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Abstract—We present a computational model for periodic pattern perception based on the mathematical theory of crystallographic
groups. In each N-dimensional Euclidean space, a finite number of symmetry groups can characterize the structures of an infinite
variety of periodic patterns. In 2D space, there are seven frieze groups describing monochrome patterns that repeat along one
direction and 17 wallpaper groups for patterns that repeat along two linearly independent directions to tile the plane. We develop a set
of computer algorithms that “understand” a given periodic pattern by automatically finding its underlying lattice, identifying its symmetry
group, and extracting its representative motifs. We also extend this computational model for near-periodic patterns using geometric
AIC. Applications of such a computational model include pattern indexing, texture synthesis, image compression, and gait analysis.

Index Terms—Periodic pattern, frieze group, wallpaper group, symmetry group, lattice, tiles, motifs, gait analysis.
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1 INTRODUCTION

SYMMETRY is a pervasive phenomena in natural and man-
made environments. Humans have an innate ability to

perceive symmetry of patterns [50], [20], [36], yet it is not
obvious how to automate this powerful insight. This paper
studies symmetries of periodic patterns in a plane. Periodic
and near-periodic patterns can be found in regular textures,
indoor and outdoor scenes (e.g., brick walls, tiled surfaces,
textiles, windows on buildings, and cars in a parking lot),
and intermediate data representations (e.g., spatiotemporal
patterns formed from human and animal gaits).

Crystallographic group theory is a mature mathematical
theory for analyzing periodic patterns [9], [10]. The theme of
this paper is to develop concepts from crystallographic
group theory into computer algorithms that can automati-
cally analyze patterns in real images. Mathematically
speaking, a symmetry of a subset S of Euclidean space Rn

is a rigid transformation in Rn that keeps S setwise
invariant. The set of all rigid transformations that are
symmetries of a pattern has a group structure, and is called
the symmetry group of the pattern [34], [29]. An essential
mathematical fact about periodic patterns is the answer to
Hilbert’s 18th question: Despite an infinite variety of
instantiations for periodic patterns, a finite set of symmetry
groups completely characterizes the possible structural
symmetry of any periodic pattern spanning n dimensions
[1]. In particular, seven frieze groups describe all patterns
generated by translation along one dimension [11], [43],
17 wallpaper groups describe all patterns generated by two
linearly independent translations [39], and 230 space groups
describe regular crystal patterns generated by three linearly
independent translations [10], [6].

Our computational model for periodic pattern percep-
tion based on crystallographic groups includes three main
components:

1. recovering the underlying translational lattice of the
pattern,

2. classifying the symmetry group of the pattern, and
3. identifying a representative motif that perceptually

characterizes the pattern.

We do not address automatic detection of a periodic pattern
within a larger image; many papers in computer vision
have addressed this problem, e.g., [21], [19], [38], [47]. By
using group theory to reason about the interrelationships
between translation, rotation, reflection, and glide reflec-
tion1 symmetries of a periodic pattern, we gain a much
deeper understanding of the patterns than previous algo-
rithms have achieved. The authors of [2] use the mathema-
tical tiling theory to analyze texture, but they do not take
advantage of the rich description of reflection and rotation
symmetry afforded by symmetry group theory. Much work
treats specific types of symmetry in isolation, for example,
bilateral symmetry [7], [33], [14], [48], rotation symmetry
[31], [23], [52], [35], [46], translation symmetry [15], [21],
[19], [38], or reflection and translation symmetries [47].
Glide-reflection symmetry has yet to be dealt with
computationally. Although mathematical education tools
have existed for some time (e.g., [51]) to synthesize a
periodic pattern based on rules derived from an under-
standing of group theoretic pattern structure, we are the
first to offer a computational approach to analyze symmetry
group structure in images.

In this paper, Section 2 addresses automatic lattice
extraction from an image that is known to contain a
periodic pattern. Section 3 addresses classification of the
symmetry group of a frieze or wallpaper pattern. Section 4
explores the use of geometric AIC to classify noisy, near-
periodic patterns into their closest symmetry groups.
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1. Glide-reflection means symmetries that are composed of a translation
(half the size of its minimum translation generator) along the reflection axis
followed by a reflection about the axis.
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Section 5 shows how knowledge of a pattern’s symmetry
group can guide extraction of a representative motif that
exhibits the same local symmetries within a single tile as the
global pattern, and conforms well with human perception.
Section 6 discusses limitations and potential applications.

2 TRANSLATIONAL LATTICE DETECTION

The key issue in periodic pattern analysis is whether the
2D lattice of the pattern can be correctly extracted.
Previous work on lattice detection can be clustered into
three approaches. One approach is to extract a sparse set
of features and to hypothesize links (translations) between
them based on visual similarity or conformance to a
parametric model [21], [19], [38]. The benefits of this
approach are the ability to detect small regions of a
repeating pattern within a larger image, and to group
pattern elements despite local surface deformations (such
as the folds of a shirt). The drawback is the need for a
pattern with distinct corner/edge/contour features. The
more traditional image processing approach to detecting
global pattern repetition is to use autocorrelation [22], the
Fourier transform [37], or periodicity measures defined
over cooccurrence matrices [2], [54], [42], [44]. These
approaches work for any intensity image, not just ones
with strong features. The main drawback is the assump-
tion that a single periodic pattern occupies a large portion
of the image, limiting the approach to analysis of patterns
that have already been segmented in some other way. For
periodic patterns with a low number of repeating cycles
(two to three cycles), we have found autocorrelation to be
a more appropriate method for quantifying translational
symmetry than the Fourier transform, an observation also
made in [22]. A third approach, used in structural texture
analysis, is based on the idea of a unit pattern together
with a set of well-defined placement rules. However, the
generality and computational tractability of this work is
limited in its present form: unit patterns are either regions
centered about a local maximum that is bounded on all

sides by local minima [5] or square texture regions with
an unspecified window size [32]. We show later in this
paper how group theory can be used to automatically
specify tile shape, orientation, and placement rules for any
periodic pattern.

