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Abstract. In this paper, a unified method is presented: (i) to model delami- 

nated stiffened laminated composite shells; (ii) for synthesising accurate mul- 

tiple post-buckling solution paths under compressive loading; and (iii) for 

predicting delamination growth. A multi-domain modelling technique is used 

for modelling the delaminated stiffened shell structures. Error-free geomet- 

rically nonlinear element formulations - a 2-noded curved stiffener element 

(BEAM2) and a 3-noded shell element (SHELL3) - are used for the finite el- 

ement analysis. An accurate and simple automated solution strategy based on 

Newton type iterations is used for predicting the general geometrically nonlin- 

ear and postbuckling behaviour of structures. A simple method derived from the 

3-dimensional J-integral is used for computing the pointwise energy release 
rate at the delamination front in the plate/shell models. Finally, the influence of 

post-buckling structural behaviour and the delamination growth on each other 
has been demonstrated. 

Keywords. Multi-domain modelling; quasi-conforming elements; delamina- 

tion growth; J-integral; automated post-buckling solution. 

1. Introduction 

The laminated and stiffened structures are particularly prone to interlaminar debonding 

(delamination) type of failures since the interlaminar bond strength is much less when 

compared to in-plane laminar strength. Such delaminations can be caused, at any time, 

under several design and operating conditions e.g. large transverse stresses, tapering of the 

laminate, clamping in a vice, drilling a hole, low velocity impact such as dropping a tool 

during maintenance etc. (figure 1). In addition, structural fatigue and environmental factors 

like moisture, temperature and corrosion often weaken the interlaminar bond-strength and 

hence accelerate formation/propagation of the delaminations. 
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Figure 1. Causes for initiation and growth of delamination failure- (a) Presstressed 
plates; (b) impact/indentation loads; (e) transverse shear/normal stresses; (d) in-plane 
shear/normal stresses; (e) laminate tapering; (f) ply-failure under operating conditions. 
The respective causes for delamination are as follows. (a) Hygro-thermo-mechanical 
compressive stresses due to fabrication and/or drawing defects; (b) plastic zone under 
impact load leading to material failure and local partial layer separation. The resulting 
compressive layer forces can cause delamination; (c) local bonding material failure 
due to high transverse stresses often cause delamination, particularly near the free 
edges, plies debond in the opening mode;, (d) high in-plane stresses cause ply-failure, 
which in turn accelerates the delamination process; (e) high local bending stress 
concentrations in the encircled zones may force the laminae to separate at the corners; 
(f) as in (d), ply failure under any operating conditions accelerates the delamination 
process. 

The delaminations are particularly dangerous because: they generally reduce the overall 

laminate strength due to material discontinuity; they act as imperfections when located 

eccentrically, and thus substantially reduce the overall buckling strength of the laminate; 

and they grow rapidly under in-plane compressive loads - since the delamination often 

buckles locally much earlier than global structural buckling - resulting in a progressive 

reduction in laminate strength and increase in delamination growth rate, finally leading to 

fatal failure. Also, stiffened delaminated structures can buckle in multiple levels - local 

delaminate, laminate, panel, stiffener and structural - often accelerating the delamination 

growth dramatically. 

In addition, delaminations are very often hidden and escape simple inspection and 

have very high potential to grow under operating conditions. Thus an a priori assess- 

ment of: the nature and magnitude of delamination that could be induced under 

specified circumstances; the growth rate of the delamination under specified loading en- 

vironments and structural instability; the reduction in laminate strength due to the pres- 

ence and the growth of a delamination; and possible methods for avoiding the damage 
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and/or arresting/controlling the damage growth, become essential so that the designer 

can build these considerations into his basic design. Accordingly, these problems have 

been addressed widely over the last two decades from both experimental and theoret- 

ical points of view. In this paper we shall limit ourselves to a reliable computation of 

the post-buckling structural behaviour and the pointwise energy release rate distribu- 

tion along the delamination front in a laminated composite structure. The energy re- 

lease rate computed here can be used as an effective feedback to the designer to check 

whether an existing delamination is a potential danger from the structural integrity point 

of view. 

Though the delaminations are prone to grow under a variety of loading configurations, 

it is understood that they are extremely sensitive to the buckling loads. Under such loads, 

they can reduce the overall buckling strength of the laminate considerably and can also 

grow dramatically under postbuckling loads, leading to structural failure. Very often, de- 

laminated composites can be modelled as problems of plate-bending, using any of the 

theories of plates and shells that are well-established. Furthermore, laminate deformation 

is mostly elastic and hence the different energetic measures established in linear elastic 

fracture mechanics are meaningful for characterising delamination growth. Use of these 

energetic measures in conjunction with an analysis of the post-buckling behaviour of the 

delaminated plates often results in a simple a posteriori expression for the pointwise energy 

release rate distribution along the delamination front as demonstrated in this paper. Thus, 

modelling and analysis of coupled failure mechanisms in stiffened delaminated structures 

- which were once formidable - are being reconsidered with renewed confidence in recent 

years. 

Most of the researchers in the past have concentrated on the very thin near-surface recti- 

linear and/or circular shaped delaminations in a homogeneous isotropic material medium 

(Kachanov 1976; Chai et al 1981; Bottega & Maewal 1983; Evans & Hutchinson 1984; 

Yin 1984, 1985). This is because, under certain assumptions (known as 'thin film' assump- 

tions), the deformations of such delaminations can be studied, in isolation, as problems of 

clamped plates under compressive loads and one can obtain quasi-analytical estimates of 

delamination growth under simple loading conditions e.g. biaxial load. Recently, attempts 

were made to obtain solutions for elliptic delaminations e.g. using the Rayleigh-Ritz tech- 

nique and certain geometric constraints to couple the post-buckling large deflections and 

membrane deformation (Flanagan 1988). Generally, such solutions are valid for very thin 

delaminations in thick laminates. But, most of the practical laminate panels, for example 

in aerospace applications, are generally thin and very often the delaminate thickness is 

comparable to the total laminate thickness or to the base thickness (see figure 2). Also, 

such solutions (e.g. Evans & Hutchinson 1984) are generally based on assumptions of 

quasi-linear local post-buckling behaviour of the delaminate plate and hence are valid 

only in the vicinity of the range of the load for local buckling of the delaminate. In prac- 

tice, however, the local delaminate post-buckling behaviour is very nonlinear; and also the 

laminated panels are often allowed to buckle even globally. Finally, the presently available 

analytical or quasi-analytical solutions are limited to a single delamination of a standard 

shape and location only in plates of standard topology and boundary conditions. 

