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Urban soundscape design involves creating outdoor spaces that are pleasing to the ear. One way to

achieve this goal is to add or accentuate sounds that are considered to be desired by most users of

the space, such that the desired sounds mask undesired sounds, or at least distract attention away

from undesired sounds. In view of removing the need for a listening panel to assess the effective-

ness of such soundscape measures, the interest for new models and techniques is growing. In this

paper, a model of auditory attention to environmental sound is presented, which balances computa-

tional complexity and biological plausibility. Once the model is trained for a particular location, it

classifies the sounds that are present in the soundscape and simulates how a typical listener would

switch attention over time between different sounds. The model provides an acoustic summary, giv-

ing the soundscape designer a quick overview of the typical sounds at a particular location, and

allows assessment of the perceptual effect of introducing additional sounds.
VC 2013 Acoustical Society of America. [http://dx.doi.org/10.1121/1.4807798]

PACS number(s): 43.50.Rq, 43.60.Np, 43.50.Yw, 43.66.Ba [NX] Pages: 852–861

I. INTRODUCTION

Sound is an integral part of the urban environment, and

there is a growing awareness that acoustical aspects should

be considered at the same level of importance as architecture

and visual esthetics in urban planning and the design of

urban outdoor spaces.1–3 For example, it has been shown

that easy access to nearby outdoor (green) spaces for public

amenity, such as urban squares and parks, leads to important

positive effects on stress restoration4 and general well-

being5,6 of urban residents. In order to create this kind of

urban spaces, environments that are of high acoustic quality,

it is essential that auditory aspects and knowledge on human

perception of environmental sound are included during the

urban planning and design process. The goal of the sound-

scape designer is to compose acoustic environments that are

as much as possible pleasing to the ear. More in particular,

this means creating spaces in which the sounds that the lis-

tener identifies as desired in that context are often heard,

while undesired sounds remain mostly hidden to the human

ear, or at least are not noticed by the user of the space. This

approach obviously goes beyond noise abatement and the

striving for silence, and as such, there is a growing need for

new models and techniques for soundscape analysis and

design, well grounded in human auditory perception.

In this paper, a human-mimicking computational model

for soundscape analysis is presented, which combines a self-

organized map of acoustical features with a functional model

of auditory attention. The model classifies the sounds that

are present in the soundscape over time and simulates how

listeners would switch their attention over time between dif-

ferent sounds. As such, it can be used within the soundscape

design process to assess the influence of soundscaping meas-

ures (e.g., adding desired or removing undesired sounds) in

the field. Next to this, the model involves constructing an

acoustic summary through extensive training, tuning the

model to the typical sounds that are heard at a particular

location. The latter could be used to quickly provide an over-

view of a specific soundscape for the soundscape designer.

Auditory scene analysis has already been studied exten-

sively by computational means (see Wang and Brown7 for

an overview). The ultimate goal of most of these models is

to extract clean sound samples for individual components of

the auditory scene, e.g., for separating speech from back-

ground noise. The ultimate aim of the present model is to

mimic human evaluation of the sonic environment. In con-

trast to these previous models, it does not aim at extracting

sounds that are as clean as technically possible, but at ana-

lyzing the scene as accurately as a human listener would.

However, as the model is aimed to be integrated in equip-

ment for long-term outdoor sound measurement, it presents

a compromise between biological accuracy and computa-

tional efficiency. Furthermore, because of the huge variation

between listeners, the model is aimed to be valid on a
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statistical basis, rather than on an individual basis. It has to

be noted that the model, in its present form, does not involve

the automated labeling of classified sounds; rather, it simu-

lates how a soundscape will be analytically perceived by the

listener. This work refrains from designing methodologies

for identifying which sounds are desired in a given environ-

ment with a particular use.8,9

In Sec. II, a short overview of the literature on auditory

scene analysis, attention, and masking is given, summarizing

the empirical foundation for the model, without going into

much detail on the neurobiological basis. In Sec. III, a

detailed formulation of the model is presented. In Sec. IV, a

case study that illustrates the use of the model as a tool in

soundscape design is presented. Finally in Sec. V, conclu-

sions and perspectives for future research follow. The work

described in this paper builds upon different ideas presented

in earlier works.10–14

II. EMPIRICAL BACKGROUND

A. Analyzing the auditory scene

Outdoor acoustic environments are usually composed of

a wide range of sounds that often overlap in time or fre-

quency. Humans have a great proficiency in disentangling

this mixture of incoming sounds into coherent perceptual

representations of objects (called auditory streams), usually

related to individual sound sources, based on a combination

of auditory and visual cues. In a simplifying manner, this

process of auditory scene analysis is often regarded as a two-

stage analysis-synthesis process.15 In the first stage (segmen-

tation), the acoustic signal is decomposed into a collection

of time-frequency segments. In the second stage (grouping),

segments that are likely to have arisen from the same envi-

ronmental source are combined into auditory streams.

