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A computational method for prioritizing targeted therapies in

precision oncology: performance analysis in the SHIVA01 trial
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Barbara Vodicska 3, Vincent Servois 7, Edit Varkondi3, David Gentien8, Dora Tihanyi3, Patricia Tresca4, Dora Lakatos3,

Nicolas Servant 9, Julia Deri3, Pauline du Rusquec 4, Csilla Hegedus3, Diana Bello Roufai4, Richard Schwab3, Celia Dupain4,

Istvan T. Valyi-Nagy10,12✉ and Christophe Le Tourneau 4,9,11,12✉

Precision oncology is currently based on pairing molecularly targeted agents (MTA) to predefined single driver genes or biomarkers.

Each tumor harbors a combination of a large number of potential genetic alterations of multiple driver genes in a complex system

that limits the potential of this approach. We have developed an artificial intelligence (AI)-assisted computational method, the

digital drug-assignment (DDA) system, to prioritize potential MTAs for each cancer patient based on the complex individual

molecular profile of their tumor. We analyzed the clinical benefit of the DDA system on the molecular and clinical outcome data of

patients treated in the SHIVA01 precision oncology clinical trial with MTAs matched to individual genetic alterations or biomarkers

of their tumor. We found that the DDA score assigned to MTAs was significantly higher in patients experiencing disease control

than in patients with progressive disease (1523 versus 580, P= 0.037). The median PFS was also significantly longer in patients

receiving MTAs with high (1000+ <) than with low (<0) DDA scores (3.95 versus 1.95 months, P= 0.044). Our results indicate that

AI-based systems, like DDA, are promising new tools for oncologists to improve the clinical benefit of precision oncology.
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INTRODUCTION

Precision oncology, the molecularly targeted treatment of every
cancer patient based on the individual genetic alterations of their
tumor, is a highly anticipated, straightforward approach to beat
cancer eventually. Efforts in precision oncology have been
focusing on identifying single variables, predictive biomarkers,
presence or absence of molecular alterations, able to predict alone
the response to a molecularly targeted agent (MTA). This approach
has led to the development of predictive companion diagnostic
tests that are now part of the indication of many MTAs1,2. The
introduction of predictive biomarkers in the drug discovery and
clinical use of MTAs was a significant milestone in precision
oncology, but using single biomarkers has severe limitations.
Basket trials to find successful predictive biomarker–MTA pairs

are in progress. The NCI-MATCH trial is a very important example.
In NCI-MATCH tumors are molecularly profiled, and patients are
assigned to different treatment arms based on the presence of
predefined single biomarkers. The trial is feasible, and in some
cases, successful, but it also indicates the limitations of the single
biomarker paradigm as only three of the first 11 completed
subprotocols resulted in positive results3. TAPUR, the other large-
scale precision oncology basket trial organized by ASCO (Amer-
ican Society of Clinical Oncology), has reported similar results4.
Other clinical trials have been designed to analyze the overall

clinical benefit of treating patients based on their tumors’
molecular profile with matching “on-target” but off-label MTAs
or with matching investigational MTAs. IMPACT01 was the
longest-running precision oncology trial that evaluated the

benefit and limitation of matching MTAs to single biomarkers5.
The ten-year survival rate was 6% in case molecularly matching
therapies versus 1% in non-matching therapies (P < 0.0001). The
objective response rate and the clinical benefit rate (including
stable disease) were higher in case of matched MTAs compared to
the results of the non-matched treatments (16.4% versus 5.4% and
35% versus 20.3%, respectively)5. The other pioneering precision
oncology trial, MOSCATO01, found an 11% response rate and 33%
benefit based on >1.3 longer PFS2/PFS1 ratio6. These results
indicate that matching MTAs to single biomarkers does provide
benefit; however, SHIVA01, the first randomized precision
oncology trial assessing the efficacy of matching MTAs compared
to conventional chemotherapy, did not find any statistically
significant advantage of this approach7.
ESCAT, the European Society for Medical Oncology (ESMO)

Scale for Clinical Actionability of molecular Targets, defines tiers to
prioritize MTAs based on the highest level of evidence linking the
MTA to a genetic alteration or a biomarker present in the patient’s
tumor8. Tier I includes molecular alterations, which have demon-
strated sufficient and robust clinical evidence to predict response
to an MTA. Tier II includes molecular alterations demonstrating
less robust clinical evidence in the same tumor type. Tier III
includes alterations with evidence generated in other tumor types.
Within tier III, tier IIIB alterations are different genetic variants of
the same gene. Tier IV alterations are supported by preclinical data
or in silico models only.
We have retrospectively evaluated the efficacy of matched MTA