2.1 The Problem of Peak Detection

The first step in analyzing a periodic pattern is to extract a set
of linearly independent vectors that describe the translational
symmetry of the pattern. Our approach is to look for peaks in
the autocorrelation surface of the pattern.

Fig. 1a shows an image of a rug and Fig. 1b shows its
autocorrelation surface.2 Although the grid of peaks in
Fig. 1b is apparent to the human eye, finding it auto-
matically is very difficult. Simple approaches such as
setting a global threshold yield spurious results in Fig. 1c.
The trouble is that many legitimate grid peaks have a lower
value than some of the spurious peaks. Lin et al. [22]
present a threshold-free approach based on performing
Gaussian smoothing of the image, followed by selection of
local maxima (Fig. 1d). It is hard to see the grid structure
interspersed with the spurious points. If we sort peaks by
height (correlation score) and take the first 32, we have the
answer in Fig. 1e. In comparison, Fig. 1f presents the top
32 peaks resulting from our peak detection algorithm
(Section 2.2).

Even relatively noise-free computer-generated patterns,
such as Fig. 2, can cause problems for lattice detection
algorithms. Fig. 2a shows an incorrect lattice found by the
algorithm of [22], together with the correct lattice found by
our algorithm (Fig. 2b). Obviously, Lin et al.’s algorithm has
picked up smaller peaks between the major ones and,
indeed, the pattern’s autocorrelation surface has high ridges
between the major peaks. Our experience with a variety of
periodic patterns indicates that it is common to find
spurious peaks of comparable height to desired peaks
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2. Note: Autocorrelation generates a correlation surface CI twice the size
of the original image I, i.e., if I is x� y, CI is 2x� 2y.

Fig. 1. (a) Original image of a rug. (b) An autocorrelation surface. (c) Peaks found using a global threshold. (d) Peaks extracted using the threshold-free
method of [22]. (e) The highest 32 peaks from those return by [22]. (f) The 32 most-dominant peaks found using our approach described in the text.

Fig. 2. Even noise-free images can be hard to process. (a) An incorrect lattice found by the algorithm of Lin et al. [22]. (b) Correct lattice found by our

algorithm. (c) Frieze pattern and (d) its 1D autocorrelation response, used to explain how spurious peaks can form (see text for details).



superimposed over the autocorrelation image at twice (or
other multiples of) the frequency of the lattice grid
structure. An illustration of how this can happen is shown
by the frieze pattern in Fig. 2c, displayed next to the
1D autocorrelation response of the pattern when slid along
its axis of translation. The correct peaks are A, C, and E.
Halfway between actual lattice translations, the large
features in the pattern partially match smaller features
interspersed between them, causing the spurious peaks B
and D to form. Furthermore, these spurious peaks can have
higher value than actual peaks located at the periphery of
the autocorrelation image (e.g., height of peak B is greater
than height of peak in E). These difficulties are exacerbated
by complicated patterns in two dimensions.

2.2 Regions of Dominance

It is a nontrivial task to find a proper set of peaks in an
autocorrelation surface of a periodic pattern. We have
wrestled with the problem of peak finding in many contexts
over several years. Our observation is that the absolute
height of a peak is not as important as the size of its region
of dominance, defined as the largest circle centered on the
candidate peak such that no higher peaks are contained in
the circle. A peak with a low height, but located far from
any larger neighbors, is much more perceptually important
than a high peak that is close to an even higher one.
Referring back to Fig. 2d, the true peak E is lower than the
spurious peak B, but is located twice as far away from any
higher peak than B is and, thus, dominates a larger region.
Revisiting Fig. 1f, the first 32 most-dominant peaks found
using our method are well distributed over the whole
image, with very few spurious peaks.

A list of peaks in decreasing order of dominance can be
computed using a simple, order N2 algorithm, where N is
the number of candidate peaks to be considered. In our

case, these initial peaks P1, P2, . . . , PN are computed using
nonmaximum suppression over a sliding M �M window,
where M is a constant 5 in our implementation, but could be
chosen based on the scale of the pattern to yield fewer initial
candidates. First, sort candidate peaks in descending order
of peak height to yield a list Q1, Q2, . . . , QN . Next, for each
Qj, compute the distance to each Qi, 1 � i < j that comes
before it in the list, and denote the minimum distance Di.
Finally, sort the list of peaks again in descending order of
Di, the minimum distance to a higher peak. The peaks are
now arranged in decreasing order of dominance.

This approach to peak detection has proven to work well
on a diverse set of autocorrelation images. The method
generalizes readily to any dimension and is potentially
useful in other vision contexts where multiple peaks must
be detected within accumulated noisy data, for example,
finding modes in intensity or color histograms to perform
region segmentation.

2.3 Determine the Shortest, Independent
Translation Vectors

Having a set of candidate lattice points extracted as dominant
peaks in the autocorrelation surface, thenext task is to find the
shortest linearly independent translation vectors that gen-
erate the lattice. For frieze patterns, this is a single vector; for
wallpaper patterns, we need two vectors. Finding lattice
vectors is complicated bymissing points aswell as additional
spurious points interspersed with the good data. We use a
Hough transform approach similar to [22] to find the two
shortest translation vectors that best explain the majority of
thepoint data, but includewallpaperpattern constraints such
as requiring that the angle between the two vectors must be
between 60 and 90 degrees [39]. Fig. 3 shows detected lattices
for some real-world patterns.
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Fig. 3. Detected lattices for three real-world patterns.