Today, one would turn to the finite element method for a general computational anal- 

ysis of arbitrarily shaped stiffened composite laminates. However, an analysis of the 
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growth of embedded delaminations requires 3-dimensional modelling (Whitcomb 1989) 

associated with a sophisticated geometrically nonlinear post-buckling solution capabil- 

ity. Hence, if a finite element method is used, the analysis becomes extremely expensive 

from both computer memory and time points of view. Even though one can think of 
a global 2-dimensional post-buckling analysis and a local 3-dimensional growth analy- 

sis using established methods such as alternating technique (Nishioka & Atluri 1981), 

virtual crack extension technique (Parks 1974), modified crack-closure technique (Ry- 

bicki & Kanninen 1977), etc. the procedure is more involved and still expensive to 

use extensively for each incremental solution in a cycle of finite element post-buckling 
solutions. 

In the early 80s, a cost-effective one-dimensional model - the so-called multi-plate 

model - was proposed to model a laminate with a single delamination (Chai et al 1981). 

This procedure, however, can be extended to handle multiple delaminations of differ- 

ent shapes and locations in general composite plates and shells as well (Naganarayana 

et al 1995). Here, the delaminated structure is modelled as an assembly of three distinct 

parts, namely, laminate, base and delaminate (figure 2). The well-established theories 

of plates/shells can be readily used for modelling each of the three plates. Normally, 

the same plate theory is used to establish the continuity conditions at the joint between 

them at the delamination front. However, the one-dimensional method presented in Chai 

et al (1981) for computing the energy release rate uses a simple numerical derivative of 

the total potential energy and hence requires two computations - one for crack diame- 

ter 2a and another for the extended crack diameter 2(a ÷ da). This makes it cumber- 

some and expensive to use in practice extensively, especially for 2-dimensional planar 

delaminations of arbitrary shapes and locations. Today, reliable energy-based parameters 

(such as the J-integral, the equivalent domain integral etc.) and computational techniques 

(such as the alternating methods, virtual crack extension, modified crack closure etc.) 

are established in the field of linear elastic fracture mechanics for predicting the crack 

growth in a much simpler fashion. Recently, some of these techniques were extended 
for characterising delamination growth in a multi-plate model, e.g. virtual crack exten- 
sion method (Gilletta 1988), modified crack closure technique (Whitcomb & Shivaku- 

mar 1989), VCCTS (virtual crack closure technique step-by-step) approach (Tsao et al 

1991). 

In this paper, we consider the following 3-dimensional energy-based parameters to 

derive simple expressions for the pointwise energy release rate at any point on the front 

of an arbitrary-shaped planar delaminations in composite laminates: the J-integral (Rice 

1968) computed along a closed surface of an infinitesimal radius enclosing the crack tip; 

and the equivalent domain integral (Nikishkov & Afluri 1987) computed over a finite 

annular volume with the inner surface of an infinitesimal radius enclosing the crack tip. 

These parameters are suitably modified for the present problem of plate/shell flexure; 

and using assumptions that characterise the delamination growth and plate/shell flexure, 

simple expressions are derived for the pointwise energy release rate distribution along the 

delamination front (Naganarayana & Atluri 1995a,b). The techniques presented here, for 

delamination growth prediction, can be used in an a posteriori sense in conjunction with 

any analytical/computational method of post-buckling analysis of plates that can take care 

of appropriate multi-point constraints at the delamination front. However, in this paper, an 
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in-house finite element software- NONCAT: NONlinear Computational Analysis Tool for 

structural analysis (Huang et al 1995) - incorporating curved stiffener and shell elements, 

an automated nonlinear post-buckling solution, and multi-domain modelling technique, is 
used for the analysis. 

Here, the multi-domain modelling technique (Naganarayana & Huang 1995) is used to 

model the delaminated plates/shells. A 3-noded triangular quasi-conforming curved shell 

element (SHELL3) is used for modelling the delaminated sublaminates and the nonde- 

laminated plate/shell. A 2-noded curved beam element (BEAM2) is used for modelling 

the stiffeners. The stiffener element (Naganarayana & Prathap 1996) is developed based 

on the Euler-Bernoulli theory of beam flexure in a curvilinear coordinate system. The 

shell element (Huang et al 1994) is based on a classical shallow shell theory, again, de- 

scribed in a curvilinear coordinate system. The causes for membrane locking and nonlin- 

ear locking are identified and eliminated from the element formulations, using reduced 

integration for the membrane strain energy (Naganarayana et al 1995). The transverse 

shear strain energy is included into the formulation explicitly in accordance with the 

Reissner-Mindlin theory of plate flexure with the transverse shear strains as nodal de- 

grees of freedom. Therefore the elements do not sense shear locking either. In case of 

the shell element, the C°-continuity is exactly preserved for the field variables. However, 

the C 1-continuity required for the transverse deflection across the element boundaries is 

achieved a posteriori in a weak form - i.e. in a quasi-conforming sense (Huang et al 

1994). 

An automated incremental general nonlinear and post-buckling Newton type solution 

strategy, incorporating an arc-length controlled load incrementation, and branch switching 

based on a linearised asymptotic solution (Huang & Atluri 1995), is utilised while using 

the displacement type finite element model. The stresses are post-processed for each load 
increment, to obtain pointwise energy release rate distribution along the delamination front, 
by using the adapted J-integral and equivalent domain integral approaches (Naganarayana 

& Atluri 1995a,b) mentioned above. 

In this paper, we present the complete computational strategy for structural and finite 

element modelling of delaminated and/or stiffened laminated plates/shells; automated ge- 
ometrically nonlinear and post-buckling solution strategy for the finite element model; and 

delamination growth assessment in terms of the point,vise energy release rate distribution 

along the delamination front. Different aspects briefly discussed, are related to structural 

modelling, finite element formulations and possible errors involved, solution strategies 

that can pass the instability points and switch the solution branches if necessary, energy 

release rate prediction and interaction between post-buckling structural deformation and 

delamination growth. Also, the structure of the software NONCATS that involves these 

strategies is briefly explained. Finally, a few examples are presented to demonstrate how 

the present computational model functions. 

