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Abstract

Background: Cerebral hyperperfusion syndrome develops in a small subset of

patients following carotid artery surgery (CAS) performed to treat severe carotid

artery stenosis. This syndrome has been found to have a close correlation with

cerebral hyperperfusion occurring after CAS. The purpose of this study is to

investigate whether and how the anatomy of the Circle of Willis (CoW) of the

cerebral circulation influences post-CAS cerebral hyperperfusion.

Methods: A computational model of the cerebral circulation coupled with the

global cardiovascular system has been developed to investigate hemodynamic

events associated with CAS. Nine topological structures of the CoW were

investigated in combination with various distribution patterns of stenosis in the

feeding arteries of the cerebral circulation.

Results: The occurrence of post-CAS cerebral hyperperfusion was predicted for the

CoW structures that have poor collateral pathways between the stenosed cerebral

feeding arteries and the remaining normal feeding arteries. The risk and the

localization of post-CAS hyperperfusion were determined jointly by the anatomy of

the CoW and the distribution pattern of stenosis in the cerebral feeding arteries. The

presence of basilar artery stenosis or contralateral ICA stenosis increased the risk of

post-CAS hyperperfusion and enlarged the cerebral region affected by

hyperperfusion. For a certain CoW structure, the diameters of the cerebral

communicating arteries and the severity of carotid artery stenosis both had a

significant influence on the computed post-CAS cerebral hyperperfusion rates.

Moreover, post-CAS cerebral hyperperfusion was predicted to be accompanied with

an excessively high capillary transmural pressure.

Conclusions: This study demonstrated the importance of considering the anatomy

of the CoW in assessing the risk of post-CAS cerebral hyperperfusion. Particularly,

since the anatomy of the CoW and the distribution pattern of stenosis in the

cerebral feeding arteries jointly determine the risk and localization of post-CAS

cerebral hyperperfusion, a patient-specific hemodynamic analysis aimed to help

physicians identify patients at high risk of cerebral hyperperfusion should account for

the combined effect of the anatomy of cerebral arteries and cerebral feeding artery

stenoses on cerebral hemodynamics.
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Background

Extracranial internal carotid artery (ICA) stenosis accounts for 15-20% of ischemic

strokes and is usually treated by carotid artery surgery (CAS) such as carotid endarter-

ectomy or stenting [1,2]. A potential risky problem with CAS is that cerebral hyperper-

fusion syndrome (CHS) (characterized by ipsilateral headache, seizure or intracranial

hemorrhage (ICH)) develops in a small subset (0.75-3%) of patients following success-

ful CAS [2]. Although rare, CHS can lead to significant morbidity and mortality if not

correctly recognized and treated [2,3].

The most pronounced hemodynamic event associated with CAS is a sudden increase

in cerebral blood flow (CBF). Generally, an over 100% increase in CBF after CAS com-

pared to the pre-CAS value is considered as hyperperfusion [4]. Post-CAS hyperperfu-

sion has been observed in 9-14% of patients in clinical studies [2,4] and suggested to

be an important hemodynamic factor underlying CHS, for instance, the risk of devel-

oping CHS is 10 times higher in patients with hyperperfusion than those without [2],

and ICH develops in 3.3% of patients with hyperperfusion vs. only 0.24% of those with-

out [4]. In fact, there is evidence that identifying patients at high risk of hyperperfusion

and treating them early help to reduce the incidence of ICH and lead to better prog-

nosis [5,6].

Clinical studies [2,7] have identified some risk factors for CHS or cerebral hyperper-

fusion, such as hypertension, high-grade ICA stenosis, decreased cerebral vasoreactivity

and contralateral ICA stenosis. Most of these factors are associated closely with hemo-

dynamics in the cerebral circulation. In fact, emerging evidence supports that a pre-

operative evaluation of cerebral hemodynamic status may help to identify patients at

high risk of post-operative hyperperfusion [5,6,8]. The cerebral circulation possesses

many collateral vessels which play an important role in maintaining cerebral perfusion

in case occlusive disease develops in the feeding arteries of the cerebral circulation [9].

Cerebral collateral vessels are commonly divided into primary and secondary collateral

pathways, with the former constituted mainly by the Circle of Willis (CoW), while the

latter by the ophthalmic artery and leptomeningeal vessels [9]. Many studies have

demonstrated that the status of primary collateral flows is a determinant factor for

clinical symptoms and outcomes of intervention in patients with severe ICA stenosis

[10-12]. Although the secondary collaterals may also play some roles in compensating

for severe ischemia [13,14], their compensatory capability seems to be limited [15].

Theoretically, a complete CoW is able to maintain sufficient cerebral perfusion when

any single cerebral feeding artery is occluded. However, this ability can be impaired by

a topological variation in CoW and coexistence of stenoses in multiple feeding arteries.