Traditionally, it has been assumed that the perceptual mech-

anisms behind this process are largely pre-attentive: only af-

ter auditory streams are formed, they can become an object

of attention.16,17 Although this view is appealing because of

its conceptual simplicity, recent findings suggest that atten-

tion also plays a role in the formation of auditory

streams.18,19 Overall, it can be stated that the process of

auditory scene analysis draws on low-level principles for

segmentation and grouping but is fine-tuned by selective

attention.20

B. Detecting and identifying a sound

Some sounds, although present in the auditory scene,

will not be detected; no matter how hard the listener tries,

these sounds remain masked. Masking effects have been

widely studied using artificial sounds, such as sequences of

tones or broadband noises,21 or using speech,22 but basic

research on auditory masking of environmental sound is

lacking.23 Two types of masking are generally distin-

guished:24,25 energetic and informational masking. Energetic

masking concerns competing sounds (maskers) overlapping

in time and frequency such that parts of one sound (the tar-

get) are rendered inaudible. Informational masking regards

difficulties to detect a target sound which cannot be

accounted for by interfering energy patterns at the peripheral

auditory system but are caused by auditory mechanisms at

higher levels of processing. An example of the latter is the

inability to separate elements of the target sound from ele-

ments of the masker sound, due to similarity between the tar-

get and the masker.26

At this point it is useful to distinguish between detecting

and identifying environmental sounds. Detecting a sound

means that the listener can observe that a sound is present.

Identifying a sound means that the listener can attach mean-

ing to the sound (such as, but not necessarily, attach a lin-

guistic label to the sound), based on prior knowledge. For

simple sounds such as pure tones, detecting is almost equal

to identifying, but for speech and environmental sound this

is not the case. It has been shown that the meanings attrib-

uted to sounds act as a determinant for soundscape quality

evaluations,27,28 and therefore identification of sounds is an

important factor in the context of soundscape design; sounds

that are not identified are expected to influence overall

soundscape appraisal to a lesser degree.

Detectability of a particular target sound within a sound-

scape is expected to depend on the spectral characteristics of

both the target sound and the background sound, as can be

concluded based on previous research on energetic masking.

However, one should keep in mind that both target and back-

ground sound may exhibit considerable temporal variations.

For example, the use of water sounds for masking road traf-

fic noise in urban parks has recently gained some scholarly

interest.23,29 Reducing the detectability of road traffic noise

to 10% of the time by adding water sound might therefore

require water sound with an equivalent level up to 10 dB(A)

above the equivalent level of road traffic noise. The model

of Glasberg and Moore30,31 summarizes the knowledge on

(partial) loudness due to energetic masking, and may be used

to quantify the audibility of time-varying sounds in the pres-

ence of background sound.

Leech et al.32 and Gygi and Shafiro33 investigated the

particular characteristics of a sound that allow it to be identi-

fied in familiar auditory background scenes. The signal-to-

noise ratio between the sound and the background noise was

found to be the most important factor in their studies. They

also found that contextual congruency between the sound

and the background noise plays a role, in the sense that

sounds that are not readily expected within a given environ-

ment are more easily identified. They could not prove that

this was due to potential similarities in acoustic features of

background noise and congruent target sounds.

Identifying a sound not only involves the ear but also

the brain, and both have their limitations. It can be expected

that information content plays a role: the more information

is embedded in a sound, the easier it will be to detect it. In

the experiment by Gygi and Shafiro,33 some of the physical

components of the sounds that made them more identifiable

were standard deviation of the spectrum and the number of

bursts or peaks. Both characteristics are related to the infor-

mation content of a sound, and both make the target sound

less likely to be masked completely. More generally, it can

be expected that identifying a sound within a complex audi-

tory scene also depends on how many unique features the
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sound has. For example, broadband noises are less likely to

be identified than vocalizations that contain a rich variety of

tones and tonal fluctuations.