2. Structural modelling 

Here, for the sake of convenience and simplicity of presentation, we shall consider a 

laminated composite shell with a single delamination of an arbitrary shape and location, 
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subjected to arbitrary compressive loads (figure 2). The structure is modelled using the 

multi-domain model (Naganarayana & Huang 1995) wherein the delaminated shell is 

assumed to be assembled with three distinct shells: (1) Laminate: nondelaminated zone 

~1) ;  (2) Delaminate: thinner side of the delaminated zone g2(2); and (3) Base: thicker 

side of the delaminated zone f2 (3). The three shells, f2 (i), i = 1, 2, 3 respectively, have 

midsurface areas ¢4 ~i); thicknesses t (i); boundaries 0 f2 ~i); and midsurface boundaries 0,4 (i) . 

The delamination edge is denoted by F. The assumptions of the Reissner-Mindlin theory 

of plate bending are used for modelling each shell and the joint between them. Thus, for 

each shell, the 3-dimensional displacement field (U = {U1 U2 U3}) can be expressed 

in terms of the corresponding midsurface displacement (u = {Ul u2  u3})  and rotation 

(0 = {01020}) fields as, 

U (i) (xot, x3)  : u (i) (xot) - x~ i) 0 (i) (xet), (1) 

where x(~ i) (o~ = 1, 2) are the in-plane curvilinear shell coordinates and x~ i) is the thickness 

coordinate for the ith (i = 1, 2, 3) shell (figure 2). The structural continuity at the delam- 

ination front F is maintained by assuming the deformation to be unique at the junction of 

the three shells i.e. U ~1) = U (2) = U (3) on F. In other words, at the delamination edge, 

the mid-surface degrees of freedom of the delaminate and the base shells are assumed to 

be related to those of the nondelaminated shell by, 

(1) h(i)o(1) u (i) uot q- 
at F 

(2) 

where h (i) is the distance of the midsurface of the ith shell from the laminate midsurface 

(figure 2). It can be noted that the above continuity conditions at the delamination edge 

can be modified appropriately when using any other alternative plate/shell theory (e.g. 

higher order shear deformable theory) or by choosing appropriate heuristic multi-point 

constraints based on experience. 

Similarly, the beam (stiffener) degrees of freedom are related to the shell degrees of 

freedom such that the transverse variations of deformation across the shell and beam 

section are consistent with the Reissner-Mindlin theory: 

u =4, 
=0 s, 

b s s 
u~ = ua + e0~, (3) 

where superscripts b and s represent beam and shell degrees of freedom respectively, and 

e is the eccentricity of the stiffener's neutral axis with reference to the neutral surface of 

the shell. 

In this paper, a 2-noded curved beam element (BEAM2) (figure 3) and a 3-noded curved 

shell element (SHELL3) (figure 4) are used for modelling stiffened structures. The elements 
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.._.---4 
2 

Figure 3. BEAM2: 2-noded curved 
stiffener/beam element. 

are described in a curvilinear coordinate system and are based on a quasi-conforming 

formulation (Huang et al 1994). 

In the current formulation, a classical Cl-continuous field description is used and the 

transverse shear strain components are exclusively introduced as generalised degrees of 

freedom conforming with the Reissner-Mindlin theory: 

Y~3 = (w,~ + b ~ u ~ )  - Oa = dp~ - 0~, (4) 

where ba~ is the curvature tensor of the shell's mid-surface. Substituting (1) and (4) in the 

regular 3-dimensional strain tensor, we get the membrane, the flexural and the transverse 

shear strain components respectively as: 

= + - 

X~fl  = l(yct3,fl  +Yfl3,u ) -- ½(q~ot,fl -{-flfl,ct ), 

~ct3 = lyot3. (5) 

The finite element formulations, hence, use the seven degrees of freedom - ul, u2, w, 

Wl, w2, Y13, )/23 - to define the strain components and hence the structural deformation. 

It can be observed here that the curved shell element (SHELL3) needs C°-continuous 

interpolation functions (e.g. Lagrangian) for the inplane displacement components (u 1, 

U2) and the transverse shear strain components (Y13, Y23) and C l_continuous interpolation 

functions (e.g. Hermetian) for the transverse deflection (w). A compatible field-description 

is used in the curved beam formulation as well. 

5 

Y 

Figure 4. SHELL3: 3-noded curved 
shell element. 
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It is interesting to note here that the transverse shear strains vanish in a variationaUy 

correct sense as the structural thickness decreases and the effect of the transverse shear 

deformation vanishes from the flexural strains in a consistent manner. Thus, such an element 

formulation is free of shear locking. 

However, these elements suffer from membrane locking when used to model curved 

structures, particularly in the regime of inextensional bending (Babu & Prathap 1988). 

This is due to the inconsistent participation of the terms b~¢~ w with reference to the basic 

membrane strains ½(u~,~ + u~,~). Similarly, inconsistent participation of the nonlinear 

terms ½q~a~b~ with reference to the basic membrane strain components lead to the so-called 

nonlinear locking (Naganarayana & Prathap 1996) when used to model geometrically non- 

linear systems in the limits of inextensional bending. In the curved beam and shell elements 

considered here, the membrane strain energy is computed using a reduced order of Gaus- 

sian quadrature so that both the locking phenomena are eliminated from these elements 

(Naganarayana et al 1995) based on the understanding gained from a one-dimensional 

beam element formulation (Naganarayana & Prathap 1996). 

The shell element is required to satisfy" C 1 -continuity requirements (for the transverse de- 

flections) over the element domain as well as across the element boundary. C 1_continuous 

shape functions (e.g. Hermitian) are used to interpolate the transverse deflection over the 

element domain. The Cl-continuity requirements across the element boundary are how- 

ever satisfied a posteriori in a weak form - quasi-conforming field-description - using the 

Hu-Washizu variational principle (Huang et al 1994). 