given in SHIVA01, also according to ESCAT tiers9. Molecular
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alterations revealed in SHIVA01 were retrospectively classified into
the ESCAT tiers, then the average PFS and OS of MTAs in different
tiers were compared using log-rank tests. We did not find a
significant difference in the clinical outcome of the MTAs in tiers II,
IIIA, and IV. Tier IIIB MTAs were associated with significantly shorter
PFS than the MTAs in the other ESCAT tiers. This result indicates
that the correct functional classification of the molecular alteration
was a critical factor of success, but the level of evidence that links
the MTA to the molecular alteration was not a significant predictor
of response to the MTAs in the SHIVA01 trial. COSMIC (Catalogue
of Somatic Mutations in Cancer) contains more than six million
different potential somatic genetic alterations in more than 600
cancer genes10. The functional significance of most of these
alterations is unknown (variants of unknown significance, VUS) or
is associated with conflicting or limited evidence in the literature.
This is a significant obstacle that contributes to the limited success
rate of precision oncology today.
Another critical factor in precision oncology is that each tumor

harbors a combination of 3–4 genetic driver alterations on
average, and additional driver alterations in the non-coding
regions are also present, raising the average number of molecular
driver alterations to an average of 4–5 in every tumor11.
The I-PREDICT study presented evidence that MTA treatments

(mostly combinations) inhibiting more than half (>50%) of the
driver genetic alterations present in the tumor (high “matching
score”) achieved at least 30% longer PFS (PFS2/PFS1 ≥ 1.3)
compared to the previous line of standard therapy in 75% of
patients, in comparison to 36.6% success rate of patients treated
with MTAs targeting less than 50% of drivers (low “matching
score”)12. This result indicates that the efficacy of MTAs matching
their biomarker or driver is limited by the presence of unmatched
drivers in two-thirds of patients.
Due to the recent outstanding advancement of molecular

diagnostics, especially next-generation sequencing (NGS), it is now
possible to analyze multiple driver genes in parallel instead of one
by one, even in routine clinical practice. The challenge of precision
oncology today is to assess the functional significance of all
detected genetic alterations of all potential driver genes (single-
nucleotide variations (SNVs), indels, CNVs, structural changes),
next choosing the right target and the matching MTA that can be
effective in the presence of the unmatched drivers. The complex-
ity is further increased by the different sensitivity of individual
genetic alterations to different MTAs matching the same target.
A potential solution is the deployment of standardized

computational methods, artificial intelligence (AI)-assisted mole-
cular drug-assignment algorithms. Computational tools can
handle multi-dimensional, multianalyte data, and provide repro-
ducible results. Therefore, computational algorithms are feasible
tools to forecast treatment response to different MTAs in the case
of the multiple different combinations present in tumors, and their
performance can be evaluated as medical devices.
In this study, we aimed to develop a computational method

(“digital drug assignment,” DDA), to test its performance to
identify the most likely effective targeted therapies for cancer
patients based on the individual complex molecular profile of their
tumor. Driver genes and their specific genetic alterations are not
equally important in the survival of the cancer cell. Several driver
genes can be associated with multiple MTAs, and many MTAs can
be associated with multiple drivers directly or indirectly through
associated indirect molecular targets in the same tumor. The
presence and importance of the associations between the drivers,
targets, and MTAs are supported by variable numbers and level of
experimental evidence. The goal was to create a system that
automatically prioritizes potential driver genes and associated
druggable targets based on thousands of available functional
interactions derived from published evidence. Next, identifies
MTAs that inhibit the most important drivers or the most

important druggable targets associated with the most important
divers at the highest level of aggregated evidence.
In theory, a system like this could maximize the chance to

identify the MTA, which most likely triggers a therapeutic

response based on our current knowledge of cancer biology
and molecular pharmacology.
The DDA system presented in this study consists of a curated

evidence-based network of over 12,000 driver-target-MTA inter-
actions implemented in a software system, the Realtime Oncology
Treatment CalculatorTM. The DDA system automatically assigns a

mathematical DDA score, the “aggregated evidence level” (AEL),
to MTAs related to cancer patients’ complete molecular profile in
milliseconds.
Next, we used the molecular profile and the clinical outcome

data of patients treated in the SHIVA01 clinical trial to evaluate the

clinical performance of DDA. In SHIVA01, all patients in the
precision oncology arm were treated with an MTA matched to a
predefined biomarker present in the patient’s tumor. However, we
found that MTAs with higher DDA scores were associated with

significantly higher clinical benefit.
Results presented here indicate that DDA can potentially

overcome the limitations of single biomarker-based treatment
decisions, address the molecular complexity of cancer to improve
the clinical benefit of precision oncology.

RESULTS

Overview of the DDA

Today, AI often refers to only machine learning (ML). However,
computer science and the US Food and Drug Administration (FDA)
action plan consider AI any intelligent computer programs that
improve diagnostics or treatment decisions13,14. It would require

vast clinical databases to develop effective predictive algorithms
for treatment decisions solely with ML due to the large number of
parameters that can influence the response to MTAs. Therefore,

we decided to use a complex (“if–then”) rule-based expert system
to create the DDA system based on the functional knowledge
(“what we already know”) available from published experimental
data. Rule-based expert systems are transparent, open box

systems, and provide consistent results. Later, parts of the system
can be further improved with ML methods after the fractionization
of current complexity.
DDA uses a network of functional associations among mutant

driver genes harboring molecular alterations, including SNVs,
CNVs, and gene expression, tumor mutation burden (TMB),

microsatellite instability (MSI) and druggable targets, MTAs, and
tumor type (localization and histology) based on published peer-
reviewed evidence (PubMed) built into a software system, the