Furthermore, familiarity of the listener with the sound to

be detected makes it easier for the listener to detect it.34 This

mechanism could work for desired as well as for undesired

sounds. Sensitivity to particular acoustical features of a

sound are learned in early childhood, but new sounds can be

learned at all ages.35 Once sounds become familiar, they are

identified more easily. It must be noted that learning effects

are not limited to high-level associative memory. Several

neurophysiological studies have reported on the capacity for

holding memory traces (enduring neural records) in the pri-

mary auditory cortex (see Weinberger36 for an extensive

review). In particular, the number of neurons of the represen-

tational area of a sound is tuned by its importance37 and the

bigger the area, the stronger the memory effects.38

Neurophysiological correlates of cognitive processes such as

selective attention,39,40 expectancy,41 concept formation42

and cross-modality effects43 have been found in the primary

auditory cortex, suggesting that due to neuronal plasticity,

the primary auditory cortex is not merely an acoustic ana-

lyzer, but an adaptive auditory problem solver.36 Another

important property of the auditory cortex is tonotopy: neu-

rons next to each other are typically excited by similar stim-

uli. Tonotopic maps have been observed in the auditory

cortex of animal species such as cats44 and monkeys.45,46

The human cortex also contains several topologically or-

dered regions,47–49 similar to regions observed in the maca-

que monkey brain.49 Based on the above, it should be clear

that a human-mimicking computational model for sound-

scape analysis will have to take into account the tonotopic

mapping in the auditory cortex and incorporate continuous

learning effects.

C. Paying attention to a sound

Although a particular sound within the acoustic environ-

ment may be hearable if one listens to it, this does not imply

that one actually has to. Users of the space may not notice

the sound because they are performing tasks—auditive or

not—or are involved in activities that require their attention.

On a longer time scale, the sounds that we consciously

notice will contribute to the creation of a mental image of

the acoustic environment at a location, and ultimately will

shape our perception of its quality. As such, not noticing a

sound can be positive if the sound is not part of the acoustic

design, while it is negative if the sound is considered a

unique soundmark50 of the location.

Auditory attention allows us to focus our mental resour-

ces on specific aspects of the acoustic environment, while

ignoring all other aspects.51 More in particular, the auditory

attention mechanism is responsible for selecting the informa-

tion that is to be processed in more detail in working mem-

ory, and thus that may be used for making decisions and

taking actions.52 It is an essential mechanism in human input

processing, as it avoids sensory overload. Central in most

theories on attention (visual as well as auditory) is the inter-

play of bottom-up (saliency-based, depending on the

characteristics of the stimulus) and top-down (voluntary,

depending on the state of the listener) mechanisms in a com-

petitive selection process.20,52

The bottom-up mechanism selectively enhances

responses to sounds that are conspicuous, for example,

because they have rare or novel physical features, or are of in-

stinctive biological importance. This is accomplished by a

novelty detection system that continuously monitors the

acoustic environment for changes in frequency, intensity, du-

ration, or spatial location of stimuli.53,54 This pre-attentive

mechanism operates rapidly and independently of the nature

of the particular task that the listener may be performing. In

contrast, the top-down mechanism focuses processing resour-

ces on the auditory information that is most relevant for the

current goal-directed behavior of the listener. This mechanism

is guided by information already held in working memory,

through sensitivity control, in which the relative strengths of

different information channels that compete for access to

working memory are regulated.52 Examples are directing eye

movement or changing the orientation of the head, or modu-

lating the sensitivity of the neural circuits that process the in-

formation. Finally, the selection of information for entry into

working memory is found to be a competitive, hierarchically

structured process.55 At low hierarchical levels, competition

occurs within neural representations of basic sound parame-

ters; at higher levels, competition occurs between different au-

ditory streams; at the interface with working memory,

competition occurs between information from the different

senses. At each level, the stimulus with the highest relative

strength is selected (combining bottom-up and top-down

effects), in a winner-takes-all fashion. This is why selective

attention is often compared to a stagelight,56 sequentially illu-

minating different parts of the scene for further analysis. An

important factor in this process is inhibition-of-return57,58

(IOR), which prevents attention from permanently focusing

on the most salient components of the scene, naturally gener-

ating an attentional scanpath over time. The process of volun-

tary selective attention involves working memory, sensitivity

control and competitive selection operating in a recurrent

loop,52 and may prohibit involuntary switching of attention to

task-irrelevant distractor sounds.59

It is difficult to determine whether a particular sound

within the acoustic environment is noticed or not, using psy-

chophysical experiments. Simply asking people about the

sound may point their attention towards it and make them

notice the sound. In laboratory conditions, biophysical meas-

ures such as event-related potentials (ERP) can be used to

assess the influence of attention to sounds during the per-

formance of various non-auditory tasks.60,61 Such research

suggests that effective orientation of attention toward partic-

ular sounds is influenced by a wide range of top-down, per-

sonal factors: the prior experience of the listener with the

sound and the significance of the sound to the listener, the

listener’s intentions and activities, its emotional state62,63 or

even a possible genetic component.64,65 Next to this, the

emotional cues carried by a sound also affect the degree to

which it captures attention. Unpleasant sounds are known to

attract human attention more than neutral sounds,66 even

when the peak sound amplitudes are similar.67
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The empirical knowledge on human auditory processing

(auditory scene analysis, masking, detection of sounds, tono-

topic representation, learning, and auditory selective atten-

tion) summarized above, will now form the basis for the

construction of a human-mimicking computational model of

auditory attention, described in detail in the following

paragraphs.

