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Spike-timing dependent plasticity (STDP) is
widely accepted as a mechanism through which the
brain can learn information from different stimuli(1,
2). Basing synaptic changes on the timing between
presynaptic and postsynaptic spikes enhances con-
tributing edges within a network(3, 4). While STDP
rules control the evolution of networks, most research
focuses on spiking rates or specific activation paths
when evaluating learned information(5–7). However,
since STDP augments structural weights, synapses
may also contain embedded information. While imag-
ing studies demonstrate physical changes to synapses
due to STDP, these changes have not been inter-
rogated based on their embedding capacity of a
stimulus(8–12). Here, we show that networks with
biological features and STDP rules can embed infor-
mation on their stimulus into their synaptic weights.
We use a k-nearest neighbor algorithm on the synap-
tic weights of thousands of independent networks to
identify their stimulus with high accuracy based on
local neighborhoods, demonstrating that the network
structure can store stimulus information. While spike
rates and timings remain useful, structural embed-
dings represent a new way to integrate information
within a biological network. Our results demonstrate
that there may be value in observing these changes di-
rectly. Beyond computational applications for moni-
toring these structural changes, this analysis may also
inform investigation into neuroscience. Research is
underway on the potential of astrocytes to integrate
synapses in the brain and communicate that informa-
tion elsewhere(13–15). In addition, observations of
these synaptic embeddings may lead to novel thera-
pies for memory disorders that are difficult to explain
with current paradigms, such as transient epileptic
amnesia.

B iological neural networks adapt to stimuli to learn through
synaptic plasticity(1, 2). Whether through differences in

firing rate, postsynaptic potential magnitude, or myelination,
the brain requires state changes to transfer information(5–
7, 16–18). Spike-timing dependent plasticity (STDP) rules are
crucial to these state changes, as they incorporate the activity
of the network into the changes that occur. In both excitatory
and inhibitory neurons, potentiation and depression are es-
sential to adapting networks based on the stimulus presented
to them(3, 4). However, excitatory and inhibitory neurons
need different learning rules for potentiation and depression,
as their synapses strengthen from opposite postsynaptic neu-
ron outcomes(19). An excitatory neuron would experience
synaptic potentiation if the downstream neuron fires soon after
it did while an inhibitory neuron would experience synaptic

potentiation if the downstream neuron never fires.
Both potentiation and depression are intertwined with the

postsynaptic neuron’s refractory period. Through this, the
refractory period plays a role in the development of struc-
tural changes within a network(20). The refractory period,
which is the time after a neuron fires when it is incapable
of firing again, temporarily prevents incoming signals from
strengthening through potentiation. Indeed, when a signal
from a presynaptic neuron reaches a refractory postsynaptic
neuron, the synaptic weight between them is reduced. Fine-
tuning of refractory periods is necessary to avoid over-reduction
of weights while also ensuring that depression occurs when
needed(21). Experimentally, it is challenging to change the
refractory periods of real neurons to make observations about
the impact of refraction. Computational models, however, can
freely augment neuron refractory periods and observe how
activity and activity-based learning rules are affected.

Over time, potentiation has been canonically credited for
memory formation and learning in the brain. However, re-
cent evidence has shown that depression can be important
for learning as well, particularly for tasks involving object
recognition(22–27). While depression is often used to stabilize
weights after potentiation, depression can also be taken advan-
tage of to reduce weights intentionally to embed information
from a stimulus(28, 29). Though scientists can deactivate
either potentiation or depression(30), there are few experi-
ments interrogating how well learning takes place with just
one or the other(31, 32). Without the limitations and external
variables of in vivo and in vitro experiments, our model can
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Fig. 1. An overview of our network model and analysis methods. (A) The neuron model we employ in our network is a leaky integrate-and-fire with a time delay (length) and
weight for each edge. MNIST images consisting of 784 pixels feed into the input layer with each input neuron corresponding to one pixel. Each input layer neuron connects to
each recurrent layer neuron with a different delay. As the recurrent layer neurons activate, they send signals to each other with varying delays as well to propagate signals within
the layer. As signals travel within the recurrent layer, a biologically-inspired STDP rule modulates the weights of each edge. (B) For our simulations, we initialize many identical
networks before stimulating them with different MNIST images to run in parallel. As the simulations progress, the STDP rules result in similar modifications between networks
stimulated by similar images. The weight values of each edge are concatenated into a weight vector and we notice that weight vectors from similar stimuli travel along similar
trajectories. (C) During our simulation, we run these concatenated weight vectors through a k-nearest neighbors algorithm. We classify vectors from simulations with unknown
stimuli based on their five nearest neighbors with known stimuli.

further explore how well information can be embedded with
just potentiation or depression.

When studying STDP, researchers generally observe neuron
activity within biological networks. Therefore, much of the
experimental work on STDP has been done to observe changes
to the firing rates, connectivities, or postsynaptic potential
magnitudes of neurons(3, 33). However, recent experiments
show that in the process of causing changes to dynamics, STDP
may also embed the stimulus into the morphological structure
of the network itself(34, 35). As potentiation and depression
result from activations caused by the stimulus, the resulting
synaptic weight changes could reflect the stimulus. While
limited by the neuroanatomical connectivity, potentiation and
depression are appealing candidates for memory formation
through changes at the dendrite(8–12). Though scientists can
image dendritic spines as they grow and shrink from STDP(36,
37), a computational model can more easily quantify how the
synapse is changing due to a stimulus. With this quantification,
we can elucidate the effectiveness of the structural embedding
created via STDP.

While potentiation and depression are effective for learning,
they are limited by the number of active neurons inside the
network. In particular, previous works have shown that an
assembly of neurons has to be sufficiently large to reconstitute
the stimulus presented to it(38, 39). Furthermore, one mecha-
nism by which working memory can be trained is by increasing
the number of neurons that respond to a given stimuli(40).
Through these experiments, structural changes seem to be
capable of embedding information and bringing a sufficient
number of neurons together for learning new things.