As mentioned in the previous section, the sublaminate degrees of freedom (at the de- 

lamination front) and the stiffener degrees of freedom are related to the corresponding 

laminate degrees of freedom using the multi-point-constraints in accordance with the 

Reissner-Mindlin theory of plate flexure. One may refer to Naganarayana et al (1995), 

Naganarayana & Prathap (1996) and Huang et al (1994) for detailed description of the 

element formulations and finite element modelling/analysis of the delaminated stiffened 

composite structures. 

3. Delamination growth prediction 

Delamination is a typical form of failure in laminated structures occurring purely due to 

failure of the intedaminar bond. Normally, in laminated composite structures, interlam- 

inar bond strength is much less when compared to laminar strength. Thus, unlike other 

forms of failure (e.g. inter-lan~inar cracks, spalling etc.) which may start and grow un- 

der severe loads and/or fatigue, delaminations may take place at much lower loads and 

could grow very rapidly even under normal maintenance and operating conditions (fig- 

ure 1) leading to structural failure. In addition, they very often escape visual inspection. 

Therefore, extra care has to be taken for containing the delamination formation and its 

growth. 

In this section, a computational model is derived to predict delamination growth in 

terms of pointwise energy release rate. It is assumed that delaminations start and grow in 

the interlaminar bond region. Therefore, the delamination and its growth take place in a 
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homogeneous medium so that the growth can be assumed to be self-similar. Therefore, the 
J-integral (or the equivalent domain integral) representing only self-similar crack growth 
is meaningful in the present case. Here, the 3-dimensional J-integral and the equivalent 

domain integral are used to compute the strain energy release rates. 

The pointwise energy release rate for 3-dimensional self-similar crack growth, (G(F)), 

is defined as (Atluri 1986) 

G(F)AF----lime_.+0 JAe[ [Wnl-6afihfl~ldA 
aOo~ dA + fA a=25-gXl - fA26 2Oa@1dA, (6) 

where, or, fl = 1, 2, 3; Ae is the area of the tube of radius e enclosing the crack front; AI 

and A2 are the areas covering the ends of the tube (figure 5); and 6, 0 and h are defined 

in the crack tip coordinate system R (figure 2). 

For self-similar crack growth in homogeneous media, the path-independence of the J-  

integral is maintained (Naganarayana & Atluri 1995a,b) and hence the infinitesimal tube 

enclosing the crack edge can have a cross-section of any shape. Considering a rectangular 

tube enclosing the delamination front and passing through the nearest stress recovery points 

(S (i)) of the adjoining elements (figure 5); applying the assumptions of the theory of plate 

flexure that is used to model the laminate and the delaminated sublaminates; and carrying 

out the integration through the thickness for each sublaminate, we get the pointwise energy 
release rate as a simple function of the stress resultants, the displacement gradients and 

the strain energy densities at the points iS (i)) as, 

~g(F) =- beg[~r _ (]QI~t~,I _q_ ~ / 1 ~ , 1  +" 013t~3,1)], (7) 

where beg(.) = (*)gO~ - (*)g(2) - (*)go) and (*)g(O corresponds to the quantities (,)  

evaluated at specified points (generally Gauss points) on the annular surface. 

It is interesting to observe here that, if the rectangular tube is shrunk to the surface along 

the thickness coordinate at the delamination edge, we get the pointwise energy release rate 

in terms the nodal values as, 

~n(l-') = ~n[r~l/" -- ()Qlott~ot,1 -Jr-/~S/lc~Oce,1 q'- {)13t~3,1)l, (8) 

where ben (*) = ( * ) n ( 1 )  - ( : g ) n ( 2 )  - ( : ~ ) n ( 3 )  and (*)n(o corresponds to the quantities (,)  
evaluated at specified nodes. 

However, it is a well-known fact that the stresses, displacement gradients and strain 

energy density are more accurate at the optimal stress recovery points (Bartow 1976; 

Prathap 1993) than at the nodes in finite element analysis. Therefore, Gg(F) (7) with the 

J-enclosure passing through the Barlow points is always the most reliable estimate. 

The local stress resultants (lq, M, Q) and displacement gradients (Lro~,/~) can be obtained 

from their global Cartesian counterparts (N, M, Q; Uot,/~), by applying the regular tensorial 

transformations between the reference coordinate system x and the crack tip coordinate 

system i .  
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Figure 5. J-integral for self-similar delamination growth in a plate/shell model: (a) 
The J-enclosure; (b) the finite element model; (c) the modified J-enclosure for the 
shell model. 

Recently, the 3-dimensional equivalent domain integral (EDI) (Nikishkov & Atluri 1987) 

interpretation for the J-integral was modified to the present problem by choosing appro- 

priate enclosures around the crack tip and the so-called s-functions in accordance with 

the Reissner-Mindlin theory of flexure (Naganarayana & Afluri 1995a). Then, we get 

the pointwise energy release rate as a weighted average function of the stress resultants, 
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the displacement gradients and the strain energy densities in the elements adjacent to the 
delamination edge, as, 

Ge(1P) --- . ~ e [ I i / -  (/91c~/~c~,1 -t- AIl{~0{z,1 -t- Q13ti3,1)],  (9) 

where 

1 fA (*)dA 1 f~ (*)dA 1 fa (*)dA. 
"~'e(*) = ~ 1  1 -- A--2 2 -- A T  3 

Again, by applying the required tensorial transformations on the global stress resultants 
(N, M, Q) and displacement gradients (U~, ~), their counterparts in the crack tip coordinate 

system (1~1, 1(1, (~; 0~,13 ) can be computed. 

Thus the pointwise energy release rate derived from the equivalent domain integral 

approach may be more meaningful when compared to that derived from the regular J-  

integral approach since the former can capture the variation of different parameters along 

the normal to the crack front in the vicinity of the crack tip in a better fashion. However, 

when a constant stress/strain element is used to model the problem, the energy release rate 

computed in (9) becomes identical to that derived directly from the J-integral ((7) and 

(8)). 

The present exercise provides the energy release rate as a design parameter to estimate the 

critical loading condition for a laminated composite structure with a specified delamination 

embedded in the structure. The critical energy release rate that an interlaminar bond can 
withstand may be obtained by an appropriate material database. 

