions; hypothesis generation; negotiable and nomological 
constraints; no right or wrong answers; and delayed feedback (Goel 1994). 

Design behaviour complements our definition of creativity. Adoption rate 
is a trend measure used to determine what designer is imitated at a particular 
time step. Peer-recognition is considered a necessary element in the 
creativity literature (Runco and Pritzker 1999). The contribution of each 
designer to domain knowledge is interpreted as transformation of the design 
space (Gero 1996), learning, experience, and the ten-year rule (Runco and 
Pritzker 1999). Extension and exhaustion of the design space (i.e., rule 
generation and application) refer to exploratory-transformational creativity 
(Boden 1999). The number of hypotheses generated resembles idea 
productivity. The number of entries selected by gatekeepers gives a measure 
of a designer’s contribution to the repository or domain (Feldman et al 
1994). The limit on hypothesis generation and constraints on representation 
addresses the relationship between constraints and creativity (Amabile 
1983).  

A designer is considered creative by its social group when it reaches large 
adopter groups, its artefacts are entered into the repository, other designers 
imitate its artefacts, it transforms the design space by formulating 
knowledge, and its adopters have high satisfaction levels. In general 
experimentation with this framework consists of exploring the effects that 
both individual and situational factors have on determining the creativity of 
designers.  

5. Experiment: Social Ties 

This experiment addresses the role of social ties in the formation of 
influence structures in a population and the associated effects on creativity 
and innovation. Tie strength T is implemented as the frequency of contact 
between adopters (Marsden and Campbell, 1984). A series of simulations are 
run where the initial configuration of adopters and designers is kept constant 
and the strength of social ties T is the independent variable. Monte Carlo 
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runs are conducted to explore the range 0.0 ≤ T ≤ 1.0 over 7500 iterations in 
populations of 10 agents. This explores the range where agents remain in 
their social location at all times to where agents change social locations at all 
times, respectively. Preliminary runs showed that dependent variables 
stabilise between 2500 and 5000 iterations. The resulting dataset is then 
filtered in order to exclude outliers, i.e. values 1.5 standard deviations from 
the mean. All the following results represent means of 10 simulation runs. 
Each simulation run is initialised in a converged state to avoid biases in the 
form of random initial artefact configurations. Therefore at iteration step 0, 
adopters perceive no differentiation between artefacts and all abstain from 
adopting. It is only after a designer first modifies an artefact that adoption 
commences. 

5.1. DOMINANCE HIERARCHIES 

As T increases, social mobility is seen to decrease causing agents to interact 
more often with a stable group of neighbours. As a result, influence is more 
concentrated (γ ≈ 1.0), i.e. a few adopters exert dominance over others. In 
contrast, as T decreases, social mobility increases and agents have contact 
within a varying neighbourhood. In such conditions, influence structures of 
dominance are more distributed (γ ≈ 0.0), i.e. hierarchies become more flat. 
Figure 7 shows a scatter plot and power-law relation of tie strength T and 
Gini coefficient γ.  
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Figure 7.  A power law function is empirically demonstrated for tie strength and 
Gini coefficient (T = 0.45 γ -0.039) 

5.2. GATEKEEPING EFFECTS 

The formation of dominance structures shows unexpected effects in adoption 
and design behaviour. On the one hand an inverse correlation is shown 

T = 0.45 γ -0.039

R2 = 0.9207
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between tie strength T and number of entries to the repository Y. Lower T is 
correlated with larger repositories as shown in Figure 8, Pearson = 0.6706 N 
= 30 p = 0.001. 