In this work, we use the leaky integrate-and-fire neuron
model(41) with refractory periods(42) and axonal delays to
incorporate geometry into the network(43). These axonal
delays were based on measurements of murine hippocampal
axon lengths and conduction velocities(44, 45). In addition,
we implemented inhibition within the network at a percentage
also observed in the rat hippocampus(46). To modify the
network based on the activity resulting from the axonal delays,
we incorporated STDP rules for both excitatory edges(47) and
inhibitory edges(4) based on murine hippocampal data.

Using this neuron model in a recurrent network, we demon-
strate that the synaptic weights of the network contain sig-
nificant information about the stimulus. In particular, since
we designed our network to obey canonical neurobiological
signaling principles, it follows that our model and a biological
network of neurons embed stimulus information in a similar
way.

Furthermore, the refractory periods within the model can
be adjusted in ways that biological systems cannot be to
observe the effects on learning. Moreover, we can isolate
potentiation and depression to determine how well they can
embed the stimulus independently as well as together. As
the stimulus causes activations that modify synaptic weights,
a concatenated vector of the weights evolves in time and
reflects the stimulus in a particular time window. Based
on the STDP weight changes, the trajectory of this vector
changes within the state space of synaptic weights. This
vector is our primary method of accurately quantifying the
structural changes STDP implements over time. In this paper,
we hypothesize that due to the STDP changes, this weight
vector contains information about the stimulus that an external
reader can access. Other works suggest that astrocytes may
be able to integrate plasticity changes across thousands of
synapses to read out information from neurons within the
hippocampus(13, 48).

1. Methods

The overview of our methodology is highlighted in Figure 1.

A. Neuron Model. For this analysis method, we used an exten-
sion of the leaky integrate-and-fire neuron model to incorporate
axon distances(41, 43). Each neuron accumulates membrane
potential from arriving signals while its overall potential de-
cays away (leaks) as a function of time. With the subscript
i representing the postsynaptic neuron and subscript j rep-
resenting any presynaptic neuron that has sent a signal, the
membrane potential can be expressed as:

Vi(t) =
∑

j

γ(wji, tj) [1]
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Fig. 2. Here are the biologically-inspired STDP rules for the edges in our network. If an excitatory signal from a presynaptic neuron arrives at a postsynaptic neuron before it
fires, the weight of the edge between them increases. If the signal arrives at the postsynaptic neuron while it is refractory, the weight of that edge decreases instead. Inhibitory
edges are modified with a different biologically-inspired STDP rule. If the postsynaptic neuron fires close to when the presynaptic signal arrives, the weight of the inhibitory edge
decreases. If a sufficiently long time passes after the presynaptic signal arrives without a postsynaptic activation, then the magnitude of the inhibitory edge increases.

The membrane potential Vi equals the sum of the weights
of each incoming signal wji after they run through the decay
function γ based on their respective arrival times tj . Once
the threshold potential is reached, the neuron fires along all
its edges and becomes refractory with its membrane potential
resetting(42).

Over time, the weights of each edge are modulated using
spike-timing dependent plasticity (STDP) rules found in bio-
logical neurons(49). As excitatory and inhibitory edges need
to be updated differently in response to network activity, a dif-
ferent STDP rule was used for each, as seen in Figure 2(4, 47).
For excitatory edges, potentiation occurs when a postsynaptic
neuron fires soon after a signal arrives and depression occurs
when the postsynaptic neuron is refractory when a signal ar-
rives. For inhibitory edges, potentiation (making the edge
more inhibitory) occurs when a postsynaptic neuron does not
fire soon after a signal arrives and depression occurs when a
postsynaptic neuron fires near the signal arrival.

In addition to arrival and departure times of signals, there
are also parameters for the STDP change amplitudes and the
time constants for scaling that time difference. These provide
direct control over how large each weight change can be and
how dependent each one is on the time difference observed.

For excitatory edges, all of this can be expressed as such:

∆w = A−e
∆t
τ− if ∆t < 0

∆w = A+e
∆t
τ+ if ∆t > 0

[2]

In this equation, ∆t is the time of postsynaptic neuron fir-
ing minus the time of presynaptic neuron firing. A+ and
A− represent the amplitudes for potentiation and depression,
respectively. τ+ and τ− are the STDP time constants as pre-
viously described. ∆w represents how much the edge weight
will change due to that pair of firings as a result of STDP.

For inhibitory edges, weight changes can be expressed as
such:

∆w = ηAe
−∆t
tau − ηα [3]

Similar to the excitatory equations, ∆t is the time of post-
synaptic neuron firing minus the time of presynaptic neuron
firing. There is only one A variable for inhibitory edges, as
potentiation and depression are weighted equally (i.e. they
have equal amplitudes). Similarly, there is only one τ time
constant, as the STDP curve is symmetric along the y-axis.
η is a variable unique to inhibitory edges and it controls the
learning rate of the edges by scaling each weight change. α is a
small value that is taken away from the weight each inhibitory
edge when there is a presynaptic firing. This allows for ∆w to
be negative when ∆t has a large magnitude in either direction.
Also, for clarification, a negative ∆w would result in a weaker
inhibitory edge.

The learning parameters for our STDP rules were taken
from data fit to physiological murine neuron experiments(50).
Based on our STDP rule for excitatory edges, the chosen pa-
rameters reflected the amplitude of depression changes being
greater than the amplitude of potentiation changes(1, 51).
This allowed for depression to control the activity of the net-
work to avoid signals propagating indefinitely. For the STDP
rule for inhibitory edges, the chosen parameters weighted po-
tentiation and depression equally, as there was no reason to
augment inhibitory edges differently based on whether they
were successful at reducing network activity or not(52).