4. Incremental nonlinear and post-buckling solution strategies 

In a delaminated structure, the delamination normally acts as a geometric imperfection 

such that the structure is susceptible to buckling under compressive loads. Very often, the 

delarninate configuration is such that the delaminated sublaminate(s) buckles locally much 

earlier to laminate/structural buckling. The locally buckled sublaminates will often lead to 

premature global buckling since the original geometric imperfections are now highly ac- 
centuated. Thus, the structure may experience multiple post-buckling deformations which 

are highly coupled with each other and simultaneous occurrence of different types of insta- 

bilities - limit or bifurcation points. Also, post-buckling structural performance interacts 

with the delamination growth as well. Therefore, an automated incremental nonlinear so- 

lution strategy becomes very important for tracing the multiple post-buckling deformation 

modes in a delaminated stiffened composite structure. 

In the finite element context, such an exercise normally involves setting the increme:]tal 

equilibrium equations for the structure, appropriate iteration techniques (e.g. Newton- 

Raphson) with a regular solver (e.g. Gauss elimination) for obtaining incremental solu- 
tions, appropriate initial load increment to avoid divergence and to ensure progressive path 

tracing, automated identification and classification of singular points (limit points and bi- 

furcation points), automated branch switching to trace the desired post-buckling solution in 

case of bifurcation problems, monitored equilibrium increments for assured convergence 

in spite of the presence of singular points, and finally obtaining the required incremental 

solutions (displacements and stresses). 
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Generally, in incremental nonlinear finite element analysis (FEA), new incremental 
solution is sought at the unknown point (q + Aq, X + A)0 by solving the incremental 
equilibrium equation iteratively at a known solution point (q, X) and the convergence of 

the solution is verified using the total equifibrium condition at the known solution point. 
In FEA, the total equilibrium condition at the known point is given by, 

[Ks]. q + X F  = O, (10) 

where [Ks] is the secant stiffness (or simply stiffness) matrix for the system; and, the equi- 

librium at the unknown point is equivalently represented by the incremental equilibrium 

equation at the known point, 

[Kt]. A q -  AXF = O, (11) 

where q and X are the nodal displacement vector and the load factor at the known solution 

point while Aq and AX are their incremental values; F are the discretized reference nodal 

forces (typically as specified in the input for the problem); and [Kt] is the tangent stiffness 

matrix of the system. 

4.1 Iterative nonlinear solution 

In a nonlinear system, the incremental solution, (11), is sought in an iterative sense (e.g. 

Newton-Raphson iterations) and the total equilibrium condition, (10), is used to verify 

convergence of the incremental solution. In every increment, the new solution is sought 
by incrementing the load factor by a specified step as, 

=  n-1 + 1, 

1 Aqn 1 ' (12) qn = qn-1 q- 

where, ( , ) i  represents the quantity ( ,)  corresponding to the ith iterative cycle during 

nth incremental solution and (*)n represents the converged quantity (,)  at the end of nth 

increment. 

This step involves selection of appropriate initial load increment AXn 1 for the first iterative 

cycle of the incremental solution. The choice of the initial increment should reflect the 
current degree of nonlinearity. If it is too large the solution converges slowly or may 

not converge at all. If it is too small, the solution becomes inefficient from a computer 
response point of view. Several strategies are presented .in literature for automatic initial- 

increment-control based on convergence history (Crisfield 1981; Ramm 1981) and the 

so-called current stiffness parameter (Bergan et al 1978; Chan 1988). In this paper, the 

initial arc-length increment is chosen based on convergence history and the previous initial 

arc-length increment so that the cumulative displacements and the load level at the end of 

the first iteration are, 

A~ln_l(Sn-l'Sn-l)l/2 ( le "]~' 

~, l :~ ,n_  1 -4- (Sn :Sn) 1-~ \In-l,] ; 

A~l_l(Sn-l'Sn-1)l/2( Ie ~Y 
q n l : q n _ l  4- -(Sn :Sn) i-~ k i n - l /  "Sn, (13) 
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Ii- 

q 

where, Sn is the reference solution corresponding the reference load vector Fn computed 

as Sn ----- [Kt ]-1Fn, Ie is the expected number of iterations for convergence in general, In-1 

is the number of iterations taken for convergence in the previous incremental solution, and 

~/is a parameter that takes a value from 0.5 to 1.0. 

Invariably, the above solution does not satisfy the total equilibrium condition (e.g. 

(10)) when the structural behaviour is nonlinear, and hence, additional iterative cycles 

are required to restore the equilibrium. In this paper, modified Newton-Raphson iterations 

are used for solving the incremental equilibrium equations, (11). It can be seen that the 

conventional iteration strategy at constant load increment exhibits low convergence rate 

and may not converge near a limit point. On the other hand, if the load increment is allowed 

to vary as in figure 6, convergence rate is enhanced and the limit points could be traversed 

successfully since the solution is forced to converge along a constrained convergence 

path. Several equilibrium iteration control strategies - pure displacement control (Powell 
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& Simons 1981; Bergan & Mollestad 1984), hybrid increment or arc-length control (Riks 

1979, 1984;Wempner 1979; Crisfield 1981), minimum residual force norm (Bergan 1980), 
minimum residual displacement norm (Chan 1988), constant external work norm (Powell 

& Simons 1981), and constant weighted response norm (Gierlinski & Smith 1985) - have 

been proposed in literature with varied succe~. 
Here, the most efficient strategy of all - arc-length continuation - is used for deter- 

mining the load increment at each equilibrium iteration. Then, the constraint equation for 

computing the load increment during the current iteration (A)~/n) is, 

(q/n - qn-1) " (qi -- qn-1) + 0Jn -- )~n-1)2Fn " Fn = (ALnl)2Sn "Sn, (14) 

where the current load parameter and displacement vector are expressed, respectively, as, 

= + 

q / =  q/-1 + Aq/ .  (15) 

The quadratic equation resulting from substituting (15) into (14) can be readily solved to 

compute the current load increment A~. 