TABLE 1
Symmetries of the Seven Frieze Patterns



3 SYMMETRY GROUP CLASSIFICATION

In this section, we review the definitions and properties of

frieze and wallpaper groups, leading to an algorithm

(Section 3.3) for determining the symmetry group of a

periodic pattern. A symmetry g of a 2D periodic pattern P

is a distance preserving mapping (translation, rotation,

reflection, or composition of these) that maps every pixel

in the pattern to a pixel of the same gray-value or color

such that g : R2 � I ) R2 � I, and gðP Þ ¼ P , where I can

either be gray values in the range of ½0; 255� or triplets of

RGB intensity values. Note that a periodic pattern

requires the existence of a nontrivial translation symmetry,

which excludes patterns consisting of identical stripes

along the direction of translation. The set of all symmetry

transformations of P comprises the pattern’s symmetry

group.

3.1 Frieze Groups

A frieze pattern is a 2D strip in the plane that is periodic
along one dimension. Any frieze pattern P is associated
with one of seven unique symmetry groups Fi, where
i ¼ 1; . . . ; 7, and 8g 2 Fi; gðP Þ ¼ P . These seven symmetry
groups are called the frieze groups, and their properties are
summarized in iconic and tabular form in Table 1. Without
loss of generality, assume the direction of translation
symmetry of a frieze pattern is horizontal, the frieze pattern
can exhibit five different types of symmetries:

1. horizontal translation,
2. 2-fold rotation (rotation by 180 degrees),
3. horizontal reflection (reflection axis is horizontal),
4. vertical reflection, and
5. horizontal glide-reflection, composed of a half-unit

translation horizontally followed by a horizontal
reflection.
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Fig. 4. The unit lattices for the 17 wallpaper groups (courtesy of [39]).

TABLE 2
Wallpaper Group Classification: The Group Associated with a Wallpaper Pattern Can Be Determined by Checking the Small
Number of Symmetries: 180, 120, 90, or 60 Degree Rotation Symmetry, Reflection Symmetry, and Glide-Reflection Symmetry

about Axes Parallel to Lattice Unit Parallelogram Boundary Vectors T1 and T2, or Diagonal Vectors D1 and D2

“Y” means the symmetry exists for that symmetry group; empty space means no. Y(g) denotes a glide reflection.



A frieze pattern can be classified into one of the seven
possible frieze groups based on what combination of these
five primitive symmetries are present in the pattern
(Table 1). Not all possible combinations of symmetries form
legitimate symmetry groups, for example, a frieze pattern
cannot exhibit both horizontal reflection and glide-reflec-
tion symmetries simultaneously [11], [43].

3.2 Wallpaper Groups

A periodic pattern extended in two linearly independent
directions to cover the 2D plane is known as a wallpaper
pattern. The two smallest linearly independent translation

vectors T1 and T2 in the pattern’s symmetry group are
generators for the underlying lattice structure of the pattern.

The lattice divides the plane into identical parallelogram-
shaped subimages, called lattice units or tiles. The
symmetry group of a wallpaper pattern has to be one of

the 17 distinct wallpaper groups [39], [41]. Fig. 4 shows a
diagram from [39] that depicts precisely the unit lattice

shape for each of the 17 wallpaper groups, with the
geometric configuration of translation generators, rotation,

reflection, and glide-reflection symmetries superimposed
for each group. A lattice unit is typically chosen with
centers of highest order of rotation at the vertices.

The practical value of understanding the 17 wallpaper

groups is that correct pattern classification can be performed
after verifying the existence of only a small set of symmetries,

specifically four rotations (180, 120, 90, and 60 degrees), and
four reflections along axes parallel to either unit lattice
parallelogram boundaries T1 and T2 or unit lattice diagonals

D1 andD2. It is clear from Table 2 that each symmetry group
corresponds to a unique sequence of yes/no answers to

whether the pattern contains each of these eight types of
fundamental symmetry (an additional test may be needed

when reflections arepresent to determine if they are “proper”
or “glide” reflections).

3.3 Group Classification Algorithm

We have constructed an algorithm to automatically classify
the symmetry group of a given 2D periodic pattern by

checking a small set of rotation and reflection symmetries
listed in Table 1 for frieze patterns and Table 2 for

wallpaper patterns. The algorithm is robust to moderate
amounts of pixel noise and outliers. For patterns with large

amounts of intensity or geometric distortion, the Geometric-
AIC algorithm described in Section 4 will be more effective.

Input: an image dominated by a frieze or a wallpaper

pattern.
Output: symmetry group of the input periodic pattern and

its median tile.

Algorithm:

1. Find the pattern lattice: Compute the underlying pattern

lattice using the algorithm described in Section 2.

2. Estimate a median tile and noise model: Cut out a set of

tile-shaped regions from the input pattern using the

overlaid lattice. Choose one of these as a reference tile
and register it with all other tiles in the set using a sum of

squared difference (SSD) measure. This yields a set of

corresponding intensity measurements for each pixel in

the tile. A median tile is obtained by assigning each pixel

the median value of its corresponding intensity

measurements. Also, the pixel noise level is estimated by

computing the standard deviation � of the residuals

between all pixels and their corresponding median tile
values.

3. Test symmetries: Test for the existence of rotation and

reflection symmetries in the pattern. Four symmetries

are tested for frieze groups (Table 2). The steps taken for

each symmetry are:

(a) Apply the symmetry to the original image (e.g., rotate

by 180 degrees) to obtain a transformed image I 0.

(b) Correlate the median tile with image I 0 at all lags to get a
rough registration map.

(c) Start at the point with highest correlation value and

register the median tile with I 0 by finding a small

translation that minimizes SSD registration error.

(d) At the position of best registration, compute the trimmed

normalized residual error

d ¼
X

N 0

k¼1

ek ¼
X

N 0

k¼1

ðmk � ikÞ
2

�2
;

where N is the total number of pixels in the tile,
N 0 ¼ ð1� bÞN is a smaller number of pixels as
determined by b, the trim rate, which is the percentage of
pixels to be discarded from the end of the ek error
sequence when ek is sorted in ascending order (the
higher on the queue the noisier the pixels), mk; ik are
corresponding pixel intensity values of the median tile
and image I 0, respectively, and � is the standard
deviation of the pixel noise model.
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Fig. 5. A hand-drawn frieze pattern from [45]. (a) Original image, (b) the median tile, and (c) match scores for tested frieze symmetries.