The geometric embedding of our model is quite conse-
quential here, as each edge having a specific length varies
the amount of time it takes for signals to reach their target
neurons(53). All signals travel at the same speed, so the offset
in their arrival is based solely on these lengths. The delays
along the edges are taken from a normal distribution around
730µm(44) with a conduction velocity of 1.68 m/s(45).

The weights of the edges in the network are chosen from a
uniform distribution, such that 80% of the edges are excitatory
and range from the threshold potential down to just above
0 and 20% of the edges are inhibitory and range from the
negative magnitude of the threshold up to just below 0. This
results in single neurons having both inhibitory and excita-
tory outgoing edges, rather than being explicit inhibitory or
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excitatory neurons themselves. We decided to make 20% of
the edges (synapses) inhibitory, as that has been observed in
the rat hippocampus(46). Neurons do not normally have both
excitatory and inhibitory outgoing edges due to Dale’s law, so
we assumed inhibitory edges contained length-less inhibitory
interneurons to simplify the model(54). These inhibitory in-
terneurons needed axon lengths of 0 to keep the average delay
of inhibitory edges the same as the average delay of excitatory
edges. Excitatory and inhibitory edges used the same ranges
for their weights, as this equalization has been observed in
murine pyramidal neurons(55).

To improve computational efficiency, we use an event-driven
simulator instead of integrating the neurons over time(56).
With this, computations are done every time a signal arrives at
a neuron. This allows for refractory time, potential summation,
and membrane leak to be calculated only when necessary.

B. Network Model. We use a graph abstraction to describe
the structure of the network. A directed graph G consists
of vertices V which may be connected by directed edges E.
The dynamics on the graph follow that of a biological neural
network, where each vertex represents a neuron and each
edge represents an axon. We abstract a couple of salient
features of the biological neural network such as edge delays
and edge weights and directly encode them in the structure
of our network. Each edge is endowed with a delay dij whose
subscripts i and j represent the initial and terminal vertices,
respectively. The edge delay represents the duration of the
traversal of an action potential along the axon of a neuron. The
value of the edge delay accounts for the conduction velocity
of the action potential and the physical distance the action
potentials must traverse between neurons. Each edge is also
endowed with a weight wij , which represents the synaptic
weight and is modified by the rules stated by the neuron
model. In Section A, we describe in detail how we ascertained
the values for dij and wij .

Our network consists of two distinct layers of vertices; we
call them the input layer and the recurrent layer. We do
not have an output layer as most other approaches do. Each
layer is distinguished by its connectivity, number of vertices,
and initial values. Vertices of the input layer have edges
connected in a feed-forward manner, such that each input
vertex is connected to all recurrent layer vertices. Each vertex
of the recurrent layer is connected to every other recurrent
layer vertex, which results in a complete subgraph Ghid ⊂ G.

C. Inputs. To stimulate our network, we use images from the
MNIST data set from the National Institute of Standards and
Technology(57). This data set contains images of handwritten
digits between 0 and 9. Each image consists of 784 pixels in
a 28 by 28 grid. We map each pixel to one node within the
input layer of our network and every non-zero pixel causes the
corresponding input node to fire when the simulation starts.
As such, pixels with the maximal intensity of 255 are treated
the same as pixels with an intensity of 1. All appropriate
input nodes fire instantaneously at time 0, but their signals
reach neurons within the recurrent layer at different times
depending on each edge’s distance and conduction velocity.
The network is only stimulated one time by this process and
then the dynamics within it are allowed to run undisturbed.

Table 1. The parameters used within the network.

Refractory Period(42) 3.9 ms
Resting Potential 0.0

Threshold Potential 2.0
Upper Bound for Edge Weight 2.0
Lower Bound for Edge Weight -2.0

Mean of Edge Length Gaussian(44) 730µm
Standard Deviation of Edge Length Gaussian 219µm

Speed of Signals Across Edges(45) 1.68 m/s
Membrane Potential Leak Time Constant(50) 0.0093
Excitatory STDP Potentiation Amplitude(50) 0.00008

Excitatory STDP Potentiation Time Constant(50) 7
Excitatory STDP Depression Amplitude(50) 0.00014

Excitatory STDP Depression Time Constant(50) 10
Inhibitory STDP Potentiation Amplitude(47) 0.2

Inhibitory STDP Potentiation Time Constant(47) 20
Inhibitory STDP Depression Amplitude(47) 0.2

Inhibitory STDP Depression Time Constant(47) 20

Each of the parameters chosen for the latencies in the network and
the STDP rules was taken from murine hippocampus experimental
data. The only exception is the edge weight range and threshold
potential, which were chosen to make the computations manageable.

D. Simulation Observables. We analyze the state-space tra-
jectory of edge weights to determine whether images from the
same class result in similar dynamics. Initializing the network
with a sample MNIST image causes a subset of the input layer
vertices to activate. When a vertex activates, it generates
a signal on each of its outgoing edges. These signals either
cause downstream vertices to activate or have no effect if the
receiving vertex is refractory. Since every input layer vertex
is connected to every recurrent layer vertex, there will be
very few cases where the signals arrive, but then simply decay
away completely over time. In either case, the edge synaptic
weight is modified by the rules of STDP described in section
A. The changes in synaptic weight encode the dynamics on
the network induced by the stimulus.

The vector of synaptic weights can be written as wk
ij(t),

where ij identifies the edge for the kth MNIST simulation.
To calculate the classification accuracy, we sample the vector
of synaptic weights every 100ms. We do not consider the
synaptic weights of the edges between the input layer and the
recurrent layer, but only the synaptic weights of the edges
within the recurrent layer itself. This is because we are focusing
on synaptic changes caused by activations within the recurrent
layer, rather than directly from the image itself. As the input is
only fed in once, there would only be one STDP change at most
per edge between the input and recurrent layer. Therefore,
for n recurrent layer vertices, the size of the synaptic weight
vector at each sampling time is n(n− 1).