4.2 Automated post-buckling path tracing 

Automated post-buckling involves: detection of possible unstable behaviour and the choice 
of appropriate initial-increment direction so that the solution path is not retraced; classi- 

fication of the detected unstable behaviour of the structure; and branch-switching and 

computation of the post-buckling solution(s). 
In the present work, a singularity point is detected during the current increment if the 

determinant of the tangent stiffness matrix (llKtlln) changes its sign. Once the tangent 

stiffness matrix is decomposed as, (Kt)n = (L.  D.  L)n, we have, 

ndof 

IlKtl[n = I-I (Dll)n. (16) 
l=1 

Two methods are known for classifying the detected singularities as limit points and 

bifurcation points: the first based on the current stiffness parameter (Brendel & Ramm 
1980) and the second on the properties of the so-called generalised deflection (Huang 
& Atluri 1995). Here, the identified instability points are classified as limit points or 

bifurcation points using the later strategy. 

If the identified instability points are limit points (snap-through/snap-back buckling), 

the arc-length controlled equilibrium iterations will successfully trace the post-buckling 

solution path. Several methods have been proposed for automated branch-switching in 

post-buckling structural analysis - e.g. perturbation method (Wagner & Wriggers 1988) 

and linearised asymptotic solution technique (Huang & Atluri 1995). Normally, if the 

instability point is a bifurcation point, its location is computed and then, based on an 

eigenvalue solution, appropriate perturbation is applied to follow the desired post-buckling 

branch in an asymptotic linear sense. 

The nonlinear fundamental state between two solution points n - 1 and n in the neigh- 

bourhood of a bifurcation point is linearised to obtain the asymptotic solution (Koiter 1945; 
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Huang & Atluri 1995). After linearising the nonlinear path between n - 1 and n, consider 

an adjacent (asymptotic) state ~i  near the fundamental state q/n: 

-k  k k - I  ~ k 
qn = qn + r/k = qn + ~-kAqn + Ok- (17) 

Substituting (17) into (10), rearranging the tangent stiffness components that are inde- 

pendent, linearly dependent and quadratically dependent on the linearised load parameter 

~-k = (~kn -- ~-n- 1 ) / (~-n -- ~-n - 1 ) as K0n, KLn, Kun respectively, and applying the condition 
of buckling at load level )~k, we get the following iterative equations for the eigenvalue 

problem: 

K0n "Ok : ~k(--KLn -- ~k - lKNn)r lk ,  (18) 

where ~-k-1 is the approximate eigenvalue in the previous iteration. The approximate 

critical buckling load factor ~.cr obtained can be used to compute the eigenvector ¢/which 

can be normalized using the following condition: 

¢/. KOn" ~ /=  1. (19) 

Note that, since the problem is linearised, the solution understandably consumes much 

less computer time. 
A linear combination of the eigenvector ¢/and its orthogonal counterpart p is used to 

excite an internal perturbation in the nonlinear fundamental solution path so as to switch 

to the desired secondary post-buckling paths (Huang & Atluri 1995). 

Finally, several convergence criteria - based on several residual displacement and/or 

residual force norms - are available in literature. Here both displacement and force based 

norms are used for verifying convergence of nonlinear solutions. One may refer to Na- 

ganarayana (1995) for a unified presentation of different strategies involved in a completely 
automated post~buckiing solution for finite element analysis of geometrically nonlinear 

structures. 

5. NONCAT: NONlinear Computational Analysis Tool for structural applications 

A finite element software is developed for general nonlinear analysis of stiffened delami- 

hated structures based on the formulation presented in this paper (Huang et al 1995) aided 

by simple pre- and post-processing. Figure 7 shows a schematic diagrmn of the software 

organisation. 

The element library incorporates shear-flexible curved 2-noded beam (BEAM2) and 

3-noded quasi-conforming shell (SHELL3) elements. The problems of locking are allevi- 

ated by using reduced integration for the membrane strain energy. The core finite element 

package is supported by general nonlinear solution tools. The solution module incorporates 

the Gauss elimination in a cycle of Newton-Raphson iterations. The load incrementation 
is automated using the arc-length continuation technique for optimal convergence. Detec- 

tion and classification of the instability points are also automated, based on certain specific 

properties of the generalised deflection and some simple heuristic rules. The solution au- 

tomatically switches the path based on asymptotic post-buckling theory if the detected 

instability is found to be of the bifurcation type. Finally, the solution is tested for conver- 

gence. If the solution does not meet the convergence requirements, the solution is sought 
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again with new appropriate initial load increments. Once the incremental solution has con- 

verged, the displacements are processed to get stresses, stress resultants and displacement 

gradients which are in turn used for computing the energy release rate distribution along 

the delamination front. 

Simple pre- and post-processing is provided using the graphical user interface GNU- 

plot. Topological modelling is done based on user-fed geometric data for the substructures 

and their connectivity. A finite element mesh generator is developed for finite element 
modelling in substructure level. The multi-point constraints satisfying the conditions of 
Reissner-Mindlin plate theory are incorporated to model the delamination front as well 

as stiffener-shell joints. The geometric and finite element models are interfaced with the 

GNU for graphical presentation. The results at the end of each load increment - nodal dis- 

placements, solution paths, stresses/stress-resultants, and energy release rate distribution 

along the delamination front - are again interfaced with GNU for graphical presentation. 

6. Numerical experiments: Coupled failure processes in delaminated structures 

In this section, the proposed finite element analysis strategy is validated using an available 

analytical solution for local buckling and delamination growth. Several numerical exper- 

iments have been conducted to establish the influence of several structural parameters 

on post-buckling structural behaviour and delamination growth (Naganarayana & Atluri 

1995c; Naganarayana & Huang 1995; Naganarayana et al 1995). Here the model is first 
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validated with reference to an available analytical solution and later a few salient numer- 

ical examples are considered to demonstrate the coupled failure processes - detrimental 

interaction between the geometric failure (local/global laminate buckling) and the material 

failure (delamination growth) - in a delaminated stiffened/composite structure. 

6.1 Model validation 

Here, we shall validate the finite element solutions with reference to an available analytical 

solution (Evans & Hutchinson 1984) using an isotropic square plate of edge length L with 

a central elliptic delamination. The plate is subjected to biaxial compressive loads and its 

boundary is assumed to be clamped against out-of-plane deformations. One quarter of the 

plate is modelled for the analysis by imposing appropriate symmetry conditions. 264 shell 

elements are used for the nondelaminated plate and 192 elements each are used for the 

delaminate and base plates. The reference applied biaxial compressive loads are assumed 

to be of unit intensity (FI = 1.0) and the equilibrium equations are solved at each load 

step for an applied load F = ~.FI, where )~ is the corresponding load factor. 