(e) Repeat the computation of trimmed normalized residual

errors di at neighboring lattice points, and keep the error

value dmed ¼ medianfdig which is the median among all

computed errors. The idea behind this step is to guard

against accepting accidental good alignments between

the median tile and transformed image as evidence of the

existence of symmetry. A proper symmetry must also

preserve the original image’s lattice structure.

(f) If we assume that pixel values are corrupted by

independent Gaussian noise with mean 0 and standard

deviation �, then dmed should obey a �2ðN 0Þ distribution

with N 0 degrees of freedom. Evaluate whether the tested

symmetry exists by comparing dmed to a threshold t0
where

R t0
0
�2

N 0ðxÞdx ¼ 0:99. The symmetry is said to exist

if dmed < t0, otherwise, not. Note that t0 � N 0, for large

N 0, and thus an approximate test for symmetry is

whether dmed=N
0 < 1:0.

(g) When a reflection symmetry is found to exist, decide if it

is a glide reflection or not by examining the offset of the

location of best registration between the median tile and

the transformed image I 0 to the location where the center

of the original reference tile is mapped to in I 0. This offset

should be roughly an integer multiple of one of the

lattice vectors if we have a proper reflection, otherwise, it

falls roughly halfway between integer multiples, and is

labeled as a glide reflection.

4. Classify the symmetry group: Validate the symmetry test

results against the symmetries listed in Table 1 or Table 2

to classify the symmetry group of the pattern.

3.4 Symmetry Group Classification Examples

The examples in this section serve to illustrate the symmetry
group classification algorithms for frieze and wallpaper
patterns.

Example 1: A Hand-Drawn Pattern. Fig. 5a shows a frieze
pattern scanned in from [45], and Fig. 5b shows the
estimated median tile. The original pattern was hand-
drawn and contains many small geometric imperfec-
tions, for example, missing lines on the second “vase”
from the left, and missing internal ear markings on the
rightmost face. Computation of a median tile and the use
of a trim rate term was designed in our algorithm to
compensate for these types of errors. All of the results in
this section were computed using a trim rate of 0.1. Fig. 5c
contains a table of match scores for testing different types
of frieze symmetries. The values in the table are reported
as dmed=N

0, which was motivated earlier as being an
approximate X2 test. A table element less than 1.0
(marked in bold font) indicates the presence of the
symmetry. Based on these results and Table 1, the
pattern’s symmetry group is classified as F3.

Example 2: Synthetic Patterns. Fig. 6 shows three sample
wallpaper patterns adapted from a set of synthetic wall-
paper images from [12]. We have successfully processed
all the 17wallpaper groups from thewallpaperpatterns on
this site [26]. Fig. 6a shows the detected lattice for each
pattern, overlaid on thepattern. The computedmedian tile
is shown in Fig. 6b. For ease of representation we always
use a rectangular median tile, corresponding to the
bounding box of the actual tile shape. To test for the
presence of a rotation or reflection symmetry, this median
tile is correlated with rotated and reflected versions of the
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Fig. 6. Three sample patterns. (a) Original image overlayed with detected lattice. (b) Median tile. (c) Best matched positions of the median tile on the

transformed images.



original pattern. The positions of highest correlation for
each of the four rotations and four reflections that need to
be tested (Table 2) are shown in Fig. 6c.

We can see by inspection that pattern (1) has 180 degree
rotation and reflection about the tile diagonals. This
observation is echoed by the numeric values returned by
the algorithm, shown in Table 3, thus the the pattern is
classified as having wallpaper symmetry group cmm.
Pattern (2) also has both 180degree rotation symmetry and
two reflection symmetries.However, the reflections in this
case are about the unit lattice vectors rather than the lattice
diagonals, and further processing determines that these
are glide reflections rather than proper reflections.
Referring to Table 2, the pattern is determined to have
the pggwallpaper symmetry group. Pattern (3) in Fig. 6 is
found to have 180, 120, and 60degree rotation symmetries,
and no reflection symmetry. Referring to Table 2, the
pattern is determined to have the p6wallpaper symmetry
group.

Example 3: Real-World Patterns. Figs. 7, 8, and 9 demon-
strate various types of wallpaper patterns captured from
the real environment around us. These include patterns of
rugs, metal gates, honeycomb, windows, tiled floors, tiled
walls, and chrome surfaces. Due to length limitations, we
present details on only one real-world pattern, a photo-
graph of a damaged oriental rug (Fig. 10). The table of
symmetry test scores for this example is shown below

From these results, the algorithm concludes that the
pattern has 180 degree rotation symmetry and reflection
symmetry about the lattice diagonals. Referring to Table 2,
the pattern is determined to have cmm wallpaper sym-
metry group. Note that this real-world classification
example is not as clear-cut as earlier synthetic pattern
examples, where the existence of symmetries is indicated
byavalueclose tozero.Thescores forboth symmetriesand
nonsymmetries of the real patterns may lie closer to the
threshold 1.0 due to the high amount of noise in the image.

Testing symmetry using a median tile becomes
necessary for treating real-world periodic patterns when
the pattern intensity is very noisy. Since the median tile
is a better description of the underlying pattern, we
could alternatively “regenerate” the original image using
the median tile and use this new image to test for the
presence of rotation and reflection symmetries. A
generalization of this alternative approach is presented
in the next section.

