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Abstract. To explore the flow characteristics of healing agent leaving a vascular

network and infusing a damage site within a fibre reinforced polymer composite,

a numerical model of healing agent flow from an orifice has been developed using

smoothed particle hydrodynamics. As an initial validation the discharge coefficient for

low Reynolds number flow from a cylindrical tank is calculated numerically, using two

different viscosity formulations, and compared to existing experimental data. Results

of this comparison are very favourable; the model is able to reproduce experimental

results for the discharge coefficient in the high Reynolds number limit, together with

the power-law behaviour for low Reynolds numbers. Results are also presented for

a representative delamination geometry showing healing fluid behaviour and fraction

filled inside the delamination for a variety of fluid viscosities. This work provides

the foundations for the vascular self-healing community in calculating not only the

flow rate through the network, but also, by simulating a representative damage site,

the final location of the healing fluid within the damage site in order to assess the

improvement in local and global mechanical properties and thus healing efficiency.

1. Introduction

Fibre reinforced polymer (FRP) composite materials are leading contenders as

component materials to improve the efficiency and sustainability of many forms of

transport. The arguments for using this material are their superior specific strength

and stiffness, as well as a significantly lower density than their metallic counterparts.

However, unlike metallic materials, FRPs do not exhibit graceful degradation, when

subjected to high strain-rate events, but instead dissipate the energy through complex

damage mechanisms resulting in significant reductions in mechanical performance and

loss of structural integrity.

As a part of ongoing work at Bristol into multi-functional materials, embedded

healing capabilities (see Figure 1) for autonomous self-healing is under consideration

to address the formation of multi-scale damage in advanced fibre reinforced

composite materials. The precise healing strategy employed varies with the intended

structural application, and the nature and magnitude of the damage. For example,
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microcapsules [1, 2, 3] distributed appropriately may be sufficient to heal initiating

defects and arrest slow propagating cracks, while embedded liquid filled hollow glass

fibres [4, 5, 6] or vascular networks [7, 8, 9, 10, 11, 12, 13] are ideal for facilitating the

bleeding of healing agent throughout multiple crack planes within large scale damage.

(a) Micro capsules [2]

(200-micron diameter,

SEM image)

(b) Hollow

glass fibres [6]

(60-micron di-

ameter, optical

micrographic

image)

(c) Vascules [13]

(250-micron

bore, optical

micrographic

image)

(d) Porous hollow vas-

cules [14] (400-micron

bore, SEM image)

Figure 1: Self-healing approaches:

Embedding a self-healing delivery network, in the form of hollow glass fibres or a

vascular network, offers considerable technical and practical challenges since the delivery

system may affect the architecture of the laminate and promote the initiation of new

damage scenarios. Therefore, in the design concept phase, it is essential to ensure the

network placement and delivery potential is optimised, in addition to the optimisation

of the healing resin to effect repair (i.e. low viscosity, high toughness with a controlled

bio-inspired haemostatic reaction, as identified by Trask [15]).

In the situation when the damage size is extensive through the structure (see

Figure 2(column II), and there is a need to restore full operational capability, a number

of key challenges exist to achieve optimised healing efficiency, namely:

(i) Identification of the key damaged locations and damage connectivity (as potential

healing highways to maximise the healing efficiency potential) within the

structure/component (see Figure 2);

(ii) Identification of the most effective healing locations requiring reattachment and

stabilisation to maximise load transfer restoration; and,

(iii) ensuring that sufficient fluid and fluid flow from the delivery network will gain direct

access to the damaged region before polymerisation (thrombosis) of the healing

agent has occurred.

Quantifying the key damaged locations and damage connectivity (point i) has been

a key technical driver at Bristol to ensure that the delivery infrastructure (in particular

vascular networks) can supply sufficient healing potential to the damage site. This work

has been undertaken through linking optical microscopy with ultrasonic c-scanning (for

example [6, 13]) and, more recently, micro-X-ray computer tomography (CT) [16].
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Figure 2: Control 10J impact damage characterization of baseline and self-healing

laminate containing vascules: column I lay-up and interface identification; column II

C-scan TOF breakdown (with scale bar for the final image) of baseline specimen; and,

column III C-scan TOF breakdown (with scale bar for the final image) and micrographs

of damage interaction within a self-healing composite laminate. Adapted from [13].