For the classification task, we compare the vectors of synap-
tic weights at each sampling time. The feature vectors of K
MNIST simulations can be written in the following matrix
notation:

Ā(t) =
[
w(t)1 w(t)2 . . . w(t)K

]
[4]

Ā(t) tracks the evolution of the feature vector over time.

E. Parallel Embedding of Inputs. Each input to the network
is treated independently. When we present the network with
an image, each input layer neuron is activated only once
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when its corresponding pixel has a value > 0. We do not
present periodic, constant, or random rate-based inputs to
the network. Upon stimulation with an image, we record
the dynamics over the course of 2s. From each simulation,
we analyze the state-space trajectory of edge weights. Since
each simulation is independent of the others, this allows us
to simulate many networks in parallel. As such, they are not
sequentially trained. Each parallel simulation begins with the
same initial conditions. The number of parallel simulations is
only constrained by computational resources.

We analyzed 10, 000 MNIST images in this manner and
compared vectors of synaptic weights between them. With
only one stimulation at the appropriate input neurons, the
simulations themselves simplify down to volleys of activity
within the recurrent layer. Instead of training individual
networks on specific classes, we compare the resultant synaptic
weight vectors to determine which class they are most similar
to. This, therefore, informs which digit the input must have
been.

F. KNN for Classification Accuracy. Once we obtain the vec-
tors of the synaptic weights from the many simulations, we
run them through a weighted k-nearest neighbors (w-KNN)
algorithm to determine their localities(58). Using w-KNN pro-
vides us with a simple way to assess synaptic weight vectors
based on their Euclidean distances to discern if they are of
the same class or not. In this w-KNN, we classify each vector
in the test set based on their distances from the 9, 000 vectors
in the training set. The w-KNN weighting of each neighbor
comes from the inverse of the distance between it and the
weight vector being evaluated; whichever MNIST digit has
the highest total weight based on the 5-nearest neighbors is
the one that is chosen for the classification. The 10, 000 total
vectors are sorted into the training and test sets randomly and
used for classification over 10 iterations to avoid any sampling
bias. In addition, because there are approximately the same
amount of simulations per digit in our population of 10, 000
vectors, imbalances should not create biases in modes when
many neighbors are considered. Importantly, even though
the neighbors are pulled from a "training set", there is no
actual training in this system, as all of the simulations were
performed independently.

G. UMAP for Visualization. In order to visualize the clustering
of these synaptic weight vectors, we use the UMAP dimension
reduction algorithm (59). We take edge weight vectors from
10, 000 simulations and run them through UMAP to see how
separated each digit becomes from the others. UMAP employs
k-nearest neighbors concepts with a unique local metric space
implementation to effectively reduce the dimensionality of
large data. By using this, we obtain a two-dimensional plot of
all of the vectors labeled by their input digit. This reveals to
us how similar or distinct the state-spaces of vectors of each
digit can be based on their proximity to each other.

2. Results

A. Characterization of Network Activity and Embedding Qual-
ity. When implementing our model, our first focus was on char-
acterizing the activity within the network. To accomplish
this, we recorded the time of the first 30 activations for each
recurrent layer neuron in a 200-neuron network. As shown in

Figure 3, the activity is not identical across all neurons, but
we can see that most neurons have fired 30 times by 300 ms
post-stimulation. As shown in Figure 4, information seems to
be embedded best at 300 ms post-stimulation. That means
the network is not just embedding a few key activations that
reflect the stimulus directly, but rather aggregating thousands
of activations into the structure of the network. Additionally,
each activation leads to hundreds of synaptic weight changes
via the STDP rules.

To get an idea of the behavior of networks stimulated
by different images of the same class, we took edge weight
vectors at different simulation times and ran them through a
UMAP dimension reduction. The greatest separation occurred
at 300 ms post-simulation, as seen in Figure 3. Notably,
even though the networks were stimulated independently, they
tend to congregate together based on the class of the image
used. To generate Figure 3, only the edge weight vectors were
used with no additional information about spiking activity
or stimulus pattern. Within the structural embedding itself,
there was information about the stimulus. Further, we did not
include edge weights between the input and recurrent layer,
as they would not reflect the activity within the recurrent
layer. Instead, signals would only travel along those edges
due to image pixels and the edges, therefore, would only be
affected by STDP once. As such, these STDP changes would
be direct reflections of pixels from the image and would not
demonstrate any embedding due to network dynamics. As we
are interested in determining how well network dynamics can
embed information through thousands of signals involved in
STDP, these input layer to recurrent layer edges would not
contribute overall.

Based on the UMAP data supporting our hypothesis that
the edge weight vectors contained information themselves, we
used a k-nearest neighbors algorithm to try to classify networks
with unknown stimuli based on their edge weight neighbors.
As the information capacity of the edge weight vector is bound
to its dimension, we decided to experiment with the number
of neurons (and therefore, edges) within the recurrent layer.
As shown in Figure 4, as the network size grows and the
number of edges increases, the peak classification accuracy of
the networks using a k-nearest neighbors algorithm increases.
With 200 neurons in the recurrent layer, the peak classification
accuracy was 96.5±0.5%. With networks larger than that, peak
classification marginally increased while substantially enlarging
the edge weight vector space. With n recurrent layer neurons,
an edge weight vector would contain n(n− 1) edges. Though
a recurrent layer of 300 neurons has slightly higher accuracy,
the computational costs are disproportionately larger. For all
network sizes, the peak classification accuracy was reached at
300 ms post-stimulation, which is an interesting phenomenon
independent of the number of neurons. As the network size
increases, the embedding of the stimulus seems to be retained
longer within the network. With recurrent layers as large
as 300 or 400 neurons (89,700 or 159,600 edges), the fall in
accuracy did not even occur within the 2-second window we
were using.