4 MODEL SELECTION USING GEOMETRIC AIC

Complications of symmetry group classification for periodic
patterns arise from two main sources: 1) real-world patterns

can be very noisy, thus departing from ideal frieze or

wallpaper patterns, and 2) symmetry groups have a hier-

archical relationship among themselves. This second obser-

vation refers to the fact that symmetry groups are notdisjoint,

mutually exclusive classes—some symmetry groups are

subgroups of others. Kanatani points out in [17] that each

symmetry group should be given a fair chance to be selected,

otherwise, a classification algorithm faced with ambiguous

data always favors the most general class. In this section, we

address the first issuebydefiningadistancemeasurebetween

a given pattern and a family of perfect frieze (wallpaper)

patterns.Weaddress the second issuebyusinggeometricAIC

for symmetry group model selection. The result is an

alternative symmetry group classification algorithm that is

more effective at handling near-periodic real-world patterns.

We use frieze patterns for the purposes of illustration, but a

similar approach can be applied to wallpaper groups [27].

4.1 Symmetry Group Distance and
Geometric-AIC (G-AIC)

Given a near-periodic frieze pattern P with t tiles, we define
a set of perfect frieze tiles fPng; n ¼ 1::7 for P , as follows:

1. For t > 1 and n ¼ 1, Pn is the pixel-wise average of
all the tiles in P .

2. For t ¼ 1 and n > 1, Pn ¼ ðFnðP ÞþP Þ
2

, where FnðP Þ is
the pattern obtained by applying the set of symme-
try operations in Fn to P .

3. For t > 1 and n > 1, Pn is the pixel-wise average of
each Pn obtained above.

Fig. 11 shows how a tile P is transformed into a perfect tile
Pn for each of the seven frieze groups.

Now, we define a symmetry group distance (SD) of a
near-frieze pattern P to each of its perfect frieze patterns
fPng as

SDnðP Þ ¼ min
pi2P;qi2Pn;

X

tN

i¼1

pi � qi
si

� �2
( )

; ð1Þ

where N is the number of pixels in a tile (smallest
2D repeating region), t is the number of tiles being studied,
pi and qi are intensity values of corresponding pixels of
near-frieze pattern P and perfect frieze pattern Pn,
respectively, and si is the standard deviation of the frieze
pattern at pixel i. SDn thus represents the minimum SSD
between a near-frieze pattern P and any frieze pattern in
fPng. For independent Gaussian noise, the distance SDn has
a �2 distribution with tN degrees of freedom. It can be
proven that the perfect frieze tile Pn defined above has the
minimal distance to P among all frieze tiles with symmetry
group Fn [18]. Our definition of frieze pattern symmetry
group distance is analogous to that of Zabrodsky et al. [53]
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TABLE 3
The Matching Scores of the Eight Symmetry Tests (Table 2) for the Three Sample Patterns in Fig. 6



for polygons. The difference is that we are dealing with
pattern intensity variations, while the authors of [53]
compute vertex locations of polygons.

The frieze symmetry groups form a hierarchical struc-
ture (Fig. 12a) where frieze group F1 is a subgroup of all the
other groups, and so on. Frieze groups F5 and F7 are the
two least general symmetry groups for frieze patterns. If no
care is taken, a symmetry group classification algorithm
based on raw symmetry group distance scores will always
favor a more general class, say F1, over a more special class,
say F5 and F7. To address this problem, we adopt the

concept of Geometric-AIC (G-AIC) proposed by Kanatani

[16], [17]. The degrees of freedom (DOF) of a frieze pattern

depends on how the intensity (or color) of each pixel on a

tile is constrained. For frieze patterns with translation

symmetry only, there is no constraint on the value of any of

the N pixels on a tile, thus the DOF is N . On the other hand,

pixels on a P3 pattern have an additional vertical reflection

symmetry constraint to satisfy and, thus, half of the pixel

intensities need to be the same as the other half. The DOF of

a P3 pattern is therefore N=2. Fig. 12a shows the frieze
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Fig. 7. Real-world patterns (left column) processed by our algorithm with overlaid detected lattices (right column). The symmetry group of each

pattern is classified as: (a) Rug has group p1. (b) Rug has group cm. (c) and (d) are both metal gates with symmetry group cmm. Note the

background clutter visible through the gaps of the metal gates.



group hierarchy and Fig. 12b illustrates the DOFs and the

pixel constraints for each of the seven frieze groups.
G-AIC states that group Fm is preferred over Fn for a

near-frieze pattern P if

SDmðP Þ

SDnðP Þ
< 1þ

2ðdn � dmÞ

rðtNÞ � dn
; ð2Þ

where dm and dn are the degrees of freedom for frieze

patterns of Fm and Fn, respectively, and r is the codimen-

sion. Since the data space (the intensity space) is dimension

one, and our model space (point in multidimensional

intensity space) dimension is 0, the codimension
r ¼ 1� 0 ¼ 1.

In summary, P has frieze group Fm rather than Fn if

SDmðP Þ

SDnðP Þ
<

t

t� 1
; for m ¼ 2; 3; 4; 6 and n ¼ 1; t > 1 ð3Þ

SDmðP Þ

SDnðP Þ
<

2t

2t� 1
; for m ¼ 5; 7 and n ¼ 2; 3; 4; 6; t � 1 ð4Þ

SDmðP Þ

SDnðP Þ
<

2tþ 1

2t� 2
; for m ¼ 5; 7 and n ¼ 1; t > 1: ð5Þ

We combine these concepts of symmetry group distance
and geometric AIC into the following new algorithm for
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Fig. 8. More real-world patterns. Both (a) windows and (b) tiles have symmetry group pmm. (c) Honeycomb has one of the most complicated

symmetry groups, p6m (lower right corner in Fig. 4). (d) This nonskid metal surface has symmetry group p4g. Note pattern imperfections caused by

lighting and surface defects in all of these examples.



frieze group classification (a similar algorithm can be
constructed for wallpaper groups).

Input: an image dominated by a near-frieze pattern P

Output: the frieze group corresponding to the pattern, and
a “perfect” tile that conforms exactly to that frieze

group and is closest to the original pattern in a least

squares sense.