In an effort to address point ii above the reader is directed to our previous work [17],

which considered the need for identifying optimum healing locations within the

delaminated composite structure to achieve maximum performance restoration; utilising

a multi-objective Genetic Algorithm (GA). The results illustrated the magnitude of

attachment (from the top surface to the lower surface) required to ensure effective

stabilisation of the local crack plane and thus the global damage zone; namely, we

reported a fill/attachment ratio of 35% was sufficient to obtain 95% structural efficiency

(when the repair of a single delamination loaded in compression was considered) [17].

This result shows the importance of delivering the correct volume of the healing resin to

the correct local location within a global damage scenario. Due to the complex damage

network observed in fibre reinforced composite (Figure 2), it is essential to understand

how the liquid flow front permeates through the damage site from a single or multi-point

entry strategy.

In the present study, we are assessing the release of the healing fluid from the

discreet embedded healing capability (with the aim of addressing point iii above) to

ascertain the controlling parameters which determine the rate and extent the healing

resin will fully infuse the surrounding damage site. To achieve this objective, a model

of the fluid flow leaving the healing reservoir and moving through the damage site is
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required. Flow of the healing agent into the crack proceeds under the influence of a

pressure gradient and/or capillary action. This means these flows involve elaborate

geometries, which may even still be in motion, together with free surface behaviour,

and potentially also chemical changes in the fluid. Additional complications arise from

the need to understand not only a single exit, but potentially a whole network of exit

points. Clearly, for the self-healing community there is a great interest in calculating

not only the flow rate through the exit, but also the final location of the healing fluid

within a crack in order to assess the improvement in mechanical properties.

Although significant progress has been made in the design of self-healing networks,

the design and analysis of these systems has proceeded along largely empirical or semi-

empirical lines. Experimental data does exist for these low Reynolds number discharge

orifices [2, 6], but the benefits of employing numerical modelling would be substantial,

potentially delivering not only improved quantitative predictions but also much deeper

understanding of the flows in these confined regions, as well as the ability to consider

the properties of more complex networks. The flow of self-healing agent exiting a

vascule is an example of a free surface flow at a low Reynolds number; at high Reynolds

numbers, orifice calculations would give usable results for these problems, but as viscous

forces becomes more dominant the behaviour is not as clear. Figure 1d shows a PTFE

vascule intended to convey healing agent. An important initial question, and one we

try to address through the application of Smoothed Particle Hydrodynamics (SPH) (a

Lagrangian meshless numerical method for fluid dynamics), concerns determining the

link between the local pressure differential across the orifice and the flow rate through

it, before the external geometry of the crack is considered.

2. Formulation

Smoothed particle hydrodynamics (SPH) was derived independently by Gingold and

Monaghan [18] and Lucy [19]. It is often used for fluids due to the simplicity of using

meshless methods to model free surface flows which would otherwise require complex

techniques such as the volume of fluid (VOF) method [20]. There are a number of

reasons to prefer SPH to VOF; the first is simplicity, a basic SPH code can be written

with comparative ease and no special techniques are required to track free surfaces.

The meshless nature of the method also removes the need to create a mesh which can

prove challenging in complex geometries. As the SPH method is Lagrangian it avoids

false diffusion errors that can occur in Eulerian methods such as VOF. In addition, VOF

requires the solution of a differential equation that describes the evolution of the volume

fraction in the mesh volumes which is unnecessary in SPH.

To represent the flow of fluid with a Lagrangian scheme equations 1 and 2 must

be solved which requires calculating the derivatives from the primative variables. The

most commonly used method for producing SPH formulations of the governing equations

views SPH as a method of representing a function by summation over a set of particles.

Liu and Liu [21] give details of the mathematics, but the process is to take a function
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that approximates the Dirac delta function and convolve it with the function to be

represented as in equation 3. The angle brackets denote the integral representation.

Du

Dt
= −

∇P

ρ
+ ν∇2u (1)

Dρ

Dt
= −ρ∇ · u (2)

< f(x) >=
∫

Ω

f(x′)W (x− x′, h)dx′ (3)

Here f(x) is a function to be represented by integration over a volume Ω, W (x− x
′

, h)

is a smoothing function that depends on the difference between the location of interest

and the points over which the integral is evaluated.