III. COMPUTATIONAL FRAMEWORK

A. General considerations

The proposed computational model for analyzing out-

door soundscapes takes as input the sound signal recorded

by a microphone at a particular location and has as output a

measure of the potential of various soundscape components

(related to sound sources) for attracting attention. In view of

long-term deployment of the model in outdoor measurement

equipment, and for evaluating simulated soundscape design

interventions, computational efficiency (low data communi-

cation rates, real-time operation, etc.) is advantageous.

Consequently, the use of detailed auditory processing mod-

els, such as those existing for loudness,30 masking,31 stream

segregation,7 auditory saliency,54 or auditory attention68 is

not feasible. Instead, simplified models for each step of the

soundscape analysis process are proposed. Next to this, the

proposed model only accounts for monaural sound, disre-

garding the influence of spatial cues on attention, and does

not perform automated labeling of sounds. The proposed

computational model is comprised of three stages, illustrated

in Fig. 1: (a) peripheral auditory processing and the calcula-

tion of a measure of auditory saliency, (b) mapping of acous-

tical features based on co-occurrence, and (c) modeling

auditory attention. A detailed description of each of the three

stages follows.

B. Peripheral auditory processing

In a first stage, a feature vector is extracted, at regular

time intervals, from the sound signal measured by the micro-

phone. Instead of calculating a detailed time-frequency rep-

resentation of the raw sound wave (e.g., using a gammatone

filterbank), the model starts from the 1
3
-octave band spectrum

(31 bands from 20 Hz to 20 kHz), calculated with a temporal

resolution of 1 s. This procedure has the main advantage that

off-the-shelf sound measurement equipment can be used as a

front-end, which increases the applicability of the model.

The limited data rate (31 values per second) makes it possi-

ble to implement the model on a large-scale measurement

network and to store data for longer periods of time.

Furthermore, the choice of time resolution can be justified

by noting that a wide range of outdoor environmental sounds

have a relatively slowly varying temporal envelope.69–71

Subsequently, a simplified cochleagram is calculated using

the Zwicker loudness model,21,72 which accounts for ener-

getic masking. Again, the complete hearable frequency

range is considered (0 to 24 Bark) with a spectral resolution

of 0.5Bark, resulting in 48 spectral values at each timestep.

The mechanism for extracting the feature vector, which

characterizes the strength and spectro-temporal variability in

the sound signal, is inspired by the way the human auditory

system biases its attention towards particularly conspicuous

events. Based on existing models for auditory saliency,54,73

the proposed model calculates measures for intensity, spec-

tral and temporal contrast using a center-surround mecha-

nism, which mimicks the receptive fields in the auditory

cortex. In particular, multiscale features are calculated in

parallel by convolving the cochleagram with various 2D

Gaussian and difference-of-Gaussian filters. The former

encode intensity, while the latter encode the spectral and

temporal gradient of the cochleagram. In total, 16 scales

(4 for intensity, 6 for spectral contrast and 6 for temporal

contrast) are considered. Figure 2 shows a section of the fil-

ters along the time or frequency axis. Using this procedure, a

feature vector is constructed at each timestep, consisting of

16� 48¼ 768 values.

Based on the feature vector, a measure for the saliency

of the sound at each timestep is calculated. The calculation

largely follows the scheme presented by Kalinli and

Narayanan,73 with the major adjustment that the effects of

spectro-temporal orientation and pitch are not considered.