To continue our characterization of this recurrent layer,
we also changed different percentages of the edges to be in-
hibitory. For a network with a 200-neuron recurrent layer,
the peak classification accuracy of 96.5±0.5% was achieved
with edge inhibitory percentages of 10-30%, as can be seen in
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Fig. 3. (A) It can be seen here that the activity of the network starts slowly due to the delays from the input nodes, but quickly increases. In addition, even with just 200 recurrent
nodes, there seem to be as many as 20,000 activations per second in the simulation. As such, the activation dynamics are constantly changing the weights of the system. (B)
Using a UMAP projection to reduce the dimensionality of the edge weight vectors, we can get a glimpse of how they may be separating from each other over the course of the
simulations. Edge weight vectors from stimuli of the same digit generally congregate together in this projection, demonstrating that they may be more similar to each other than
to vectors from other digits.

Figure 4. This matches biological observations of inhibition
quite nicely(46, 60–62). Interestingly, with 50% of the edges
being inhibitory, the network neither becomes quiescent nor
loses the embedding of the stimulus over time. While it does
not achieve the same peak classification accuracy as lower
inhibitory percentages, this maintained embedding could be
useful in some biological systems.

B. Extending Simulations Beyond Experimental Plausibility.
To properly evaluate the contribution of both potentiation and
depression to the network embeddings, we then ran simulations
with each separately for comparison. As shown in Figure 5,
turning off potentiation within our networks actually had
a minimal effect on the peak classification accuracy. With
just depression gradually decreasing the edge weights, the
network could still embed the stimulus with the same success.
However, once we turned off depression, potentiation alone
was incapable of maintaining the embedding quality of the
stimulus. With depression and with or without potentiation,
a classification accuracy of 96.36±0.47% was achieved with a
recurrent layer of 200 neurons. In contrast, without depression,
only a classification accuracy of 87.24±0.78% was achieved
with the same sized network.

To disqualify the effect of the parameter values themselves
(which were observed experimentally), we switched the param-
eters used for depression and potentiation as well. Originally,
the parameters had depression with changes of higher ampli-
tude than potentiation. As Figure 5 shows, even after this was
switched, depression still had a larger impact on classification
accuracy. In any paradigm without depression, the accuracy
would drop from 96% to 88%. On top of that, paradigms
without potentiation maintained 96% accuracy as long as
depression was working.

To further investigate the balance between potentiation
and depression, we next changed the refractory period of the
neurons in the recurrent layer. As the frequency of potentia-
tion/depression events depends on the length of the refractory
periods, it follows that this would have a large impact on
which piece has more influence. Interestingly, for all the re-
fractory periods we tested, from 100 ps to 10 ms, having both
potentiation and depression changing edge weights maintained

maximum classification accuracy in our system as seen in Fig-
ure 6. It is only when looking at potentiation or depression
alone that differences became noticeable. With shorter refrac-
tory periods, just potentiating changes performed better than
just depressive changes. However, once refractory periods grew
longer and more depressive events took place, only depression
performed better than only potentiation. Across all tested
refractory periods, having just one or the other was sufficient
to reach the maximum classification accuracy obtained by
having them both together. In addition, the inflection point
where depression becomes more impactful than potentiation
seems to be with a refractory period of around 1 ms.

C. Comparing Edge Weight Vectors to Image Stimuli. As we
studied the nearest neighbors for each simulation and how
they seemed to well-represent similar stimuli, we decided to
look more closely at the raw images. As shown in Figure 7,
we plotted the 9000 nearest neighbors from one particular
MNIST image based on pixel value distance. Then, over the
course of a simulation, we plotted the 9000 nearest neighbors
of that same image based on the edge weight vector distance.
Taking the running mean of each group of 100 edge weight
vector distances, we can see similar patterns start to form and
disappear over the course of a typical simulation. Notably, the
edge weight vector distances seem to correlate with the pixel
value distances between 200 and 400 ms of simulation, when
peak classification accuracy occurs. After 400 ms, the edge
weight vector distances lose correlation with the pixel value
distances.

3. Discussion

A. Parsimony Between Our Results and the Neurobiology.
Broadly, our results coincide with the expectations defined
by neuroscience while also providing insights in a way only
computational models can. The parameters taken from the
neurobiology allowed us to employ plausible learning rules and
time delays while the KNN algorithm allowed us to view infor-
mation embedding capabilities in ways that cellular experimen-
tation may not be able to currently. Through this, we aligned
our results with widely accepted assumptions, such as networks
needing to be sufficiently large to embed a stimulus(38) and in-
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Fig. 4. (A) We tested various recurrent layer sizes to balance the classification
accuracy with simulation efficiency. The peak classification accuracy improved as the
size of the network grew, but remained at 300 ms of simulation time. However, we
observed that the improvements gained in networks larger than 200 nodes were not
substantial at peak classification accuracy, but rather when the accuracy began to
diminish. (B) We tested different percentages of inhibitory edges within the network.
Some percentages, such as 70% and higher, were so negative that they silenced the
network prematurely. When comparing the peak classification accuracies across all
percentages, we observe that 20% has the highest peak. Interestingly, some inhibitory
percentages have peak accuracies at simulation times later than 300 ms, which is a
phenomenon that is not observed with many other parameter configurations.

hibition playing an essential role in information embedding(4).
On top of that, we demonstrated the effectiveness of structural
embeddings in networks using STDP rules. Our work extends
the idea of structural changes being a part of the process of
embedding memories(8) to them being possibly sufficient to
do so on their own.