This integral representation, in equation 3, is then approximated by summation

over N nearby particles, shown in equation 4, where each particle is assigned a mass

and density such that the volume taken up by the particle can be calculated from these

values. This summation is practical because W is usually chosen to be a compact

function which is non-zero only for a small fraction of the total domain. The radius

over which W is non-zero is known as the support radius and is a function of h, which

is a characteristic length of W and is known as the smoothing length. Thus N is the

number of particles within the support radius.

< f(x) >≈
N
∑

j=1

mj

ρj
f(xj)W (x− xj, h) (4)

Derivatives can be approximated in the same way as any other function, and since∇f(x)

is required:

< ∇f(x) >=
∫

Ω

∇f(x′)W (x− x′, h)dx′ (5)

However, as the derivative of f may not be known the following identity can be used

to give two terms in the integral, where the term on the left hand side of equation 6

becomes a surface integral through the gradient theorem, equation 7.

∇[f(x′)W (x− x′, h)] = ∇f(x′)W (x− x′, h) + f(x′)∇W (x− x′, h) (6)
∫

Ω

∇f(x)dx
′

=
∫

S
fdS (7)

Normally, though not in regions where the support is truncated, the support domain

is entirely within the problem domain such that the surface integral is zero and the

representation can be expressed entirely in terms of the volume integral. The particle

approximation can then be performed as with any other function. The method for

deriving the approximation to a vector gradient is very similar.

With this information it possible to construct the governing equations of fluid flow

in the SPH formulation as all derivatives can be simply expressed in SPH form.

< ∇f(xi) >≈
N
∑

j=1

mj

ρj
f(xj)∇iW (xi − xj, h) (8)
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Equation 6 can be used in conjunction with identities to produce expressions for

derivatives. An identity using ∇
(

P
ρ

)

is given by equation 9, suitable since from

equation 1 the variable needed is ∇P
ρ
. This has the advantages of being symmetric

and consistent with a parallel derivation based on the Lagrangian [22].

∇P (x)

ρ
= ∇

(

P (x)

ρ

)

+
P (x)

ρ2
∇ρ (9)

Evaluating the derivatives on the right hand side (using f = P
ρ
or f = ρ) separately

gives the SPH result for ∇P
ρ
.

〈

∇P (xi)

ρi

〉

≈
N
∑

j=1

mj

[

P (xj)

ρ2j
+

P (xi)

ρ2i

]

∇iW (xi − xj, h) (10)

At present the SPH formulation used is:

Wij = α

(

1−
|xi − xj|

2h

)4 (

2
|xi − xj|

h
+ 1

)

,
|xi − xj|

h
≤ 2 (11)

Dui

Dt
= −

N
∑

j=1

mj

[

Pj

ρ2j
+

Pi

ρii

]

∇iWij +Πi + g (12)

Dρi

Dt
=

N
∑

j=1

mj(ui − uj) · ∇iWij (13)

P = B

((

ρ

ρ0

)γ

− 1

)

(14)

Equation 11 is the quintic kernel suggested by Wendland [23] and α is a normalisation

parameter than depends on the dimension the equations are solved in. The normalisation

is necessary so that the volume integral of the kernel over the support radius is equal to

one; this allows the approximation in equation 3. In 2D α = 7

4πh2 while in 3D α = 21

16πh3

for this kernel. The equation of state, equation 14, is commonly used in SPH remove the

need to solve a pressure Poisson equation. An equation of this form was first suggested

by Cole [24] for water, Monaghan [25] then suggested setting B such that the speed of

sound in the fluid is an order of magnitude greater than the fastest particle. γ is set to

7 following Cole’s [24] work. The second term on the right hand side of equation 12 is a

viscosity term, which can be formulated in different ways discussed below. The density

of a particle is evolved in time rather than calculated explicitly by summation to remove

the problem of the density reducing near free surfaces due to the lower number of near

particles [26]. Once the discrete equations have been set up on the particles, Newmark’s

scheme is used to advance the model in time with iteration applied at each timestep to

solve the implicit problem.
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2.1. Viscous Force Formulation

The resins used in the self-healing process often have high viscosity and the length

scales in question are low, implying a small Reynolds number. Viscous forces will be

significant so an accurate representation of these forces in the SPH model is essential.

In this work a viscosity formulation due to Cleary [27] is used. This formulation has

two attractive properties. It can allow variable viscosities within a fluid or interactions

between fluids of different viscosities, and it was tuned by considering a Couette flow

for correlation with experimental data using a tuning parameter. Cleary’s formulation

is given by equation 15 and the parameter ξ is given by Cleary as equal to 4.96333.