Realtime Oncology Treatment CalculatorTM (Fig. 1). Information
about the frequency of molecular alterations was also included
(COSMIC)10.
DDA algorithm assigns a score to each gene harboring

molecular alterations (“driver calculation”) based on the number
and weight of all functional associations with druggable target

genes and MTAs. Next, DDA assigns a score to druggable target
genes (“target calculation”) based on the number and weight of
associations with all potential driver genes in the tumor. Finally,
scores of MTAs are calculated based on the number and weight of

associations with all “driver” genes and all “target” genes and the
score of these genes. The weight of any association is calculated
using constants (“matching weights”) corresponding to the

similarity between the biological parameters of the particular
tumor and the same parameters in the evidence used to generate
the association.
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“Driver calculation”, prioritization of the driver genes by the
DDA system

First, a mathematical DDA score, the AEL of each mutant gene
present in a tumor, is calculated based on published evidence of
the functional significance of the particular mutation and evidence
of other mutations found in other patients in the same gene or
the gene as a driver gene in general in the evidence database
(“driver calculation”). Functional evidence is a piece of evidence
that indicates the role of the gene in the carcinogenesis in
the patient’s tumor type or another tumor type, or evidence for
the functional significance of the mutant gene and molecular

alterations in the gene in the sensitivity or resistance (preclinical
or clinical) to MTAs directly targeting the gene or an indirect
druggable target gene that is functionally linked to the mutant
gene. Each association that supports the functional relevance of
the mutant gene, molecular all potential alterations in the
mutant gene, the particular molecular alteration present in the
patient’s tumor, counts as a positive association and each
association indicating the functional irrelevance of the mutant
gene or the molecular alterations in the mutant gene, the
particular molecular alteration present in the patient’s tumor,
counts as a negative association.

Fig. 1 Schematic representation of the system and method of digital drug assignment (DDA). A network of published evidence-based
functional associations between potential driver cancer genes (DRIVER) with genetic alterations, druggable molecular targets (TARGET), and
molecularly targeted agents (MTA) is created. A mathematical DDA score (“aggregated evidence level”, AEL) of each driver gene present in the
tumor and their associated targets and MTAs is calculated by aggregating the number and weight of positive (red lines) and negative (blue
lines) associations. The interactions represented by the lines are, therefore, not physical associations but evidence-based functional
associations and count both ways in the calculation of the AEL score of DRIVERS, TARGETS, and MTAs. The thickness of the lines represents the
weight (evidence level) of an individual association. The final AEL of an MTA is determined by the number and weight of direct associations
with drivers present in the tumor, the number and weight of associations between the drivers and the targets of the MTA, and the AEL of the
drivers and targets associated with the MTA. The size of the outer circle around the dots represents the AEL of DRIVERS, TARGETS, and MTAs.
The red color of the outer circle indicates positive, and the blue color of the outer circle indicates a negative AEL score based on the
aggregated AEL of the AEL of all associations. In the case of the DRIVERS, all positive and negative associations support the functional
significance of a DRIVER. Therefore, the AEL is still positive if the number and weight of positive associations outweigh the number and weight
of negative associations. The system is designed to identify the MTA associated with the most important druggable TARGETS associated with
the most important DRIVERS. This drawing is simplified for better clarity. For a typical tumor, the number of evidence-based interactions links
three DRIVERS to 50–300 MTAs of 5–20 TARGETS by 500–1500 evidence-based interactions.
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The evidence level (weight) of the associations is calculated
based on the type (clinical or preclinical), source of the evidence
(journal), and relevance (matching tumor type and matching
molecular alteration type/exact alteration) in the particular patient.
Whole available supporting evidence is aggregated to calculate
the AEL of each specific mutation and all mutant genes in the
same patient. All mutant genes with an AEL score higher than zero
are considered a potential driver in further calculations.

“Target calculation”, prioritization of the druggable targets by
the DDA system

Next, the AEL of druggable genes (drivers or indirect targets) is
calculated based on all available evidence which links each
druggable gene to all potential driver genes present in the same
patient (“target calculation”). Associations between the potential
driver genes and a target gene, which indicate that drugs
targeting the druggable target gene are more effective in the
presence of a driver gene count as a positive association,
associations which indicate that drugs targeting the target gene
in the presence of the driver is less effective counts as a negative
association. The evidence level of all druggable targets’ associa-
tions with all mutant genes in the same patient present is
aggregated to calculate the AEL score of the druggable target.