First, rectified center-surround differences are calculated

from the raw features obtained at different scales within the

same modality (intensity, spectral or temporal contrast),

mimicking the properties of local cortical inhibition.54 The

resulting center-surround differences are then scaled to a

common range, in order to eliminate the difference in

dynamic range between the different modalities and scales,

and normalized using an iterative nonlinear algorithm that

FIG. 1. Schematic overview of the proposed computational model: (a) pe-

ripheral auditory processing, (b) self-organized map of acoustical features

based on co-occurrence, and (c) auditory attention.
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simulates competition between neighboring salient locations

on the tonotopic scale, promoting peaks while suppressing

background noise.74 The normalized center-surround differ-

ence vectors are then combined (added) across scales within

each modality, and the resulting vectors are again normal-

ized using the same algorithm, and combined to achieve a

single tonotopic vector, encoding the saliency of the sound

at each timestep and at each frequency channel. Finally, a

single saliency score at each timestep is calculated by sum-

ming all values of the saliency vector, hereby assuming that

saliency combines additively across frequency channels.75 A

detailed description of the algorithm can be found in De

Coensel and Botteldooren.12

C. Co-occurrence mapping of features

Biological systems learn which auditory features belong

to the same auditory object based on co-occurrence.

However, auditory learning as described at the end of Sec.

II B is not a straightforward process, and is still far from

being fully understood and computationally replicable.

Moreover, learning and memory are not observable phenom-

ena; they have to be inferred from behavior.36 Nevertheless,

in the computational framework here presented, an initial

unsupervised learning strategy based on feature co-

occurrence is used. It is implemented as a Self-Organizing

Map (SOM) or Kohonen Map,76 an abstract model of topo-

graphic mapping in the sensory cortex (see Sec. II B).

A SOM is a 2D grid of units, each of which is repre-

sented in the high-dimensional feature space through a refer-

ence vector. The Original Incremental SOM Algorithm76 to

train the map consists of iterating the following two steps

until some stopping criterion is met.

(1) An input feature vector is provided at each time step

and the unit corresponding to the closest reference vec-

tor, generally called the best-matching unit (BMU), is

found.

(2) The reference vector corresponding to the BMU and

those of units near to the BMU are moved closer to the

input feature vector.

The second step underlies the topological preservation.

After training, the reference vectors of the SOM units tend

to a nonlinear discrete mapping of the distribution of the

input data. Some regions of the feature space will be densely

mapped by the reference vectors of the SOM units, while

other regions will only be sparsely represented. This way,

the high-dimensional relationships underlying the input fea-

ture data are projected on a 2D map.76 Once the projection is

sufficiently accurate, as quantified by the stopping criterion,

training stops.

Machine learning purely based on co-occurrence does

not account for the influence of several factors influencing

human learning, such as attention, that were mentioned in

Sec. II. Therefore, the basic SOM training is extended with a

second training phase that accounts for saliency and novelty

of the sound, thus attributing more weight to sounds that are

likely to attract attention. The implemented strategy, called

continuous selective learning,14 can be seen as a series of

much shorter learning periods, triggered whenever the dis-

tance between the new feature vector and the BMU is higher

than an activation threshold, T1, and halted when less than a

deactivation threshold, T2, with T2 � T1. Moreover, in order

to give more importance to salient sound events, the overall

saliency as calculated in Sec. III B is used as a modulator of

the learning strength. It is observed that after a couple of

weeks of continuous selective learning, the SOM is capable

of identifying—in terms of distance to the BMU—most of

the sounds occurring in a specific acoustic environment. In

other words, after such training, the reference vector of each

SOM unit corresponds to a representative sound prototype.

In order to translate the information encoded in the SOM

into hearable sound samples, a sound recording session can

be used, during which representative 5-s sound samples with

feature vectors closest to each SOM unit are stored. We call

this compilation of sounds the “acoustic summary” of the

given soundscape.14 Note that the sound samples of the

acoustic summary are not labeled automatically in this work.

Instead, this can be performed by an expert listener (e.g., an

acoustician acquainted with the soundscape of the given

location), who explores the acoustic summary and identifies

regions in the map corresponding to specific classes of

sounds used to present the results in Sec. IV B.

D. Modeling auditory attention

In order to identify sounds that will be heard on the ba-

sis of a trained SOM, an excitatory-inhibitory artificial neu-

ral network (ANN), simulating the auditory cortex, is

introduced. With each unit of the SOM, a neuron is associ-

ated, to be excited by input sounds with feature vectors that

are similar to the reference feature vector of the correspond-

ing SOM unit. In order to achieve this, first, a measure for

FIG. 2. Cross section of the receptive filters that are used to calculate (a) in-

tensity, (b) spectral contrast, and (c) temporal contrast. For the latter, causal-

ity is preserved by only convolving with the past.
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similarity between the input feature vector and the SOM ref-

erence vectors needs to be calculated. This is done by calcu-

lating the Euclidean distance between the two vectors. Low

values of this distance indicate high similarity and vice

versa, but, as high excitation is desired in case of high simi-

larity, a Gaussian-like function, centered around zero, is

used to convert the Euclidean distances to excitation values,

resulting in excitation values approaching 1 for highly simi-

lar, and 0 for dissimilar vectors. To take into account the fact

that the excitation process is not instantaneous, a leaky inte-

grator is used, with different time constants for increasing

and decreasing excitation values.