Algorithm:
1. Find the pattern lattice: Compute the underlying pattern

lattice using the algorithm described in Section 2.
2. Construct perfect tiles: Cut out a set of tile-shaped

regions from the input pattern using the overlaid lattice.
Choose one of these as a reference tile and register it with
all other tiles in the set using the SSD measure. This
yields a set of corresponding intensity measurements for
each pixel in the tile. For each frieze group
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Fig. 9. More real-world patterns: (a) is a rug with group pm. (b) and (c) have slight affine and projective distortions in their cloth and rug patterns,

respectively, with symmetry group pmm. (d) Chrome, (e) metal gate, and (f) tiles all have symmetry gorup cm. (g) Tiled wall has symmetry group p4m

(another complicated symmetry group, see Fig. 4).



Fn; n ¼ 1; . . . ; F7, construct a perfect frieze tile Pn that is

closest to the original pattern P as measured by the

SDn symmetry distance.

3. Compute distances to perfect tiles: Compute SDn

between the given pattern tile P and each perfect tile Pn

in group Fn (1).

4. Classify the symmetry group: Find the perfect tile Pmin

that has minimum distance to P , and locate the

corresponding symmetry group Fmin in the subgroup

hierarchy (Fig. 12a). If Fmin has the least degrees of

freedom in the group hierarchy (in frieze group case

these groups are F5 or F7), then we classify P ’s symmetry

group as Fmin; otherwise, we compute distances ratios as

defined in (3), (4), and (5) between two groups that have

a subgroup relationship and choose the preferred

symmetry group accordingly.

4.2 Gait Analysis Using Spatiotemporal Frieze
Patterns

We illustrate this algorithm by analyzing human and animal
gaits, which are known to be approximately periodic. Unlike
previous examples in this paper which used patterns that
were constructed to contain a particular type of symmetry,
the gait patterns here are generated by human or animal
motions that are not guaranteed to be strictly symmetric.

We look at two spatiotemporal image representations of
gait. The first is a wallpaper pattern composed of the
correlation scores between all pairs of video frames i; j from
a gait sequence. Fig. 13 shows that the gait patterns of a
running dog and a walking human have different symmetry
groups, cm and p4m, respectively. This result reinforces that
human gait is more bilaterally symmetric than a dog’s
running gait and, thus, symmetry of the gait patterns may
beuseful forclassificationwhenshapecuesarehardtoextract.
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Fig. 10. (a) Original image overlayed with detected lattice. (b) Median tile. (c) Positions of best match of median tile with transformed images.

Fig. 11. A perfect frieze tile can be constructed from a given tile P1 for each of the seven frieze groups.

Fig. 12. (a) The subgroup relationship among the seven frieze symmetry groups (F1 . . .F7 in Table 1), where Fi ! Fj means Fi is a subgroup of Fj.
Left column of (a) indicates the degrees of freedom in each level of the symmetry group hierarchy. (b) Determining the degrees of freedom of frieze
patterns by counting symmetry constraints on the intensity value of a pixel. The figure shows representative sets of pixels within a tile (here, (a)
through (g) indicate frieze patterns P1 through P7) that have to have the same intensity value by the symmetry constraints. The dotted lines are
horizontal and vertical midlines of the tile.



The second type of spatiotemporal representation of
gaits is a frieze pattern. Fig. 14a illustrates how a frieze
pattern is generated from a time sequence of projections
of 2D silhouettes along the X or Y axes. Note that each
frieze pattern shown in Fig. 14a is a 1D (along the time
axis) near-periodic pattern in a 2D space: time versus X-
axis for column projection fC and time versus Y -axis for
row-projection fR. Fig. 14b shows frieze pattern variation
of fC for a walking avatar viewed from different
orientations. Fig. 14c shows the trajectory and fC frieze
pattern of a 30-second human walking sequence, in which
one can observe the variations of frieze pattern fC with
the change of the viewing angles.

One hypothesis is that the fC frieze patterns of different
subjects viewed from the same direction share the same
symmetry group. To test this hypothesis, we have computed
frieze patterns for human gaits in the CMU MoBo database
[8], containing motion sequences of 25 subjects walking on a
treadmill. The result of symmetry group classification from
side-view frieze patterns is dominated by symmetry group
F3 (16 of 25), followed by symmetry group F7 (7 of 25) and
symmetry group F5 (2 of 25). Some sample patterns are
shown in Fig. 15. The walking avatar also has symmetry
group F3 from this viewing angle. From the frieze group
hierarchy (Fig. 12) we see that F3 is a subgroup of F7 andF5,
thus they belong to the same “family” of groups. From
Fig. 14a, we observe that a lower side view has symmetry
groupF3,while thehigher sideviewhasF7. Since the camera

is in a fixed location, the variation of symmetry groups
betweenF3 andF7 of the 23 (out of 25) subjects can be caused
by the height of each subject (viewing elevation angle
changes). The only two female subjects (shorter subjects)
have the F7 group. The two individuals with F5 symmetry
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Fig. 13. Human walking gait is more symmetrical than a dog’s gait pattern (dog sequence courtesy of [3]).

Fig. 14. (a) Spatio-temporal gait representations are generated by projecting the body silhouette along its columns and rows, then stacking these

1D projections over time to form frieze-like patterns fC ; fR repeating along the time dimension. (b) Observation #1: fC of a humanoid avatar exhibits a

wide variety of symmetric structures when viewed from different orientations. (c) Frieze pattern extracted from a 30-second long human walking
sequence. Observation #2: The symmetry group variations of fC of a human echo those of the avatar when viewed from different orientations.

Fig. 15. Sample of frieze tiles and their symmetry groups computed from
side views of the 25 walking subjects from CMUMoBo database [8]. The
result of symmetry group classification from side-view frieze patterns is
dominated by symmetry group F3 (16 of 25), followed by symmetry
group F7 (7 of 25) and symmetry group F5 (2 of 25).



group present a walking style with an additional glide-
reflection symmetry (Table 1) than those with F3. Here, the
glide-reflection symmetry in a side view gait pattern can be
caused by the equal amount of forward and backward body
swings within one gait cycle.