“MTA calculation”: prioritization of the MTAs by the DDA
system

Finally, the AEL score of potential MTAs is calculated based on the
AEL of all associations between the MTA and all potential drivers
and associated druggable targets (“MTA calculation”). Associations
between the potential driver genes and an MTA indicating that
the MTA is more effective in the presence of the potential driver
gene, or the particular molecular alteration of the driver gene, are
calculated as positive associations. Associations between the
potential driver genes and an MTA indicating that the MTA is less
effective in the presence of the potential driver gene or the
particular molecular alteration of the driver gene are calculated as
negative associations. The AEL scores of the targets with a positive
aggregated score are added to the AEL score of the associated
MTAs, while the AEL of targets of the MTA with a negative AEL
score is deducted from the AEL of the associated MTA. The AEL of
the potential drivers whose aggregated score of the associations
with the MTA are positive is added to the AEL score of the drug,
while AEL of the potential drivers whose aggregated score of the
associations with the MTA is negative are deducted from the AEL
score of the MTA.
The final AEL score of the MTA is based on the number and

evidence level of the associations between the MTA and all
potential drivers and targets, and the AEL of the associated
potential driver genes and druggable targets of the same patient.
Consequently, AEL of the MTA is based on the aggregated score of
multiple pieces of evidence that links the MTA to the whole
molecular profile of the tumor, instead of assigning a rank to the
MTA based on the highest available piece of evidence, which links
the MTA to one driver.

DDA based on the molecular profiles of patients treated in the
SHIVA01 clinical trial

Version 1.64 of the system tested in this study connected 709
drivers and targets with 631 MTAs (registered and in clinical
development). These drivers, targets, and MTAs were linked
together with 12,620 connections (“if–then” rules), including 6089
clinical evidence and 6531 preclinical evidence-based connections
deducted from 7306 publications.
In the randomized SHIVA01 trial, 11 MTAs were selected following

a predefined treatment algorithm, molecular alterations–MTA pairs,
based on clinically validated biomarker or supporting preclinical

evidence. Of the 195 randomized patients, 170 were treated with
MTAs based on SNVs in 50 genes and CNVs in 24 genes by NGS and
expression level of three hormone receptors by immunohistochem-
istry (IHC) including patients after crossover from the chemotherapy
treatment arm15. Both outcome data and complete molecular
profiles were available for 113 patients7.
Molecular profiles of these 113 patients were uploaded into the

DDA system. The system prioritized all driver alterations and
identified associated targets and MTAs that are positive or
negative connections with the molecular profiles of all patients.
The system used multiple connections based on functional
evidence (clinical, preclinical, and in silico) and frequency-based
evidence for each patient. DDA identified, on average, 17
associated targets and 47 associated MTAs. DDA assigned an
AEL score to all MTAs used to treat patients in the SHIVA01 trial
(Supplementary Tables 1 and 2, Tables 1 and 2, and Fig. 2a, b).

Association between the DDA AEL scores and the disease
control rates of MTAs used in the SHIVA01 trial

The calculated average AEL scores of the employed MTAs were
around threefold higher in case of patients achieving disease
control (partial response (PR) and stable disease (SD)) than in non-
responders in the SHIVA01 trial7,15–17, and the difference was
significant (1523 versus 580, P= 0.037) (Fig. 3).
Molecularly targeted drugs used in the SHIVA01 were arbitrarily

classified into three groups according to their DDA AEL scores
into low (AEL < 0), intermediate (0 < AEL < 1000), and high
(1000 < AEL) DDA tiers (Fig. 4). The cut-off for the high DDA tier
was chosen based on the distribution histogram of AEL values
blind to the outcome data (Supplementary Fig. 1). In the low tier
(n= 12, 11%), the calculated AEL values were negative, indicating
that the calculated evidence level of associations predicting
resistance (negative drug relations) was higher than the AEL of
positive associations. In the intermediate (n= 65, 57%) and high
tiers (n= 36, 32%), the AEL of positive associations was higher
than the AEL of negative associations. The disease control rate
(DCR) (PR and SD) was 56% in the total patient population, 17% in
the low, 55% in the intermediate, and 69% in the high DDA tiers,
respectively.

Association between the DDA AEL scores, progression-free
survival (PFS), and overall survival (OS) of MTAs used in the
SHIVA01 trial

The PFS and OS of the DDA tiers were compared using log-rank
tests (Fig. 5). The median PFS of the whole population was
3.48 months (n= 113). The median PFS was significantly longer in
patients treated with drugs of high AEL (1000 < AEL) than in the
low AEL (AEL < 0) DDA tier (3.95 versus 1.95 months, P= 0.044);
hazard ratio: (p(AEL < 0)/p(AEL > 1000)): 1.91 (95% CI 0.86–4.23)
and (p(AEL > 1000)/p(AEL < 0)): 0.52 (95% CI 0.24–1.16). The
median PFS of the intermediate tier (0 < AEL < 1000) was
3.11 months (Fig. 5a). To further evaluate the relationship between
the PFS and the AEL scores of MTAs patients were grouped
according to PFS by above and below the median PFS of
3.48 months, there is a statistically significant difference in the
average AEL values of the two groups: 1625.9 (above median PFS)
versus 611.9 (below median PFS) (P= 0.02336).
The median OS of the whole population was 11.15 months and

the median OS of the intermediate tier (0 < AEL < 1000) was
11.63 months (Fig. 5b). Patients in the SHIVA01 trial were allowed
to crossover between the MTA and chemotherapy arms, limiting
the evaluation of the OS results. However, there was a trend of
patients having worse OS in the low DDA tier; the difference did
not reach statistical significance (8.78 months versus
12.09 months).
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Concordance between the DDA-based therapy
recommendations and MTAs chosen in the SHIVA01 trial