Bottom-up attention, as explained in Sec. II C, is a rap-

idly operating process and is independent of the activity the

listener is involved in, facilitating the detection of conspicu-

ous and salient sounds. This is implemented in the model by

weighing neuron excitation with a saliency factor, calculated

based on the reference vector of the corresponding SOM

unit.

As in De Coensel and Botteldooren,12 IOR is introduced

to prevent auditory attention from staying focused on one

particular source, thus enabling a listener to scan his/her au-

ditory environment. At each timestep, only a certain number

of neurons will finally be activated, indicating that attention

is focused on these neurons. In the current model, IOR is

implemented as an increasing inhibition term for these neu-

rons, causing activation to decrease and eventually to fall

back to zero. For neurons that are not activated, and thus are

not a candidate to get attention, IOR decreases to zero, such

that activation is made possible again. This way, IOR causes

attention to be continuously shifted from one zone to

another. As with excitation, a leaky integrator is used for the

implementation, again with different time constants for

increasing and decreasing values.

The effect of top-down or outward oriented attention is

implemented as a factor modulating the IOR mechanism. By

changing the IOR time constants for neurons related to cer-

tain zones of the SOM, the shifting of attention can be

delayed or even halted when it is focused on neurons corre-

sponding to one of these zones. This way, sustained attention

on the sounds represented by these zones is facilitated.

Modeling the cause of top-down attention itself is far beyond

the scope of current computational models.

Finally, concepts of a Locally Excitatory Globally

Inhibitory Oscillator Network77 (LEGION) are used to

implement clustering and competitive selection, to indicate

which sound receives attention and thus is entered in work-

ing memory. In order to minimize the computational load of

the model, there are no oscillators as in a LEGION, but local

excitation and global inhibition terms are still used for clus-

tering and competitive selection, respectively. Local excita-

tion is added to the input of each neuron, based on the

excitation of its neighboring neurons, weighted with precal-

culated connection weights that depend on the similarity of

the reference vectors of the two corresponding SOM units.

Neighboring neurons which represent very similar sounds

are strongly connected, while connection is weak when the

neurons represent dissimilar sounds. A preliminary unit acti-

vation can be calculated as the sum of excitation terms

minus the IOR, with negative values being set to zero.

Global inhibition now adds a new inhibition term to each

neuron in the network, calculated based on the sum of these

preliminary activations of all neurons. When this summed

activation exceeds a certain preset value, global inhibition

will rise, and vice versa. By subtracting this inhibition term

from the preliminary activation and setting negative values

to zero, the final activation is calculated. Thanks to the clus-

tering effect of local excitation, at each timestep, only one or

a few clusters will have positive values for their final activa-

tion. These clusters represent the sounds that receive atten-

tion, and for which information is sent to working memory.

IV. CASE STUDY

A. Overview

In this section, a proof of concept of the computational

framework presented in Sec. III is provided. A fixed sound

measurement station was installed in the city of Ghent, next

to an urban road, carrying about 3000 vehicles/day during a

typical work day. The sonic environment at the chosen loca-

tion mainly consists of a mixture of road traffic noise due to

private and public transport, and noise from pedestrians due

to the proximity of several shops and one educational institu-

tion. A standard 1
3
-octave band spectrum at 1s time intervals

was measured during 3 weeks and is used to train the compu-

tational attention model (see Sec. IV B).

The aim of the case study was to assess the perceptual

effects of attracting songbirds at the microphone location, a

measure that is often proposed to increase the pleasantness

of a soundscape.78 For this, a 1-h sound recording was per-

formed during a work day (but not during the latter 3-week

period used for training). The LAeq during this 1-h period

was 68.2 dB(A). Subsequently, a series of 30 artificial 1-h

sonic environments were created by mixing the original re-

cording with an increasing number of bird sounds at random

instances in time. For this, a series of bird vocalizations

without background noise, with a duration of up to a few

seconds, were used, for which the peak level was adjusted to

match the peak level of the few bird sounds present in the

original recording. The 1-h LAeq of the added bird sound

ranged from 46.3 dB(A), representing a few sporadic vocal-

izations, to 75.8 dB(A), representing a quasi-continuous bird

chorus, resulting in a signal-to-noise ratio (SNR) for bird

sound versus background ranging from �21.9 dB to 7.6 dB.