Πi =
N
∑

j=1

mj

ξ

ρiρj

4µiµj

µi + µj

vij · xij

|xij|2 + η2
∇iWij (15)

The results obtained using Cleary’s viscosity formulation are compared to an

alternative formulation suggested by Morris et al. [28], given in equation 16. Note that

this method does not require a tuned parameter and although similar in appearance,

acts in a slightly different direction to the Cleary viscosity term.

Πi =
N
∑

j=1

2mjµ

ρiρj

xij · ∇iWij

|xij|2 + 0.01h2
vij (16)

2.2. Surface Tension Formulation

There are two main methods for the modelling of surface tension forces within SPH.

One method is based upon the work of Brackbill et al. [29] where a continuum surface

force model (CSF) is used such that the surface forces of surface tension become volume

forces, removing the need to accurately track the interface. However, surface curvature

must still be calculated. Morris [30] presents the first use of the CSF method applied

to SPH and shows a number of methods for calculating the surface tension. While

these methods provide good results they rely on a calculation of curvature which can be

challenging and typically needs two phases to operate, which is both computationally

expensive and contrary to the physics when dealing with fluids in a vacuum.

The second method, used within this work, is formulated as a pair-wise force

between particles applied everywhere [31]. The force term is based upon molecular

forces; these forces should be repulsive at short ranges, attractive at medium range and

decay away to zero for longer ranges. This force term is usually given by equation 17

where the support radius of a particle is equal to 2h. The coefficient sij sets the strength

of the surface tension forces and can vary depending on what phase a fluid particle is

interacting with or if it is interacting with a solid boundary. Tartakovsky et al. [32]

show how this parameter can be related to physical surface tension and contact angle

values (see section 4 for the values used in this model.)

fij =







−sijcos
(

3π
4h
|xij|

)

xij

|xij |
|xij| < 2h

0 |xij| > 2h
(17)
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2.3. Comparison with volume of fluid method

The volume of fluid (VOF) method is another numerical method often used to model

problems with free surfaces. Although no comparison between SPH and the VOF

method is performed in this work, a large number of these comparisons have been

presented in the literature. Ha et al. [33] compare the performance of an SPH code

and MAGMAsoft, which uses the VOF method, in predicting the behaviour of a water

analogue experiment for gravity die casting. Results are very favourable with both

numerical methods predicting the behaviour of the fluid well and SPH better predicting

the free surface. The work was later extended to 3D [34], with He et al. [35] presenting

similar conclusions. Cleary et al. [36] build on the work of Ha et al. [33] to include heat

transfer and solidification effects and again SPH compares favourably to MAGMAsoft

using the VOF method. Colagrossi [37] presents a comparison between SPH and a level

set method for a number of problems including the deformation of a square patch of

fluid under a velocity field, the behaviour of a bubble in a denser fluid and a dam break.

Shao and Lo [38] present a comparison of the results of a dam break test case

between experimental data and a number of numerical methods including both SPH

and the VOF method. Both methods show good agreement with each other and the

experimental results. Further results are reported by Zheng et al. [39]. The results

of numerical simulations of flow over the blade of a Turgo turbine are presented by

Koukouvinis et al. [40], showing a comparison between SPH and the VOF method.

Good qualitative agreement is seen in the flow fields between the two methods and

good quantitative agreement in total torque on each blade.

3. Results

Numerical experiments were conducted to investigate the ability of SPH to simulate

fluids of various viscosities being forced from a tube into space through a small nozzle.

In the simulation initially there is a cylindrical container with fluid in equilibrium and

a piston above it (tank diameter to exit diameter ratio is 6). This replicates a constant

driving pressure across the nozzle. Figure 3 shows a 2D version of the configuration of

the test and shows how SPH captures the physics of high and low viscosity fluids being

forced through the nozzle. Numerical results were matched with experimental results

by modifying the viscosity used in the numerical simulations such that the Reynolds

number matched experiment.

Tests were conducted without gravity, so a constant force was applied to the piston

in order to generate constant driving pressures. An equation of motion was solved to

update the position of the piston, with the equation of motion for the piston solved

using strong fluid-structure coupling [41], so that a number of fixed point coupling

iterations were executed for every timestep until the piston position converged. A

Newmark integration scheme was used for both the fluid and piston. The coupling

process between the fluid and piston started with an estimate of the fluid solution for
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timestep tn+1, which was then used to supply a force to the piston equation of motion

to advance the piston to tn+1. This new position of the piston was then used to obtain

an updated tn+1 fluid state, and the cycle continued until convergence of the tn+1 fluid

and piston states.