DDA would assign the highest AEL score to the same MTA used in
SHIVA01 in 60 patients (53%) and assign a different MTA in 53
patients (47%) out of the 11 drugs used in the SHIVA01 trial. If the
trial was today, DDA would still assign the highest AEL score to the

same MTA in 28 patients (25%) and would assign a different MTA
for 85 patients (75%) out of the 631 MTAs (registered and under
development) available today in the system’s current database.
For simplicity, letrozole and tamoxifen were grouped for this

analysis (Fig. 6). DDA was more likely to assign the highest AEL to
the same drug for patients in the higher DDA tiers (DDA Tier I: 0/
12 (0%), DDA Tier II: 13/65 (20%), DDA Tier III: 15/36 (42%)) from

the currently available 631 MTAs. In cases where patients
responded to the MTA, the AEL score of the highest ranking
MTA by the DDA out of the MTAs available today is the same or
very similar to the AEL score of the MTA used in the SHIVA01.

DISCUSSION

Here we report a computational method, DDA, to prioritize MTAs
for precision oncology. DDA is an “open box,” explainable

AI system. The rationale and mechanism of action are described
here in detail, and the concrete algorithm and the whole evidence
database used for each case can be retrieved and reviewed for
human supervision for quality assurance purposes. The system is a
rule-based expert system that contains a large number of if–then
relations and algorithms. This type of device is in the scope of the
Artificial Intelligence/Machine Learning (AI/ML)-Based Software as
a Medical Device (SaMD) Action Plan of the FDA14.
We used the molecular information and outcome data of

patients treated with MTAs in the SHIVA01 trial for the clinical
performance analysis of the DDA-based software system, the
Realtime Oncology Treatment CalculatorTM. It is important to note
that the data of SHIVA01 were not used to train or optimize the AI
system. This is important because this excludes the possibility of
“overfitting,” the common issue of AI systems. The patients’
molecular profiles were uploaded into the software system, and
the AEL scores MTAs associated with the profiles were calculated
blindly to the outcome data prospectively on the retrospective
data. Next, the clinical benefit of MTAs with different AEL scores
was analyzed in different patient groups according to the
treatment outcomes. There was a statistical difference between
the AEL scores of MTAs according to the disease control and
below or above median PFS. In addition, the average PFS was

Table 1. Digital drug assignment (DDA) of five examples cases of patients treated in the SHIVA01 trial.

Patient ID Example 1 Example 2 Example 3 Example 4 Example 5

Tumor type Colorectal cancer Lung cancer Colorectal cancer Lung cancer Breast cancer

Molecular profile KRAS-G12V, TP53-
A159V; PTEN loss

TP53-P278R, FLT3-
M665T; INPP4B, STK11
loss; RICTOR
amplification

APC-E1295del; PTEN,
STK11, INPP4B loss

AR, ER expression;
TP53-G266E; PTEN,
STK11, INPP4B loss

ER, PR expression;
PIK3CA-E545K, KRAS-
A146T; PTEN loss

Molecular alteration-MTA
pairing used in SHIVA01

PTEN loss-
everolimus

FLT3 mutation-
sorafenib

PTEN loss-
everolimus

AR expression-
abiraterone

PIK3CA mutation and
PTEN loss-everolimus

AEL score of the
MTA used

−1291.37 191.61 266.93 315.04 4165

Response to MTA Progressive disease Stable disease Stable disease Stable disease Partial response

All targets (n) 25 16 9 22 25

Positive 20 15 6 19 20

Negative 5 1 3 3 6

All associated drugs (n) 271 226 200 269 287

Registered-positive 75 88 81 91 76

Registered-negative 33 10 17 17 31

Clinical development-
positive

109 123 82 140 128

Clinical development-
negative

54 5 20 21 65

All evidence used (n) 1894 1778 1138 1716 1165

Frequency-based 466 547 539 409 265

Function-based 871 689 491 769 765

Other 557 542 108 538 135

All connections (n) 2886 2498 1362 2450 1888

Clinical evidence-
based

998 724 629 829 907

Preclinical evidence-
based

1322 1142 178 1128 643

In silico evidence-
based

25 27 3 21 11

Frequency-based 541 605 552 472 327

The tumor type, the molecular profile, the molecular alteration–molecularly targeted therapy (MTA) pairing used, the DDA AEL value of the MTA used,

response to therapy in the SHIVA01, targets, MTAs associated with the molecular profile, and the number of evidence, and associations (“rules”) used for the

analysis by the DDA system.
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Table 2. Digital drug assignment (DDA) of a patient treated in the SHIVA01 trial.