B. Results

A first assessment of the effect of adding bird sound

would be to check the audibility of the bird sound above the

background noise. Figure 3 shows the average short-term

partial loudness (STPL) of the bird sound above the back-

ground, for the series of artificial sound mixtures, as a func-

tion of signal-to-noise ratio, as calculated with the model of

Glasberg and Moore.31 The average partial loudness rises

monotonically with signal-to-noise ratio, and starts to

increase with a higher rate between �5 and 0 dB, marking

the range in which the individual bird vocalizations, which

can be partially energetically masked if considered
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separately, start to form a chorus that is audible continu-

ously. Note that the energetic masking model by Glasberg

and Moore has only limited applicability in evaluating the

effect of acoustical design measures in situ, because it

requires that separate recordings for foreground and back-

ground sound are available (thus only artificial sound mix-

tures can be used), and that, due to its computational

complexity, fragments are short—for the results of Fig. 3,

only the first minute of sound was used.

To demonstrate the performance of the auditory atten-

tion model presented in this work, first, acoustical feature

vectors and instantaneous saliency values were calculated

for the 3-week measurement period, using the algorithm pre-

sented in Sec. III B. Subsequently, based on this data, a

SOM, composed of 50 � 75¼ 3750 hexagonally placed

units, was trained in three phases. During the first phase, the

incremental SOM training algorithm, as presented in

Sec. III C, was applied to the features calculated during 14 h

of the first day of the measurement period. During the

second phase, the selective learning algorithm was applied

to the remaining 3 weeks of measurement data. During the

third phase, the artificial sound mixtures containing bird

vocalizations were used in random order. Training a SOM

on the sounds at a specific location results in a strong sound

context dependency.13 In particular, sounds not present in

the training set cannot be easily classified (they will have a

large distance to the BMU). Therefore, the third training

phase is needed to get the SOM acquainted with the new

bird sounds added to the background. From now on, we will

refer exclusively to this fully trained SOM.

An acoustic summary has been created as mentioned in

Sec. III C, based on several hours of recording at the given

location and the 30 artificial soundscapes. Next, SOM units

related to bird sounds are marked by an expert listener, and

these are shown in Fig. 4(h). They are mainly grouped into

two different regions, related to individual bird chirps

(region 1) and a chorus of bird song (region 2). In light of

Sec. III C, the presence of multiple SOM regions devoted to

bird sounds should not be surprising: the sound of a single

chirp and the sound produced by many birds in chorus result

in different sound features, and thus in different regions of

the map. Figures 4(a)–4(g) shows how often each of the units

of the SOM become the BMU when the original sound and

each of the artificial sound mixtures is presented to the

model.

As expected, units inside both regions corresponding to

bird sounds are more frequently the BMU as the SNR of bird

sound increases. This behavior can be quantitatively eval-

uated by calculating the percentage of time the BMU

belongs to either region 1 or region 2 as a function of the

SNR. Figure 5 shows that the percentage of the time that

individual bird chirp features are dominant (BMU belonging

to region 1) increases monotonically, until a peak is reached

at a SNR equal to �2 dB. At that point, the percentage of the

time that bird chorus features (BMU belonging to region 2)

are dominant starts to increase, while the time that individual

bird chirp features are dominant falls back to zero with

increasing SNR, marking a quasi-continuous bird chorus

present throughout the corresponding artificial sound

mixtures.

FIG. 3. The average short-term partial loudness (STPL) of the bird sound

above the background noise, as a function of signal-to-noise ratio.

FIG. 4. Logarithmic distribution of

the occurrence of the BMU among

the SOM units for different scenar-

ios: (a) background, (b)–(g) artificial

soundscapes, in which bird vocaliza-

tions are progressively added to the

background. For each sound sce-

nario, 1 h (3600 testing samples) has

been used. (h) The two regions of

the SOM related to individual bird

chirps (region 1) and bird chorus

(region 2).
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Now, the same procedure is repeated, taking into

account attention mechanisms. Although implemented in the

general computational model (see Sec. III D), the effect of

top-down attention is not taken into account, as this would

require a model for working memory, which is outside the

scope of this paper. Consequently, IOR time constants are

the same for all neurons. The neuron with the strongest acti-

vation is now taken at each timestep to represent the sound

(i.e., the combination of sound features) that receives atten-

tion, and in the same way as before, a distribution of occur-

rence is calculated. From this distribution, the same two

clusters are used to calculate the percentage of time the most

strongly activated neuron is located in each of the regions,

thus approximating the fraction of time that attention is

focused on bird sound. The results are displayed in Fig. 6.