The structure is assumed to be isotropic with Young's modulus E = 6500 and Poisson's 

ratio v = 0.3. The laminate thickness is chosen as q = 0.05L. The numerical experiment 

is conducted for a near-surface circular delamination with t2/q = 0.01, a/b = 1.0 and 

a/L = 0.3. Assuming that the base plate and the nondelaminated plates are infinitely 

stiff when compared to the delaminated plate, the delaminated plate can be considered 

a clamped circular plate under the same radial compressive stress (Evans & Hutchinson 

1984). Then, the buckling strength of the delaminate plate (trc(- ~'~r El/q))  is given by 

~r¢ = 1.2233 ~ . (20) 

The local buckling strength of the delaminate plate obtained from the finite element analysis 

compares very accurately with the analytical estimate, (20) as shown in figure 8a. 

Further, assuming that the post-buckling deformation is axisymmetric and nearly linear 

in the neighbourhood of local buckling point, the pointwise energy release rate is given by 

(Evans & Hutchinson 1984), 

(1 - v2)t2 (a~ .-- aft), (21) 

where tr 0 (= L/71 / tl) is the actual stress level at which the energy release is being computed. 

The ratio, GF6/Grb, is plotted along the delamination periphery (0 = 0°-90 ° for the 

quarter circle) in figure 8b for the case of a very thin delaminate configuration (t2/tl = 

0.01). It can be observed that, ~FE is close tO Grb when the post-buckling loads are in 

the close vicinity of local buckling point (i.e. ~.* = ~'/~Jcr ~ 1.0). However, Grb is under- 

estimated when compared to ~FE e v e n  when )~ ~ )Jcr- This is because, in the present 

problem, though the delaminate plate is very thin when compared to the total laminate 

thickness (t2/tl = 0.01), the base plate is flexible as opposed to the rigid base as considered 

in Evans & Hutchinson (1984). 

The laminate is also thin when compared to its edge length, L (tl/L = 0.05). Hence, 

the finite element model represents reasonably flexible laminate and base plates as well. 
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The deviation increases as the buckling load increases beyond its critical value for local 

buckling of the delaminate plate. This is because, the analytical solution, (21), is based 

on the assumption of a quasi-linear post-buckling behaviour for the delaminate plate. 

But, in practice, particularly when the laminate is thin, post-buckling behaviour of the 

delaminate plate is highly nonlinear. Accordingly, much higher energy-release-rates are 

expected when compared to ~rb as shown in figure 8c. Note that, in figure 8c, actual stress 

(a) and displacement (A) are 'normalised' by the critical stress Crc and the associated 

critical inward radial displacement Ac respectively. 

6.2 Laminated shell with elliptic delamination 

In this section, a cylindrical laminated shell of edge length L with a central elliptic de- 

lamination (near the inner shell surface) under axial compressive loads is considered. The 

shell is assumed to be constituted with 32 orthotropic laminae of equal thickness stacked 

in a symmetric fashion: ( 0 / 9 0 / 4 5 / -  45)s. The shell thickness is assumed as tl = 0.05L. 

The delamination configuration is fixed as: a/L = 0.3; a/b = 1.5; and t2/tl = 1/32. 

The major axis of the delamination is oriented parallel to the shell axis. The material 

properties for each layer are: Es = 208000; E2 = 26000; v12 = v13 = v23 = 0.16; 

G12 ----- G13 = G23 = 7500. The reference load intensity is assumed to be unity. The shell 

boundary is clamped against out-of-plane deformation. Keeping the edge-length constant 

(RTz = L, where R is the radius of curvature and 7z is the angle included), the shell curva- 

ture is changed for studying its effects on the buckling and delamination growth behaviour 

of the structure. 

The post-buckling delaminate and base shell deformation (transverse deflection w at 

centroid) is depicted for typical shell curvatures in figures 9a-d. It can be observed that 

the critical load factor for local delarninate buckling increases as curvature increases in 

a linear sense (figure 9e). The global buckling strength of the structure also increases 

as the shell curvature increases; however, due to the presence of the delamination, the 

structure exhibits reduced global buckling strength (results not shown). The maximum 

and average pointwise energy release rates are presented for varying load factor for typical 

shell curvatures in figures 10a-d. It can be seen that the energy release rate decreases as the 

shell curvature increases (figure 10e). Thus local delaminate buckling and delamination 

growth are delayed ~in shells when compared to plates. 

6.3 Stiffened laminated plate with elliptic delamination 

In this section, we shall consider a laminated composite square plate of edge length L with 

32 orthotropic laminae of equal thickness and stacked symmetrically: ( 0 / 9 0 / 4 5 / -  45)s. 

The plate thickness is assumed to be tl = 0.025L. The central elliptic delamination 

configuration is fixed as: a/L = 0.15; a/b = 1.50; and t2/tl = 1/32. The material 

properties for each layer are taken as in the previous example. The plate is stiffened in 

both directions in a symmetric fashion as shown in figure 11. The distance between the 

stiffeners is assumed as d = L/2. The sectional properties of each stiffener in axial, inplane 

flexure, out-of-plane flexure, twisting, and transverse shear deformations are respectively: 

EA = 0.104 × 109, Elxx = 0.8667 × 109, Elyy = 0.2167 x 109, GJ = 0.39063 x 107, 
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Figure 9. Cylindrical shell: Effects of shell curvature on buckling/post-buckling 
performance: 0 = 0 ° (a), 60 ° (b), 120 ° (c) and 180 ° (d); (e) critical local buckling 
load factor. 

and GA = 0.375 x 106. The reference applied biaxial compressive loads are assumed 

to be of unit intensity. The plate boundary is clamped against out-of-plane deformation. 

Considering the symmetry of the problem, a quarter of the plate is modelled. 20 beam 

elements are used to model each stiffener; while 92 shell elements each are used to model 

the delaminate and the base plates, 264 shell elements are used to model the nondelaminated 

plate between the stiffeners, and 128 shell elements are used to model the rest of the plate. 