Patient ID Tumor type Drivers (5) AEL Targets (25) AEL MTAs other compounds (287) AEL

Example 5 Breast cancer ER OVEREXPRESSION 731.820 PIK3CA WILD-TYPE 1251.37 PALBOCICLIB 4604.32

PIK3CA-E545K 276.630 ER WILD-TYPE 1222.00 LETROZOLE 3898.00

KRAS-A146T 150.910 mTOR WILD-TYPE 1102.61 ABEMACICLIB 3080.47

PTEN LOSS 50.040 AKT1 WILD-TYPE 1013.79 RIBOCICLIB 3058.48

PR OVEREXPRESSION 5.500 CDK4 WILD-TYPE 888.34 EVEROLIMUS 2886.78

CDK6 WILD-TYPE 883.44 TAMOXIFEN 2773.34

AKT2 WILD-TYPE 277.74 GSK2126458 2634.61

CTNNB1 WILD-TYPE 277.07 DACTOLISIB 2632.83

CTNNB1 WILD-TYPE 276.99 FULVESTRANT 2472.13

RAF1 WILD-TYPE 154.78 VOXTALISIB 2354.17

PLK1 WILD-TYPE 153.74 PWT33597 2353.98

SOS1 WILD-TYPE 152.75 PI-103 2353.98

HSP90 WILD-TYPE 152.62 VS-5584 2353.98

MAPK1 WILD-TYPE 152.36 PKI179 2353.98

MAPK3 WILD-TYPE 152.36 SF1126 2353.98

CNKSR1 WILD-TYPE 151.76 GEDATOLISIB 2353.98

DNMT1 WILD-TYPE 151.76 PF-04691502 2353.98

CDK1 WILD-TYPE 151.21 P7170 2353.98

PDL-1 WILD-TYPE 50.52 APITOLISIB 2353.98

EGFR MUTANT −50.73 DS-7423 2353.98

PARP1 WILD-TYPE −101.56 BGT226 2353.98

MAP2K1 WILD-TYPE −115.93 TASELISIB 2287.02

BRAF WILD-TYPE −158.39 ALPELISIB 2268.62

ERBB2 WILD-TYPE −334.38 AZD9496 2040.32

EGFR WILD-TYPE −675.79 GDC-0810 2008.22

ELACESTRANT 1997.07

EXEMESTANE 1984.30

RONICICLIB 1922.99

IPATASERTIB 1569.74

GDC-0077 1538.00

PAXALISIB 1531.18

PICTILISIB 1529.93

BUPARLISIB 1529.02

XL147 1528.95

COPANLISIB 1528.55

TEMSIROLIMUS 1447.09

SIROLIMUS 1388.14

and additional 236 compounds
between 1389 and -739 AELs

TRASTUZUMAB −738.57

GEFITINIB −841.29

NERATINIB −1010.01

EPERTINIB −1010.17

TAK-285 −1010.17

PELITINIB −1010.17

CUDC-101 −1010.17

AV-412 −1010.17

ALLITINIB −1010.17

AFATINIB −1060.72

CETUXIMAB −1110.83

ERLOTINIB −1130.73

DACOMITINIB −1215.03

PANITUMUMAB −1487.93

The DDA scores of drivers, targets, and associated MTAs of a case “Patient ID example 5”.

I Petak et al.

6

npj Precision Oncology (2021)    59 Published in partnership with The Hormel Institute, University of Minnesota



significantly longer in patients treated with drugs of high AEL
(1000 < AEL) than in the low AEL (AEL < 0) DDA tiers. The
thresholds for these tiers were arbitrary, selected based on the

distribution of AELs (Supplementary Fig. 1). For example, setting
the threshold at 500 increases the DCR to 71% in the high tier.
Similarly, the Kaplan–Meier estimation is also slightly more
significant when the high AEL is defined as >500 (P= 0.042) than

with >1000 group (P= 0.044). There was a case with BRAFV600E
mutation with an outlying high AEL value. If we omitted this case
from the analysis, the difference between the AEL values of the

DCR and PD group would have been even more significant
(P= 0.015 versus P= 0.037).
There were several advantages of using the data from the

SHIVA01 for the clinical performance analysis of the DDA system.
In this clinical trial, the same standard molecular diagnostic tests
were performed for all patients, and the outcome was assessed by
the same methodology. The patients represented a relevant
distribution of different types of advanced solid cancers. SHIVA01
was a prospective trial. Therefore, there was no bias toward
reporting only the outstanding responders like in case studies.
The limitations of this study are that patients included in the

SHIVA01 were heavily pretreated, which limited the assess of the
full potential of MTAs. The focused 50 genes NGS panel used in
the trial is still widely used in molecular diagnostics today. This
panel was designed to detect the most frequent driver
alterations (“hot spots”) in epithelial cancers primarily included
in this trial. Therefore, it was sufficient to identify the expected
3–4 driver alterations per tumor. However, the possibility of
choosing from more MTAs than the 11 MTAs used in SHIVA01,

based on comprehensive molecular profiling (300–600 gene
panels, WES or WGS) covering all potential driver alterations,
would more likely increase than decrease the clinical perfor-
mance of DDA.
Using combinations of two or three therapies is also a logical

solution to fight the complexity of cancer. The I-PREDICT trial and
real-world data show that combination therapies covering more
than half of the drivers overall achieve superior results than
monotherapies covering less than half of drivers12,18. However,
combination therapies also carry the disadvantage of higher risk
of toxicity and further increase of the targeted therapies’ financial
burden.
In SHIVA01, MTAs were mainly used in monotherapies targeting

predefined molecular alterations. The average number of driver
alterations in the three DDA tiers was very similar (3.92 in the low,
3.26 in the intermediate, and 3.73 in the high DDA tier). Thus, DDA
AEL scores of MTAs in monotherapy correlated with better clinical