This frieze pattern-based gait analysis idea was explored
further in [27], where gait angle estimation is carried out
using fC frieze patterns while human identification from
gaits observed from similar orientations is carried out using
fR. Classiciation rates range from 81 percent to 100 percent
when training and testing on three different types of human
gaits: slow walk, fast walk, and walk holding a ball.

5 REPRESENTATIVE MOTIFS OF PERIODIC

PATTERNS

When translational symmetry is determined for a periodic
pattern, it fixes the size, shape, and orientation of the unit
lattice, but leaves open the question of where the unit lattice
is located in the image. Figs. 16a and 16b shows an
automatically extracted lattice, and the tile that it carves
out, on an image of an oriental rug. The pattern fragment on
the tile appears nonintuitive to a human observer, even
though it is mathematically correct—if the goal is to tile the
plane, any parallelogram of the same size and shape
produces an equally good lattice unit. However, from a
perception point of view, some parallelograms produce tiles
that are better descriptors of the underlying symmetry of
the overall pattern than others. For example, if the whole
pattern has reflection symmetries, we would like the lattice
unit in isolation to also have reflection symmetry. Our
contribution in this section is to show how a small set of
tiles can be chosen, in a principled way, such that the
symmetry of the local tile pattern is maximized.

We define a motif as a representative tile of a periodic
pattern. If we entertain the idea that the most representative
motif is the one that is most symmetrical, one plausible
strategy for generating motifs is to align the motif center
with the center of the highest-order rotation in the pattern.
This is the lattice point with the largest stabilizer group.
Candidate motifs can then be determined systematically by

enumerating each distinct center point of the highest-order
rotation. Two rotation centers are distinct if they lie in
different orbits of the symmetry group, that is, if one cannot
be mapped into the other by applying any translation,
rotation, reflection, or glide-reflection symmetry within the
symmetry group. This strategy for motif selection is
explored in the examples below.

5.1 Oriental Rug Example

Refer back to the oriental rug image in Fig. 16. Based on an
analysis of symmetry groups, it is found that this pattern
belongs to the wallpaper group cmm. Referring to Fig. 4, we
see that the highest order of rotation in cmm is 180 degrees.
Eachplacement of the lattice such that a tile is centered onone
of these points of two-fold rotationwill lead to a symmetrical
candidate motif. Nine centers of rotation are shown in the
diagram, but they are not all distinct. Consider one of the
vertices of the parallelogram; by application of lattice
translations, each vertex can be mapped to any other vertex,
so theyall lie in the sameorbit. Considernow the four rotation
centers on thediagonal edgesof theparallelogram.Througha
combination of glide reflections, and two-fold rotation about
the center of the tile, these can all be mapped to each other
and, thus, form a second orbit. Finally, the rotation center at
the center of the tile lies in a third orbit. Therefore, there are
three distinct candidatemotifs that can be extracted from this
pattern, each centered on a representative of one of the
distinct orbits of the two-fold rotation centers (Fig. 16d).
Although each has the samedegree of rotation symmetry, the
first two are more “preferred” than the third. This is because
their centers also lie on the intersection of two axes of mirror
reflection symmetry, while the center of the third pattern lies
on the intersection of two glide reflection axes. Glide
reflections (a combination of reflection and translation) are
harder for humans to identify in a pattern than mirror
reflections [40], [13].

5.2 Synthetic Pattern Examples

Generation of representative motifs proceeds similarly for
other symmetry groups, by centering the motif on distinct
centers of the highest-order rotation. There are some
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Fig. 16. (a) and (b) show an automatically extracted lattice and the tile that it implies. The tile is not a good representation of the pattern motif. (c) and

(d) show the lattice position in terms of one of the three most-symmetric motifs found for the oriental rug image. The latter was generated

automatically by an algorithm that analyzes pattern symmetry based on knowledge of the 17 wallpaper groups.



exceptions, however. Three groups (pm, pg, and cm) have no
rotation symmetry, but have parallel reflection axes that fix
the lattice offset in one direction (by centering the lattice on
the reflection axis). Furthermore, the group p1has no rotation
or reflection symmetries and, therefore, there are no
symmetry-based constraints on the lattice offset. In these
cases, we are exploring how approximate symmetries in the
pattern can be used to fix the unconstrained lattice offset.
Specifically, the failed rotation symmetries are examined to
find which rotations and rotation centers produce a trans-
formed pattern that is most similar to the original pattern, as
measured by correlation score. This almost-symmetry heur-
istic often leads to plausible motifs. Wallpaper groups with
120 degree and 60 degree rotation (p3, p3m1, p31m, p6, and
p6m) have so-called “hexagonal lattices” formed by regroup-
ing the vertices of adjacent parallelogram tiles. For these
groups, candidatemotifs are also extracted ashexagonal tiles.

A sample of the 17 wallpaper groups and their extracted

canonical motifs is shown in Figs. 17, 18, and 19.

6 DISCUSSION

We propose a computational model for periodic pattern

perception based on the mathematical theory of crystal-

lographic groups, in particular, the theory of frieze and

wallpapergroups.Thismaturemathematical theoryprovides

guidance for developing computer algorithms to extract

underlying lattices, analyze and classify periodic patterns,

and capture perceptually meaningful motifs. Being able to

understand the structural details ofALLpossible 2Dperiodic

patterns by a computer has both intellectual and practical

significance [24], [25], [27], [28], [30] as well as computational

challenges. We have shown the feasibility of using computer
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Fig. 17. Motifs centered on the highest order of rotation symmetry. For symmetry groups without rotation centers (p1, pm, pg), we use approximate

symmetries to locate approximate rotation centers.



algorithms for periodic pattern analysis of hand-drawn,
synthetic, spatiotemporal, and real world images.

We now discuss the limitations of our current imple-
mentation and potential applications of a computational
model for periodic pattern perception.