This phenomenon may be due to the nature of the promoter role and is 
particularly insightful in relation to gatekeeping (Feldman et al 1994). In 
societies with rigid influence hierarchies (T ≈ 1.0) there is less variation in 
adopters that play the promoter role. Therefore interpretations that serve to 
evaluate artefacts for entry remain constant over time. In contrast, in 
societies with lower T and therefore where influence is distributed rather 
than concentrated there is a higher change rate of gatekeepers. Consequently, 
more diverse evaluations of artefacts mean more artefacts are submitted to 
the repository. As an effect, designers in general tend to receive more 
recognition for their work.  
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Figure 8.   Social spaces with high tie strengths tend to produce smaller repositories 

The mean score of repository entries is also correlated with variations in 
tie strength T, Pearson = 0.5657 N = 30 p = 0.002. This demonstrates that 
large repositories contain artefacts ascribed with higher quality. It is of 
special interest that the size of the design space defined by designer agents 
increases by manipulating a situational factor such as T. The connection 
between high mean scores and large repository sizes is better illustrated by 
the decay mechanism of the repository in eq. 10. In simulation runs where 
artefacts are submitted more often to Y, these are required to exceed the 
entry threshold ε and must have, by definition, higher scores assigned by 
promoters.  

5.3. DIFFERENTIATION EFFECTS 

The differentiation of design artefacts is measured through the Strategic 
Differentiation Index (SDI) (Nattermann 2000). These experiments show 
that SDI decreases with higher T and has the opposite effect as T decreases. 
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In other words, designers operating on tight social spaces where influence 
structures are rigid tend to generate more similar artefacts. The same 
designers operating on better distributed influence social spaces have a 
tendency towards higher differentiation, Pearson = 0.5755 N = 30 p = 0.004. 

5.4. PROMINENCE EFFECTS 

Lastly, effects on the size and nature of adopter groups are addressed. Monte 
Carlo runs where tie strength T is the independent variable consistently show 
that T is positively correlated with adopter group size, Pearson = 0.608 N = 
26 p = 0.001. This illustrates that low tie strengths increase abstention. On 
the other hand, T is also correlated with distribution of adoption defined as 
the ratio of smallest and largest adopter groups as shown in Figure 9, 
Pearson = 0.6796 N = 26 p = 0.001. Namely, in social spaces where T ≈ 0.0 
and influence is more distributed, adopters tend to abstain more and their 
choice tends to be more closely distributed across designers. In contrast, T ≈ 
1.0 increases total adoption and concentration of choices. In other words, the 
competitiveness between designers and their prominence can be determined 
by the way in which their evaluating groups organise. 
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Figure 9.   Social spaces with high tie strengths (T ≈ 1.0) tend to produce higher 

variation between adopter groups’ sizes 

5.5. SUMMARY 

The experiments presented in this section suggest that creativity transcends 
the individual domain. Patterns of creative figures show that characteristics 
external to the individual may indeed determine who and how is considered 
creative in a society. Graham, Einstein, Picasso and Freud have been 
characterised as extraordinary creators. Whilst their personality traits and 
abilities have little in common (Gardner 1993), similarities exist between the 
structures of the fields within which they operated. Namely, a few powerful 
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critics rendered influential judgements about the quality of their work 
(Feldman et al 1994). 

Our experiments illustrate a fundamental idea about the nature of 
creativity and innovation, i.e. that a situational factor that regulates the way 
in which adopters interact may have a significant effect on how both 
designers and adopter groups operate. The implications are that by observing 
the performance of designers alone it is not possible to put forward 
conclusions about their individual characteristics. Instead, the cause of 
behaviour could be a situational factor that defines not the designers but their 
evaluators.  

6. Discussion   

In this paper a social framework for the study of creativity and innovation in 
design has been introduced and used to experiment with a situational factor 
of creativity in design. Factors that regulate aggregate behaviour of a 
population of adopters are shown to affect the way designers operate and 
their impact as change agents of their societies. A corollary of these types of 
studies is that the understanding of creativity will require the extension of 
the unit of study outside the cognitive realm of the design process and into 
the social-psychology of design. Computational creativity has a fundamental 
role in supporting experimentation of socio-cognitive interactions. Future 
experiments will target: 

• relationship between popularity and critics' recognition 
• impact of knowledge privatisation on innovation (i.e. patents) 
• types of unexpected consequences of diffusion of innovations 
• transition from 'herding' to innovation 
• characterisation of tipping points and population size effects 
Situations seem adequate units of analysis to model the link between 

cognition and social change. A creative situation (i.e. one within which 
designers with different characteristics are likely to trigger a social change) 
could be typified to complement the dominance of studies that focus on the 
creative personality. 
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