Fig. 2 Network model of a real case from SHIVA01 analyzed by the digital drug-assignment (DDA) system. This drawing presents how
drivers, targets, and MTAs are connected in the digital drug-assignment system in the case of patient “Example 5” (Tables 1 and 2 and
Supplementary Table 2). Panel a depicts the connections of the 11 MTAs used in SHIVA01 to the drivers and targets in case of patient “Example
5”. Panel b depicts the connections of all MTAs in the database of the computational system to the drivers and targets in case of patient
“Example 5”.

Fig. 3 Association between digital drug assignment (DDA) and
disease control of molecularly targeted agents (MTAs) in the
SHIVA01 trial. Average aggregated evidence level (AEL) score of
MTAs in patients with progressive disease and patients achieving
disease control (DCR) (stable diseased and partial response).

I Petak et al.

7

Published in partnership with The Hormel Institute, University of Minnesota npj Precision Oncology (2021)    59 



outcomes independently from the number of concurrent driver
alterations in this study.
These results indicate that the DDA system can identify MTAs that

are more likely to be effective despite unmatched driver alterations.
This outcome can be achieved due to the network analysis system
design of DDA. DDA identifies the MTA which inhibits the driver
alteration(s) or indirect druggable molecular target(s), which have the
highest number and level of positive associations—and least
negative associations—with the highest number of all driver
alterations of the same tumor (Figs. 1 and 2a, b).
The potential clinical utility of the current version of DDA based

on the data presented here confines to the support of relative
prioritization between MTAs in the absence of any randomized
clinical trial evidence that would indicate the superiority of one
MTA over the other. In SHIVA01, all MTAs were used in the
presence of a predefined target chosen by the investigators’
molecular tumor board. MTAs associated with registered compa-
nion diagnostics (Level1/Tier I evidence by ESCAT) were excluded.
The efficacy of MTAs used in the study was not different according
to the lower ESCAT tiers9. Consequently, data presented in this
study imply that choosing an MTA based on the higher DDA score
will more likely lead to the same or better clinical benefit rather
than worse in comparison to randomly choosing another MTA
with a DDA lower score at the same evidence level.
In clinical practice, the DDA score can be useful if multiple MTAs

are available at the same evidence levels. MTAs at the same
evidence level should be registered in the same indication at the
same treatment line, associated with the same companion
diagnostic (ESCAT Tier I) molecular genetic alterations, or
associated with multiple companion diagnostic alterations present
in the same tumor or not linked to any companion diagnostic
tests. DDA can also be useful when there are no registered
treatment options available, but multiple MTAs in clinical use or
clinical trials match molecular genetic alterations present in the
patient’s tumor at the same evidence level. The ultimate goal of
DDA is to help the work of molecular tumor boards planning of
the personalized treatment strategy of all treatment lines for each
patient. We provide three clinical examples for the clinical utility in
the supplementary information (Supplementary Note 1).
It is important to note that the current DDA version is not

intended to replace any on-label therapies with an MTA not
registered in the same indication or at a higher clinical evidence

level, based on the DDA score alone. We will need further
retrospective and prospective clinical trials to evaluate the
absolute clinical benefit of MTAs according to their DDA score,
and we will need randomized trials to introduce new treatment
options based on DDA in the registered treatment protocols.
MTAs and corresponding DDAs can be co-developed and co-
registered in the future. Based on data presented here, DDA can
be potentially superior as a companion diagnostic method over
most single biomarkers identifying patients who most benefit
from an MTA, leading to the acceleration, reduced cost, and risk of
drug development.
The DDA system can be used by physicians, pathologists,

molecular biologists, or other professionals with relevant biome-
dical backgrounds who are specifically trained for the system’s
utility and limitations. DDA is designed to be open for easy human
supervision. The system generates the lists of published evidence
used for the DDA score calculations and generates text descrip-
tions of the information available on the molecular alterations and
associated MTAs. DDA is linked to an online case management
system designed for dynamic decision support for precision
oncology. DDA can be updated as new molecular diagnostic test
results are available for the patient. The system combines all
available results from different laboratories and types of tests:
NGS, fluorescent in situ hybridization (FISH), IHC (for example, ER,
PDL-1), TMB, and MSI to generate a prioritized list of MTAs
associated with all these results combined.
An essential feature of DDA that it is based on a continuously

expanded extensive database of evidence-based associations
between driver genes, targets, and MTAs. Therefore, DDA mirrors
the improvement of our understanding of cancer biology and the
availability of novel molecularly targeted treatments over time. As
a result, the AEL scores of the same MTAs and drug assignments
for the same patient can change over time. The other important
feature of the system is that since the targets of MTAs are known
by definition, experience (preclinical and clinical) with MTAs in the
presence of different driver mutations increases our under-
standing of the functional relevance of specific mutations and
teaches about the associations between drivers and druggable
targets. This further teaches the network, which can better and
better predict the outcome of any future MTA without previous
experience based on the functional significance of its targets.