As shown in Figure 3, our networks are full of activity.
Therefore, the embeddings we observe are compositions of
large combinations of weight changes. Rather than a few highly
specific activations triggered by the stimulus, thousands of
activations are integrated to produce the network state that is
used. Without any pre-training, the base network stimulated
independently with two images of the same class will likely end
up with two similar network states 300 ms into the simulation.
Further, images with various orientations across the same class
share similar enough patterns to trigger similar weight changes
overall. Figure 3B demonstrates this, as states of networks of
the same classes aggregate at particular times when simulated
independently of each other. It is possible that some networks
in the brain may work similarly, particularly in the perirhinal
cortex, where object recognition is accomplished by networks
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Fig. 5. We tested the importance of potentiation and depression on the edge weight
changes. By turning each of them off separately, we see that just depression is
sufficient to maintain high classification accuracy, but just potentiation reduces the
peak accuracy substantially. We then switched the parameter values for each learning
rule to see if they were the cause, but we observed the same phenomena regardless
of which parameter values were used for each learning rule. As such, edge weight
depression seems to be necessary for the stimulus embedding in this system.

that have strong depression, as our networks do(22). In the
brain, similar stimuli may result in similar structural states
for object identification.

As shown in Figure 4A, our simulations demonstrate the
notion that networks that are too small may not be capable
of reconstituting a stimulus fully(38). However, our simula-
tions explore the trade-off between stimulus embedding and
network size. As we increase the size of our networks beyond
200 recurrent neurons, the classification accuracy improves
only marginally while increasing the computation time dra-
matically. When thinking about the tangible resources in
the brain, such as neurotransmitters and ATP, it could be
inefficient to use larger networks for problems, as the embed-
ding capacity may improve marginally at an enormous cost.
Others have observed this phenomenon in working memory;
training increases the number of neurons initially stimulated,
but it does not increase the number of neurons recruited to the
assembly in general(40). While raising the number of neurons
that are initially stimulated increases the ATP consumption,
this increase is less than that by enlarging the assembly itself.
Therefore, there is a more efficient trade-off between increasing
resource usage and computational capacity in these neuron
assemblies.

The importance of the right amount of inhibition was also
echoed in our simulations. While experimental observations
have highlighted key inhibitory percentages that are often
observed in the brain(46, 60–62), our network allowed us
to take that to its extreme as well. We noticed the best
classification accuracy with inhibition percentages between
10-30%, which aligns with what is seen experimentally. Our
observations support our hypothesis that the brain may have
selectively evolved networks with these inhibitory percentages
to embed information optimally. However, we also observed
a strange phenomenon with 50% inhibition that is not easily
explained. The activity of these networks did not diminish
due to inhibition, nor did their classification accuracy decrease
significantly after hundreds of milliseconds of simulation. One
possible function for a network with this inhibitory percentage
is the acquisition and maintenance of fear memory through
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Fig. 6. We increased and decreased the refractory periods of neurons within the
recurrent layer to observe if there was a quantifiable reason for the scale of biological
refractory periods. Interestingly, the first thing we see is that regardless of how large or
small the refractory period is, with both potentiation and depression changing weights,
the classification accuracy stays remarkably consistent. However, with just depression
affecting the weights, the longer refractory periods allow for better classification
accuracy. Inversely, with just potentiation, the shorter refractory periods lead to better
classification accuracy. There seems to be an inflection point at around 1 ms where
depression alone begins to embed information better than potentiation alone.

inhibitory neurons in the intercalated cell masses (ITCs) of
the amygdala(63). These masses are densely inhibitory and
connect the amygdala to surrounding structures. In our model,
all inhibitory neurons follow the same activation and plasticity
rules rather than considering their true variability. In vivo
experiments demonstrate different populations of inhibitory
interneurons working independently of each other (64, 65).
Perhaps the phenomena we observe with 50% inhibition re-
sulted from an oversimplification of the different populations
in biological inhibition.

B. Extending Our Model to Better Understand Biological Net-
works. Since our simulations allowed us to manipulate neuron
refractory periods, we explored the reasoning behind the bio-
logical refractory period. While neurons cannot employ shorter
refractory periods due to the kinetics of sodium and potassium
channels, it does not seem like it would be disadvantageous
to do so if it was possible(20). Based on our simulations,
the benefits of an absolute refractory period of 1 ms are not
immediately apparent. While a refractory period of that du-
ration allows for depression to have a more prominent role,
with shorter refractory periods, potentiation could take over
without losing information embedding capability. However,
too short of a refractory period could lead to hyperactivity
of networks, which would require excess resources without a
clear improvement in embedding capability. Inversely, longer
refractory periods would also preserve embedding capability
but may cause neurons to be too slow to respond to new
stimuli. A previous experimental and computational study on
retinal ganglion cells noted the benefit of a sufficiently long
refractory period to allow for reproducible responses within
the network(66). It is possible that outside of the ion channel
limitations, the biological refractory period was optimized for
reproducibility rather than embedding capability. Further,
research has been done on the importance of the relative re-
fractory period when modeling cortical data(67), which may
also be an important consideration when interrogating these
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Fig. 7. In red, we see the distances of the neighbors to a single image based on
their raw pixel values sorted to be ascending. Over the course of the simulation, we
use this ordering to see how it compares to the distances to the same image based
on the network edge weights (in blue) while preserving the order from the raw pixel
values. The running mean of the nearest 100 image edge weight distances is used to
produce the orange line. We can see that around 300 ms, where the embedding is at
its best, the orange edge weight distances seem to correlate nicely with the red raw
pixel distances. However, this correlation is transient and is not reached before 200
ms of simulation time nor preserved after 400 ms.