A range of viscosities were tested in order to explore the relationship between

non-dimensional mass flow and the nozzle Reynolds number. For a constant driving

Figure 3: Fluid exiting 2D tank. Left: Low Reynolds number (Re = 3.4), Right: high

Reynolds number (Re = 5100)

pressure the expected physics are seen in the relationship between mass flow rate and

dynamic viscosity; for low viscosity the mass flow rate is nearly independent of viscosity

as inertial forces dominate, but gradually the viscous forces become more important and

a variation of the mass flow rate is clearly seen. In the flow solution a small transient is

initially observed but this quickly dies away. The mass flow rate is calculated by taking

the gradient of the curve from the time-marching simulation once the initial transient

has decayed and the system settled to a steady state.

Figure 4 is the characteristic non-dimensional curve for the geometry. It shows a

clear relationship between the discharge coefficient Cdis (where Cdis = v(2gh)−
1

2 , v is the

mass averaged steady state velocity, and h is the equivalent hydrostatic head) and nozzle

Reynolds number. The nozzle reynolds number is defined as Re = ρvD

µ
with D being the

nozzle diameter. The limit value of Cdis at high Re is around 0.4, which is somewhat

short of the experimental value of 0.62 [42] for a sharp edged orifice owing to ambiguity

over the actual orifice width as a result of a coarse particle spacing. Running a high

Reynolds number case with a higher particle resolution yields a higher value of 0.6, which

is much closer to experimental data. The results obtained with the different viscosity

formulations were very similar with no difference in the higher Reynolds number regime

as the viscous forces are insignificant, although the Cleary viscosity term gives slightly

lower discharge coefficients at lower Reynolds numbers.

Comparison of these numerical results to experimental data by Kiljański [43], using

glycol (µ = 0.02Pa s), glycerin (µ = 0.15Pa s and µ = 0.4Pa s) and syrup (µ = 10

Pa s), is favourable. Kiljański observed a plateau in Cdis after a Re near to 20, which

matches figure 4, and once a higher particle resolution is used the numerical results

are a better match to the experimental data at high Reynolds number as discussed

above. For low Reynolds number flows (Re < 10) Kiljański found the experimental
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regression line Cdis = 0.142Re0.5036 whereas the low resolution results for this numerical

study are fitted by the curve Cdis = 0.154Re0.4709, demonstrating good performance

of the model. The higher resolution results show a higher discharge coefficient for

a given Reynolds number than that measured by Kiljański but compare much more

favourably to the experimental results of Dziubiński and Marcinkowski [42], who fit the

curve Cdis = 0.179Re0.468 to their low Reynolds number data, while the high resolution

results presented here are fitted by the curve Cdis = 0.192Re0.479. Dziubiński and

Marcinkowski use water (µ = 0.00114Pa s), glycol (µ = 0.0159Pa s) and starch syrup

solutions (µ = 0.1Pas - µ = 26.2Pa s), (note no attempt is made here to the simulate the

non-Newtonian fluids used.) The main difference between the results of Kiljański and

those of Dziubiński and Marcinkowski seems to be in the calculation of the discharge

coefficient. Kiljański used the mean of the head at the beginning and end of discharge

while Dziubiński and Marcinkowski used a differential relationship between head and

discharge time.

0.01

0.1

1

0.01 0.1 1 10 100 1000 10000 1e+5 1e+6 1e+7

D
is
ch
ar
ge

co
effi

ci
en
t

Reynolds number
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High resolution, Cleary viscosity

Dziubiński and Marcinkowski curve fit

Figure 4: Characteristic curve of discharge behaviour as a function of Re

4. Resin Filling of Crack Volume

To explore the ability of the method to predict filling of a crack volume, the geometry

shown in figure 5 was modelled in the absence of gravity. This consists of two connected

delaminations, of width 30µm. In order to model the influx of the fluid in to the crack,

a reservoir of fluid is positioned at the entry to the crack system, which is driven by

a piston moved with a constant force to drive the fluid in to the crack at 1.19×105Pa.