It can be seen that for lower SNR, the percentage of

time that attention is paid to birds is slightly higher than in

Fig. 5, while for higher SNR, this percentage is lower. This

indeed is the expected behavior, as for lower SNR, each time

bird sound is detectable, it will get attention because its sali-

ency is higher than the background, and because inhibition-

of-return will be very low. For higher SNR, bird sound will

be continuously detectable, and inhibition-of-return will

cause attention to shift away from it. Considering that sounds

need to be audible and be paid attention to, in order to con-

tribute to the appraisal of a soundscape, these results are also

in accordance with empirical results reported by De Coensel

et al.29 There, it was found that, already at an SNR of

�10 dB, adding (salient and intermittent) bird sound to a

sonic environment dominated by road traffic noise would

increase the pleasantness of the soundscape significantly,

more than adding the sound of a continuously flowing foun-

tain at various SNR, although the latter may be more suited

to energetically mask road traffic noise.23,29 The sounds pro-

duced by bird vocalizations and fountains are generally con-

sidered to be positive in urban and rural environments.79,80

Consequently, in the context of soundscape planning, the

presented model can be helpful to quantify the potential pos-

itive effect of introducing additional sounds in the sonic

environment, e.g., through the use of audio islands.81

V. CONCLUSIONS

Taking into account the mechanisms underlying human

auditory perception of environmental sound is a fundamental

principle in soundscape design. However, models and tech-

niques that would assist the soundscape designer in achiev-

ing this goal are still lacking. In this work, a computational

model for soundscape analysis was presented, which imple-

ments processes such as bottom-up selective attention and

learning, with the goal of simulating how listeners would

switch their attention over time between different sounds.

The model consists of simplified implementations of several

already existing submodels for auditory saliency, topo-

graphic mapping, learning, and auditory attention. It comple-

ments already existing models of attention-based auditory

scene analysis7 although it does not provide the same level

of detail. However, the novelty of this model lies in its capa-

bility to process long stretches of sound in order to accom-

modate for the huge variation in environmental sounds that

characterize the typical urban outdoor environment. The

model can be applied to construct an acoustic summary of a

soundscape, i.e., a collection of the typical sounds that can

be heard at a particular location, and allows assessment of

the influence of soundscaping measures such as adding addi-

tional sounds to distract attention away from undesired

sounds. The latter use was illustrated through a case study,

in which the effect of adding bird sound to an urban sonic

environment was investigated, and in general, accordance

with empirical results was found for this particular case. An

unexpected model outcome was the emergence of two

regions in the map as more and more bird sounds were

entered. It was confirmed by listening to the samples that

these highly activated regions corresponded to what could be

labeled “bird chirps” at the one hand, and a “bird chorus” at

the other.

The presented model does not take into account cross-

sensory or high-level cognitive effects that lead to top-down

FIG. 5. Evolution of the fraction of time the BMU is located in region 1

(bird chirp, dotted line), region 2 (bird chorus, dashed line) and their sum

(total, continuous line) as a function of SNR between background and fore-

ground. For each sound scenario, 1 h (3600 testing samples) has been used.

FIG. 6. Evolution of the fraction of time the auditory attention is located in

region 1 (bird chirp, dotted line), region 2 (bird chorus, dashed line) and

their sum (total, continuous line) as a function of SNR between background

and foreground. For each sound scenario, 1 h (3600 testing samples) has

been used.
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auditory selective attention, or meaning attachment to

sounds. The latter would involve accounting for the influ-

ence of inter-individual differences, and solving linguistic

issues.28 Indeed, a sound can be described at two different

levels, either by its source or by the action generating it,

although such levels are not always clearly separated. A

description of the physical properties of either the sound

source or the sound itself is provided only when the listener

is not able to identify the source or the activity generating

the sound. In order to explain the complexity of labeling and

categorizing the sounds, observe the following two exam-

ples: the sounds of a tram passing by a stopping place and

the sound produced by birds. In the first example, a listener

would typically label each sound based on the action that

generates the sound (braking, opening the doors, warning

sounds before closing the doors, accelerating), while it

would be unlikely that the specific sources (brakes, engine,

or loudspeaker) are mentioned. In this case, activity categori-

zation will thus be dominant. Obviously, listeners would

also very likely mention the tram as a whole, referring to the

sound source. In the second example, the sound produced by

birds, the label “bird chirping” is generally used, thus show-

ing again a mixture of the two levels: sound source (birds)

and the activity producing such sounds (chirping).

Moreover, a listener may refer to the number of birds: while

one bird chirping or several birds chirping together denote

the same activity, the (number of) sound sources changes.

Automated labeling of the acoustic summary as compiled

with the present model thus provides a challenge for future

research.
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