STDP dynamics.
In addition to changing refractory periods, our simulations

allow for the isolation of potentiation and depression, which is
experimentally challenging to do in vivo, to demonstrate the
importance of depression. In Figure 6, we demonstrated that
with a biological refractory period, depression alone embeds a
stimulus better than potentiation alone. Similarly, in a mouse
model, it has also been observed that potentiation alone is
less effective at embedding working memory than when both
potentiation and depression are active together(68). Based
on the different refractory periods we tested in Figure 6, we
see that potentiation and depression alone consistently embed
information at different efficiencies. With shorter refractory
periods, potentiation works better alone than depression while
with longer refractory periods, depression works better alone
than potentiation. This observation is intuitive, as fewer sig-
nals arrive at refractory postsynaptic neurons with a shorter
refractory period and, therefore, those signals could contribute
to future activations. Another consideration for an optimal
refractory period is the relative strengths of potentiation and
depression. Experimental data has shown depression to have a
larger magnitude of change than potentiation(1, 3, 69). How-
ever, this may just be a consequence of the refractory period,
as our data shows that depression has stronger embedding ca-
pabilities than potentiation with a biological refractory period
regardless of plasticity parameter values. As such, the magni-
tudes of depressive changes may seem larger experimentally
because the embedding capability of depression is better at
that refractory period. Quantitative experimental observations
may be influenced by the efficacy of depression at embedding
information with a biological refractory period. In addition,
since our model shows the importance of depressive events
for embedding, we speculate that the biological magnitude is
larger for depression than potentiation to increase the fidelity
and range of the depressive weight changes. This is a beneficial
adjustment as it could allow for embedding through unique,
subtle depressive changes to weights. In a hypothetical brain
consisting of neurons with shorter refractory periods, the mag-
nitudes of change for potentiation and depression may appear
different, as the mechanisms behind them are time-sensitive.
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It is possible that a refractory period of 1 ms allowed for the
optimal balance between the aforementioned reproducibility
and the magnitudes of potentiation and depression.

The analysis of the synaptic weight space of our networks
aligns well with studies into the state spaces of memory(70, 71).
It has been proposed that networks in the brain may alternate
between persistent states to store memories. These states could
possibly consist of synaptic weights, synaptic connections,
membrane voltages, neuronal activation patterns, or other
biochemical variables. In our model, we directly use synaptic
weights to define the different states that networks transition
between as they are stimulated. In particular, we show that
networks stimulated by images of the same class reach similar
states after 300 ms of simulation, as seen in Figure 3. One
natural question that arises from the synaptic weight state
space is its potential capacity. We show that there is a useful
amount of separation with ten classes, but further work could
be done to see if there is separation when the number of
potential classes increases. In addition, these synaptic weight
states do not seem to persist over time, so the dynamics that
lead to its transience may also be further studied. Perhaps
if there was a glial component to the network, the states
would be supported to persist for longer. Experimental studies
have shown that glial cells play a key (though not yet well
understood) role in hippocampal structural maintenance(72,
73). Incorporating glial cell support could allow the weight
changes in our network to preserve information for longer and
delay our observed loss in accuracy.

In addition to support, glial cells may function as down-
stream readers of synaptic weights in the hippocampus. These
cells could play a role reminiscent of our KNN algorithm. In
particular, astrocytes extend processes to synapses within the
hippocampus to monitor and contribute to the activity and
plasticity that takes place there(74). While the astrocytes may
not keep track of the absolute synaptic strengths themselves,
their internal calcium gradients change with potentiation and
depression of the synapses(48, 75). As such, their internal
states integrate the overall plasticity changes over thousands
of synapses to monitor the population as a whole(13). As
astrocytes can communicate with each other through gap junc-
tions, they can transfer this information across the syncytium
to other astrocytes(14, 15). Those astrocytes, as a result, can
further transfer that information to downstream networks of
neurons by impacting their activity and plasticity(76). As-
trocytes, therefore, can read the overall synaptic plasticity
changes of a network caused by a stimulus (and possibly em-
bedding that stimulus) and transfer it to another downstream
network to facilitate the flow of information. Our KNN algo-
rithm is similar, as it is sensitive to the edge weight changes
within the networks rather than their absolute weights, which
are largely influenced by the initial state of the network. The
synaptic plasticity information astrocytes integrate could be
the biological analogue of our edge weight vectors and could
serve as a plausible mechanism through which information is
transferred in the hippocampus.

Furthermore, this view of astrocytes as readers of synap-
tic weights may explain the cause of transient epileptic
amnesia(77). When considering the paradigm of rate cod-
ing, seizures represent a unique firing rate for various regions
of the brain. Despite that, most patients still suffer amnesia
during the episode and often in moments subsequent to it(78).

This would imply that there is more to memory formation
than firing rates alone, as epileptic firing rates would not be
confounded by any other event. This is where our hypoth-
esis fits in nicely. The chaotic network activity of seizures
may cause STDP changes that do not properly embed any
particular stimulus. As such, when the brain tries to recall
memories from the event, it may not be able to accurately
process what the synaptic changes represent. Morphologi-
cal changes have been observed in the synapses of epileptic
brain regions(79), so there is precedent that seizures abnor-
mally change synaptic plasticity. In addition, there may be
dysfunction in the level of astrocytes as well. As astrocytes
are critically important for removing excess neurotransmitter
from synapses, seizures due to insufficient removal may be
caused by astrocyte dysfunction(80). This is uncontroversial,
but if we view astrocytes as readers of synapses as well, we
may understand transient epileptic amnesia better. If issues
arise in astrocytes maintaining synapses, issues may also arise
in astrocytes being able to read synapses. This could hin-
der the transfer of information across networks in the brain
and would, therefore, impede both memory formation and
recall. While there have been hypotheses for how amnesia
arises with rate coding, such as misaligned gamma and theta
wave synchronization(79), viewing astrocytes as key players
in storing memory elucidates one more possibility as to why
memory issues persist.

C. Future Directions For This Work. In the future, the intro-
duction of noise into the system could be studied as well, as
experimental studies have shown STDP to struggle when noise
via jitter is added to the spike timing(81). Inversely, adding
minimal noise may be beneficial to allow subthreshold signals
to impact network dynamics(82). Further, our threshold po-
tential was chosen such that an average of three excitatory
signals would be required to reach it. Follow-up experiments
could adjust the threshold potential to observe how increasing
and decreasing the number of activations affects the STDP
embedding of the stimulus. Lastly, another future direction
could involve studying the effect of multiple sequential stimuli
on the embedding. If the synaptic weights are capable of re-
flecting one stimulus, what happens when two are presented?
Do the weights reflect a composition of the inputs?