Fig. 4 Distribution of AEL values of molecularly targeted agents (MTAs) assigned by the digital drug assignment (DDA) used in the
SHIVA01 trial. DDA AEL scores of MTAs used in SHIVA01 patients with progressive disease (PD) (blue bars) and patients achieving DCR
(red bars).
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Since DDA uses standardized evidence databases and algo-
rithms to aggregate evidence-based associations, the predictive
performance of the computational system and the AEL score can
be continuously tested on test databases and on real-world

experience to ensure that the performance is reproducible, and
the new version of the system is at least as good or better in
predicting response to MTAs. Regarding this point, we have

reproduced the analysis presented in this report with a newer 1.67
version of the Realtime Oncology Treatment CalculatorTM and
found the same or slightly better results (data not shown).
The use of AI in precision medicine, especially in precision

oncology, is highly anticipated19. The FDA has initiated public
discussion on this subject and created an action plan on how to

regulate AI-based software as medical devices (SaMD)14. The
definition of AI used by the FDA is any “intelligent” software. AI
tools transform information by algorithms to improve diagnostic

or treatment decisions. Algorithms in AI-assisted treatment
assignment algorithms can be developed manually as in the
current version of the DDA or using ML on training datasets. A
National Cancer Policy Forum has already reviewed this emerging

field: Improving Cancer Diagnosis and Care: Clinical Application of
Computational Methods in Precision Oncology20.
It is important to note that most software solutions currently

used to interpret NGS results are reference tools. These systems
are designed to store and retrieve information from structured
databases and guidelines to automatize interpretation for
electronic reporting. The expected performance of these reference
tools is to help users to reach the same conclusion they would
reach anyway, but faster and more conveniently. These systems
are based on large databases of single gene/biomarker—MTA
parings prioritized based on the evidence level of the evidence
selected by a team of experts who perform the literature search
and curation21. Some of these systems use AI for text recognition
(natural language processing, NLP) to automatize the medical
literature search before human curation, but this does not mean
that they also use AI-based drug-assignment algorithms22.
There are ongoing efforts to develop more complex decision

support systems. The “simplified interventional mapping system”

(SIMS) developed by Worldwide Innovative Networking (WIN)
consortium offers a systematic approach for the prioritization of
druggable targets (“interventional points”) using a scoring system,
which reflects the type and extent of changes in genes connected
to a group of targets23. The approach was tested in the WINTHER
trial24. Results indicated that besides the “matching score” of the
DNA alterations, the ranking of targets using the WINTHER
algorithm calculating the extent of mRNA expression in the tumor
compared to the corresponding normal tissue also correlated with
the clinical benefit of MTAs24. The WINTHER trial results also
support the prioritization of targets using mathematical algo-
rithms based on the complex biology of cancer as predictive
diagnostic tools instead of using single biomarkers.
PreciGENETM (CureMatch Inc., San Diego, CA, USA) primarily

focusing on the identification of effective combination thera-
pies is an important example of rule-based AI-assisted
computational tools like DDA with the Realtime Oncology
Treatment CalculatorTM25.
We expect that more and more solutions similar to these

systems will emerge in the next few years. We also expect that
large randomized clinical trials will compare different AI-based
treatment assignment algorithms against another26,27. The goal
will be to find the right predictive AI algorithm for every MTA in
each indication. AI systems will never “make decisions.” The
predictive scores generated by these systems will eventually help
us make better treatment decisions in the next, digital age of
precision oncology.

METHODS

Data collection and analysis

The software of the DDA system used in this study was the Realtime

Oncology Treatment CalculatorTM version 1.64. PFS and OS data were

represented by Kaplan–Meier estimation and the survival end points were

compared using log-rank tests. Hazard ratio was computed by log-rank

method. T-test was used to determine the significance of difference

between the means of groups. Statistical analysis was performed using the

NumPy28, SciPy29, and lifelines30 modules of Python 3.7.

Human research

The study was conducted in accordance with the Declaration of Helsinki,

and the protocol was approved by the Ethics Committee of the National

Institute of Pharmacy and Nutrition (approval ID: OGYEI/50268/2017). The

SHIVA01 clinical trial was approved by the Ile-de-France ethics committee

and informed consent was obtained from all human participants. The trial

was carried out in accordance with the Declaration of Helsinki, the Good

Clinical Practice guidelines of the International Conference on Harmoniza-

tion, and relevant French and European laws and directives.

Fig. 5 Progression-free survival (PFS) and overall survival (OS) of
patients treated with molecularly targeted agents (MTAs) in
different digital drug-assignment (DDA) AEL score tiers.
Kaplan–Meier estimates of a progression-free survival (PFS) and b
overall survival (OS) of patients treated with matched molecularly
targeted therapy in SHIVA01 according to DDA AEL tiers.
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