The numerical experiments are conducted for the plate with and without stiffeners at 

different eccentricities: 



568 B P Naganarayana and S N Atluri 

(o)  

3 0 -  

2O 

q 

I 0  

0 

0 

k 
I O0 200  3 0 0  4 0 0  500 

25 

(b) 

2 0  

15 

I 0 -  

5" 

0 

0 

~ m o x  

I O0 200  3 0 0  4 0 0  500 

;L 

(c) 

2 0 "  

q 
I 0 .  

0 
0 

I • i i • r 

I 00  2 0 0  3 0 0  4 0 0  5 0 0  

z 

2 5  1 " 

( d )  "I 

15 

I0 

0 - i , i i , , i 

0 I00  200 3 0 0  4 0 0  500 

(e) 
z s c  

2 0 -  

1 5 -  

I 0 -  

, 3 j O  ~ t , , o o 60 90 ~ 20 ~ 5o =80 

F i g u r e  10. Cylindrical  shell: Effects o f  shell  curvature on average and m a x i m u m  

energy release  rates - 0 = 0 ° (a),  60  ° (b),  120 ° (e) and 180 ° (d); (e)  average and 

m a x i m u m  energy release rates. 

Case-a: plate with no stiffeners, 

Case-b: plate with non-eccentric stiffeners, e = 0, 

Case-c: plate with stiffeners on opposite side of the delamination, e = -10 ,  

Case-d: plate with stiffeners on the same side of the delamination, e = +10. 

The post-buckling deflections of the delaminate and the base plates are depicted in 

figure 12. The delaminate buckling strength increases with the inclusion of a stiffener. 

It may be noted that stiffeners with zero eccentricity with reference to the plate provide 

maximum delay in the delaminate plate buckling. It is interesting to note that stiffeners do 
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not appreciably increase local buckling strength when the delamination is located in the 

opposite side when compared to the stiffeners (case-c). 

The average and maximum pointwise energy release rates are presented for the dif- 

ferent cases in figure 13. It can be observed that noneccentric stiffeners (case-b) con- 

siderably decrease both the average and the maximum energy release rates for a given 

load. However, introduction of eccentric stiffeners (case-c and case-d) lead to apprecia- 

ble increase in the average energy release rate for a given load. Though stiffeners on the 

same side as the delamination (case-d) slightly decrease the maximum energy release 

rate, stiffeners on the opposite side when compared to the location of the delamina- 

tion (case-c) increase the maximum energy release rate considerably. Thus, noneccen- 

tric stiffeners (case-b) delay the delamination growth appreciably. On the other hand, 

eccentric stiffeners (case-c and case-d) may lead to considerably accelerated delamina- 

tion growth. Thus from both geometric and material failure points of view, non-eccentric 

stiffeners are preferable while reinforcing a delaminated structure. However, in most 

aerospace applications, the stiffeners are located internally for aerodynamic requirements, 

and the external surface is highly susceptible to loads causing delaminations. Thus, re- 

suits for case-c appear to be the most critical from practical considerations. Similar 
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behaviour was observed With reference to stiffened laminated shells (results not 

shown). 

7. Conclusions 

The laminated and stiffened structures are particularly prone to interlaminar debonding 

(delamination) type of failures since the inteflaminar bond strength is much less when 

compared to in-plane laminar strength. The delaminations are very dangerous since they 
drastically reduce laminate strength, particularly its buckling strength. In addition, the 

delaminations grow under operating conditions, particularly compressive loads, further 

reducing the structural strength leading to fatal structural failure. In this paper, a complete 

methodology is presented for analysing delaminated structures for their residual strength 

and the possible growth of the delamination (particularly under compressive loading) 
which could be used for optimal structural design as well. 
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A robust finite element method is presented for modelling the delaminated structures, 
for obtaining accurate structural response and for predicting the delamination growth in 
terms of pointwise energy release rate (figure 7). This program can be enhanced into a 
powerful general purpose software for modelling and analysing failure in general stiff- 
ened composite structure by combining the existing library of robust finite elements 
(e.g. FEPACS: version-l.0, Prathap & Naganarayana 1991), solution capabilities (e.g. 
FEPACS: version-2.1, Prathap et al 1994), NONCAT (Huang et al 1995), and the ad- 
vanced modelling software for structural and finite element modelling with special 
modules for modelling damage, repair and damage control mechanisms, for predicting 
damage initiation and growth, and for designing/analysing appropriate repair/damage- 
control mechanisms, and with expert advisor systems for problem modelling and for 
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Figure 14. A general purpose expert-aided environment for failure predic- 
tion/assessment and designing damage repair/control mechanisms: A desirable in- 
frastructure. 
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processing the results as shown in figure 14 using the guidelines outlined in this 

paper. 
Curved shear-flexible 2-noded stiffener and 3-noded shell elements free of membrane 

locking and nonlinear locking are presented. An automated general nonlinear solution 

strategy that can successfully pass the instability points of any kind is incorporated such 

that the multiple post-buckling solution paths that can exist in delaminated structures and 

their interaction could be accurately computed. Arc-length continuation is used for passing 

the instability points and for optimal convergence rate. The instability points are detected 

and classified based on the specific properties of the tangent stiffness and the generalised 

deflection. If the detected instability is of bifurcation type, branch-switching (to follow the 

desired secondary solution pathS) is achieved effectively using a simple and cost-effective 

method based on an asymptotic linearised eigenvalue solution at the instability point. Fi- 

nally, the displacements and displacement gradients are post-processed to compute stresses 

and stress resultants at element centroids and pointwise energy release rate distribution 
along the delamination front. The 3-dimensional J-integral is used to derive the pointwise 

energy release rate as a function of the stress-resultants and displacement gradients in the 

neighbourhood of the delamination front, and the jump in strain energy density across the 

delamination edge. 

Unlike the conventional methods of 3-dimensional analysis and/or global-local analysis, 

the method presented in this paper is simple and cost-effective, particularly with reference 

to the nonlinear post-buckling structural behaviour when the delaminated structures are 

subjected to compressive loads. The methodology also provides capability to capture mul- 

tiple buckling modes (local, intermediate and global); to predict delamination growth in 
pre-buckling, post-buckling regimes; and to compute the interaction between the geomet- 

ric and material failures (buckling and delamination growth, in this case) effectively. Some 

typical numerical examples are critically examined to validate the proposed 2-dimensional 

computational model and to demonstrate the coupled geometric and material failure mech- 

anisms in delaminated composite structures. 
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