6.1 Limitations

One of the limitations of our work is the focus on intensity
variations in patterns as the solemeasure for determining the
presence of symmetry. This approach presumes the patterns
are only corrupted by Gaussian noise in the pixel intensity
values.Geometric variations anddistortions arenot explicitly
handled, although a trim rate was introduced to mitigate the
effects of unmodeled geometric distortion and intensity
outliers. Furthermore, correlation as a similarity measure
requires a good distribution of color or grey values in the
image. For example, images of brick walls are not handled
well by correlation, since the distinguishing features of the
pattern, the grout lines, make up only a small fraction of the
pixels in the imageand, indeed, their effects areoverwhelmed
by the large expanses of uniform-colored brick material. We

observe through introspection that the human visual system
takes a much more feature-based approach to determining
the symmetry of a pattern. The correspondence of geometric
visual elements such as points of highboundary curvature, or
small compact regions in the image, play amuch larger role in
evaluating pattern symmetry than a strict sum of squared
differences comparison of image intensity values. A feature
correspondence approach also would be potentially more
tolerant of geometric pattern distortion.

A second limitation of the work described in this paper is
the restriction to pattern classification under the scaled
Euclidean transformation group. This implies that analysis
of a pattern on a planar surface in the world must be
performed on images taken by a camera oriented perpen-
dicular to the surface. In recent work, we have been
developing methods for classification of periodic patterns
viewed from an off-axis viewing direction. For planar
periodic patterns with small spatial extent with respect to
surface distance from the camera, we model the pattern
projection onto the image as an affine transformation, and
the resulting projection of symmetry as a skewed symmetry
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Fig. 18. Further examples of motifs centered on the highest order of rotation symmetry. For symmetry groups without rotation centers (cm), we use

approximate symmetries to locate approximate rotation centers.



group [25]. We are also developing methods to deal with
patterns on surfaces close to the camera, where perspective
distortion effects become nonnegligible. It is expected that
symmetry group analysis under affine and perspective
imaging models will lead to a deeper understanding of the
appearance of patterned surfaces in the world around us.
Local deformations of approximate periodic patterns are
also considered in our recent work on texture synthesis of
near-regular textures [30], [28].

One scheme for symmetry-based motif selection was
explored, namely centering tiles on distinct fixed points of
the highest-order rotation of the pattern. This approach was
found to produce tiles that are plausible candidates for the
motif of the pattern. There are other schemes that could be
employed, however. For example, tiles centered on points
where a reflection axis intersects a glide reflection axis, or
where two glide reflection axes intersect, would also be
locally symmetric. Inclusion of reflection axis intersections

together with centers of rotations would lead to an
exhaustive enumeration of symmetric tiles, and potentially
a rank ordering based on the degree of rotation and
reflection symmetry each tile exhibits. Symmetry is clearly
just one piece of the perception puzzle. Although our
approach can effectively enumerate good candidates for the
pattern motif, and the human-perceived motif is typically
among these candidates, choosing precisely which candidate
is preferred by human perception is an open problem.

6.2 Practical Values of Understanding
Periodic Symmetry

The practical significance of having a computational means
to recognize and understand periodicity in a scene pattern
is multifold.

Image indexing: An infinite number of periodic patterns can
be indexed into a finite number of symmetry group classes
regardlessofpatternorientation,complexity,size,absolute
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Fig. 19. Further examples of motifs centered on the highest order of rotation symmetry.



color, and global illumination conditions. Therefore,
symmetry group indexing of periodic patterns provides a
stable framework that has the potential to speed up the
search in a largewallpaperpatterndatabaseup to 17 times.

Near-regular texture synthesis: An open problem in texture
synthesis work is how to decide the shape and size of a
sampling window on the original texture [4]. Because of
this, structural fidelity for near-regular textures cannot be
guaranteed using state-of-the-art texture synthesis algo-
rithms. We show that a proper analysis of texture
regularity in terms of symmetry groups and lattices,
combinedwith texture synthesis, can faithfully reproduce
the regularity as well as the randomness in a near-regular
texture sample [30].

Image compression: Symmetry implies redundancy. A
correct recognition of these redundancies can lead to
effective compression algorithms for periodic or near-
periodic patterns.

Pattern comparison: The computed pattern motifs, due to
their uniqueness, provide a goodbasis for periodic pattern
comparison. We have used this idea to compare spatio-
temporal human gait patterns in [27].

Understanding human perception: Our work on motif
selection suggests concrete hypotheses about human
perceptual organization of periodic patterns, which can
be systematically tested.

6.3 Real-World Symmetries

The varieties of real-world periodic symmetries are surpris-
ingly large, even in our daily environment, as shown in
Figs. 7, 8, and 9. Schattschneider [39] has observed that 16 of
the 17 wallpaper groups can be exemplified by Chinese
window structures. Washburn and Crowe [50] illustrated
most of the 17 distinct patterns in African textile and
pottery. It has also been shown that different subsets of the
17 wallpaper groups are preferred by different cultures [49].

Computationally, the difficulty in automatic analysis of
real world symmetries is the fact that real-world patterns
may be very noisy. The computed symmetries of a distorted
periodic pattern may not correspond to any set of the
required symmetries of a frieze or wallpaper group (Tables 1
and 2). In this paper, we deal with this situation by
introducing a new concept: defining a minimum distance
between a noisy pattern and its corresponding perfect
pattern in each of the potential symmetry groups, and using
geometric AIC to decide, fairly and unambiguously, on the
best fit among the symmetry group hierarchy. An alter-
native approach to deal with this inconsistency would be
using the vector value of symmetry matching scores of a
pattern, such that there will be 24 (Table 1) or 28 (Table 2)
different potential classes for near-periodic frieze or wall-
paper patterns, respectively. Regardless of the method,
there is a clear benefit to using symmetry groups as anchor
points to study the high dimensional space of near-periodic,
noisy, real-world patterns.
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