Since this case involves direct contact between the fluid and cavity walls, it is important

to include the influence of surface tension. At these scales it is expected that the surface

tension behaviour can make the difference between fluid filling a particular section of

the volume, or filling another region preferentially. The fluid has a surface tension of 43

mN/m and a contact angle of 45◦ with the crack surface.
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Figure 5: Initial geometry, designed to be representative of damage observed in figure 2:

Delamination width 30µm and length 600µm. Driving pressure 1.19×105Pa

The simulations were conducted for a variety of viscosity values across the range

of interest (0.001 Pa s to 0.3 Pa s), from which the volume of crack filled after a fixed

period of time could be found. Figure 6 shows the relationship between filled volume

and viscosity after 1.258×10−4s, illustrating how a higher viscosity leads to a lower

volume fraction filled in a fixed time. The influence of viscosity is represented here by

the averaged Reynolds number, defined as Re = ρV d

µ
where d is the crack width at exit

of the reservoir and V is an average velocity based on the volume filled at the time

of measurement. Figure 7 shows a visual comparison between the fill level achieved

by fluids of various viscosities at the same point in time. As the fluid passes through

the constriction caused by the shear crack, differences in the fill rate between different

viscosity fluids become more evident due to the constriction.

The evolution of the free surface is also of interest. As figure 8 shows, surface

tension effects produce a curved meniscus-type surface across the channel. For low

values of viscosity interactions can appear between the upper and lower walls of the

channel, leading in some cases to columns of resin forming over the channel as seen in

figure 9. Here, due to the low viscosity of the modelled fluid, the fluid exits the shear

crack in a jet like formation and preferentially fills the right side of the delamination

before the left side. Once the right side is filled the increased fluid velocity into the left

side causes surface waves, some of which are large enough to bridge the gap between the

surfaces of the delamination (figure 9f) where the fluid remains due to surface tension.

The momentum of the fluid then causes it to continue to travel along both surfaces at
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Figure 6: Volume fraction filled against Reynolds number at t =1.258×10−4s

(a) 0.001Pa s (b) 0.01Pa s (c) 0.05Pa s

Figure 7: Fluid position in crack for various viscosities at the same time

approximately the same speed.

As the resin may at any time, dependant on hardening, become so viscous that

further crack filling will not occur it is useful to observe how the resin exits the shear

crack. If the resin does not bridge the gap between the upper and lower surfaces of the

bottom delamination then the resin cannot add strength in that region. Figure 10 shows

the shear crack exit behaviour for a range of viscosities. The behaviour is essentially

determined by the ratio of inertial to surface tension forces; at low viscosities the fluid

leaves the crack with sufficient velocity to bridge across the delamination while at higher

viscosities the velocity is lower and so the surface tension keeps the fluid adhering to

the upper surface of the delamination.
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Figure 8: Flow in crack forming a meniscus under the influence of surface tension

5. Conclusions and Future Work

An SPH code has been produced that is suitable for modeling the discharge of healing

agent from a vascular network in self-healing composites. Here it is shown that the

numerical model matches the experimental data presented by Kiljański [43] and to a

closer extent that of Dziubiński and Marcinkowski [42]. With a high resolution particle

distribution the limiting value of the discharge coefficient at high Reynolds numbers

is matched, as is the curve fit of the coefficient of discharge as a function of Reynolds

number.

An illustrative crack geometry is shown with two delaminations and a shear crack

joining the delaminations; a typical damage scenario found in fibre reinforced composite

materials. However, the model is not limited to this geometry, and could be readily

extended to consider the ability of gap-filling scaffolds to restore large scale puncture

sites in either composite materials or brittle polymeric systems [44]. The results in this

paper have shown that the dependency of crack fill rate upon healing resin viscosity can

be found using this model and that the small scale features such as preferential surface

wetting and resin flow can be studied, leading to a greater understanding of final healed

material strength.

This type of modeling opens a range of possibilities for understanding and designing

vascular networks. For example, although only a single nozzle is considered here, the

method readily extends to networks comprising many junctions and nozzles. It also

offers the opportunity to explore a range of nozzle designs, together with the option of

incorporating a variety of healing agent curing laws.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 9: Behaviour of 0.001Pa s fluid exiting shear crack
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(a) 0.001Pa s (b) 0.01Pa s (c) 0.05Pa s

Figure 10: Resin behaviour exiting the shear crack
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