When looking at neurons within the brain, our synaptic
weight spaces offer valuable insight. While rate coding, post-
synaptic potential magnitudes, and myelin thicknesses are
primarily considered as evidence of learning(5, 6, 16), struc-
tural changes, in particular, can be meaningful as well. Our
methodology demonstrates that the stimulus can be identified
by interrogating the structural state of a network following
stimulation. In addition to astrocytes potentially monitoring
synapses, the structural state may also strongly influence the
overall rate and magnitudes of activations within the network.
As such, the structural state may correlate well with current
observations of activation rates and postsynaptic potential
magnitudes. As brain slice imaging techniques continue to
improve, subtle structural differences associated with different
learned patterns may also become observable experimentally.

When designing our network, we used a single recurrent
layer to avoid any brain region-specific architecture. To gener-
alize functions and interactions of various brain regions, we
minimized topological variability by connecting each input
neuron to every recurrent layer neuron. However, various
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regions of the hippocampus and parahippocampal cortex are
recurrent networks, so our model could represent an apt ana-
logue for them(83, 84). In addition, we maintained the same
initial conditions for simulations run in parallel (axon lengths,
starting weights) to minimize variability. To properly eval-
uate our edge weight and delay distributions, we tested 11
randomly chosen initial conditions and observed a classifica-
tion accuracy of 96.53±0.06% with a 200-neuron recurrent
layer. With these controls in place, the experimental data
we gathered resulted from changes to the refractory periods,
network sizes, inhibitory percentages, and STDP rules. Re-
garding this design philosophy, further work can be done to
investigate how different network architectures are impacted
by varied refractory periods and potentiation/depression iso-
lation. Furthermore, allowing for variability in initialization
or even sequential stimulation could lead to new insights into
the homeostatic capabilities of the networks to recalibrate and
resume learning. To add more neuroscientific features to the
network, we could also add dynamic dendritic spine calcium
concentrations, as a recent model observed their effect on
STDP strength(85). In particular, in high-activity networks
such as ours, the magnitude of STDP changes could be quite
variable depending on the calcium transients.

Experimental techniques capable of observing the graded
breakdown of synaptic embeddings could produce diagnostic
tools for neural dysfunctions and new understandings of com-
putation in the brain. Research is currently being done to
quantify how these synaptic embeddings relate to information
storage(86), but it is still unclear how to best monitor them.
In our model, embeddings are intimately tied to the timing
of signals between neurons. Variability of a network’s geome-
try and signaling parameters affect timing, and volatility in
either can cause failure in embedding robustness. Changes in
a network’s geometry arise from available neural circuits due
to disruptions to oscillatory neural patterns, and neuromodu-
latory signals (87–89). Dysfunction affecting the conduction
velocity of axons, whether due to myelination or ion channel
irregularities, could negatively impact memory storage due to
inconsistent signaling parameters affecting the signal timings.
Further, if there is limited neurotransmitter availability, ei-
ther due to poor astrocyte recycling or insufficient production,
the resulting variability in spike amplitudes will affect signal
timing, thus the embedding, and may lead to memory prob-
lems. Another potential source of issues with memory could
be connectivity changes due to synaptic pruning or neurotro-
phy, which could change the paths that signals travel along in
response to the same stimulus. Lastly, conditions constraining
the sizes of neuron assemblies could result in poor memory due
to an insufficient number of edges on which information can
be embedded. Biological experiments focused on any of these
issues could elucidate mechanisms of memory loss beyond just
synapse destruction due to neuroinflammation.

D. Edge Weights As A Machine Learning Methodology. Step-
ping back from the biology, Figure 7 highlights a deeper dive
into the correlation between the network embedding and the
input images. In particular, after 300 ms of simulation time,
the nearest neighbors to a specific vector closely resemble
the nearest neighbors of the input image itself. This obser-
vation demonstrates the functional potential of our model.
With STDP, neuron refraction, inhibitory edges, and edge
latencies, the network recapitulates the stimulus after 300 ms.

This observation may imply that adding biological features
to canonical artificial neural networks could benefit them for
particular applications. However, this is not a novel idea,
as many groups have already begun making neural network
systems more biological with great success(90–93). Once our
simulations have been completed, we use specific structural
weight states from each simulation to classify. This reduces
the number of parameters when compared to a deeper neural
network(94).

In fact, since each simulation is run independently of the
others, there is no "training phase" in our system. Each in-
dividual network embeds information in parallel via one-shot
learning(94). The network activity of our model generates
a dynamic embedding of the stimulus through the synaptic
weight changes, which we have found to be empirically benefi-
cial for classification. Our dynamic embedding can be viewed
as a functional transformation of the network’s stimulus, where
the function is stipulated by the individual network dynamics
triggered by the stimulus. When we ran the KNN on the input
images pixels we attained attained a classification accuracy of
94.5%, whereas, the KNN on our dynamic embedding resulted
in a classification accuracy of 96.5%. Given that we empirically
observed an increase in classification accuracy as a result of
the dynamic embedding, we postulate that our transformation
is non-trivial.

Further work can be done to investigate the machine learn-
ing potential of this system as well as other biologically-inspired
systems. Although we only tested our network on the MNIST
data set, which is no longer a hurdle for machine learning
systems, more challenging data sets can be applied to it in the
future. Classification accuracy of 96.5±0.5% is not as high
as state-of-the-art neural networks achieve, but with one-shot
learning, it is still a feat. In addition, due to the biological
design, this network may prove advantageous for different
challenges where conventional neural networks struggle.
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