In fact, a complete CoW structure exists in only about 50% of the population, with

various incomplete CoW structures existing in the remaining population [16,17]. The

role of the anatomy of the CoW in regulating cerebral blood flows has been well

described [17]; whereas, it remains unclear how the anatomy of the CoW influences

post-CAS hyperperfusion, particularly when occlusive disease is present in multiple

cerebral feeding arteries. To answer this question, we have developed a novel computa-

tional model of the cerebral circulation which is capable of describing cerebral hemo-

dynamics under various physiological/pathological conditions.
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Methods

Cardiovascular model

A cardiovascular model developed in our previous studies [18] has been extended to

include the cerebral circulation (see Figure 1(A, B)). The cardiovascular model

describes pulse wave propagation in the largest 83 arteries with a one-dimensional (1-

D) sub-model while describing hemodynamics in the remaining cardiovascular system

(including the microcirculation, the pulmonary circulation and the heart) with a

lumped parameter (0-D) sub-model. The intracranial cerebral artery network is com-

prised by the 18 largest arteries (see Figure 1(B)) and the downstream vascular system

corresponding to each cerebral efferent artery is divided into arteriolar, capillary,

Figure 1 Schematic description of a computational model of the cardiovascular system (Panel A).

The cerebral circulation is modeled as a portion of the cardiovascular system (Panel B). The cerebral

feeding arteries are No. 40/47 - left/right ICA and No. 56 - Basilar artery (BA), communicating arteries are

No. 59/69 - left/right posterior communicating artery (PCoA) and No. 64 - anterior communicating artery

(ACoA), and cerebral efferent arteries are No. 58/70 - the right/left posterior cerebral artery II (PCA II), No.

61/67 - right/left middle cerebral artery (MCA) and No. 63/65 - right/left anterior cerebral artery II (ACA II).

Panel C illustrates the nine typical CoW structures. The value given under each structure indicates the

appearance frequency of the structure in the population. The arrows denote the locations of missing or

fetal-type arteries.
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venular and venous compartments (see Figure 2). To reduce the degree of the com-

plexity of the cerebral circulation model, we have neglected the smaller cerebral

arteries and the secondary collateral vessels. Cerebral venous flows in different cerebral

regions were assumed to converge to the neck veins. An extravascular pressure was

applied to the intracranial vessels to account for the critical closing pressure (pe in Fig-

ure 2) at which blood flow to the brain stops. In addition, the cerebral arteriolar resis-

tances and venous resistances were set to be changeable with cerebral hemodynamic

conditions. These characteristics enabled the model to simulate cerebral hemody-

namics under various physiological/pathological conditions.

1-D governing equations for pulse wave propagation in the arteries

Blood flows in an artery were described by the 1-D mass and momentum conservation

equations derived by integrating the three-dimensional mass conservation and Navier-

Stokes equations over the cross-section of the artery [19].

∂A

∂t
+

∂AU

∂z
= 0, (1)

∂U

∂t
+

∂

∂z

(

U2

2
+

P

ρ

)

= Kυ

U

A
(2)

The system of Eqs. 1 and 2 was completed by a pressure-area relationship that has

been previously used to describe the deforming response of arterial wall to changes in

Figure 2 Lumped parameter modeling of the distal vascular systems of the intracranial cerebral

circulation. The vascular systems distal to each cerebral efferent artery are divided into four compartments

(namely, arteriolar, capillary, venular and venous compartments) with each compartment represented by a

certain assembly of lumped parameters. The flows through all the distal vasculatures are assumed to

converge into the neck veins. Please see the text for more details.

Liang et al. BioMedical Engineering OnLine 2011, 10:84

http://www.biomedical-engineering-online.com/content/10/1/84

Page 4 of 22



transmural pressure [17-23].

P = P0 + Pe + β

(√
A −

√

A0

)

, with β =

√
πEh0

r0(1 − σ 2)
. (3)

Here, t is the time, z the axial coordinate along the artery; and r the blood density (r

≈ 1.06 g/cm3); A, U and P represent the lumen area, mean flow velocity and intravas-

cular blood pressure, respectively; and K
υ
is the coefficient of the viscous term; P0 is

the reference pressure at A = A0 and was set to be 85 mmHg; Pe is the extravascular

pressure; E is the Young’s modulus; h0 the wall thickness; r0 the radius of the artery at

the reference pressure; and s the Poisson’s ratio, here taken to be 0.5 by assuming

arterial wall to be incompressible.

It is noted that, the cross-sectional velocity profile of blood flow changes transiently

over a cardiac cycle and varies along the arterial system; this raises an issue as to how

to correctly model the convective and viscous terms when reducing a three-dimen-

sional blood flow model into a 1-D model. At this point, many modeling methods

have been proposed based on various assumptions [17,18,20,24-27]. In this study, we

employed a relatively simple modeling method in which the coefficient of the viscous

term in Eq.2 is taken to be -8πυ (υ being the kinematic viscosity of blood ≈ 0.045 cm2/

s) based on a Poiseuille flow assumption [20,21], while the 1-D convective term is

derived by assuming a flat velocity profile [17,19-22]. These assumptions led to several

simplifications in the numerical treatment of flow conditions at the boundaries [19,21].

Meanwhile, the error induced by the assumptions in the prediction of blood flow dis-

tribution in the cardiovascular system should be negligible since normal large arteries

generate fairly less blood pressure loss in comparison with the downstream resistant

micro-vasculatures [18].

From Eq. 3, arterial transmural pressure is related linearly to the change in arterial

radius relative to its reference value. According to the data reported in previous experi-

mental studies [28,29], the linear relation is acceptable when arterial transmural pres-

sure varies within the physiological range (e.g., from diastolic to systolic pressure).

Previous computational studies [17-23] have indeed demonstrated that employing the

relation does not prevent a reasonable prediction of pulse wave propagation in large

arteries. However, it should be noted that a linear pressure-radius relation fails to be

proper when arterial transmural pressure varies beyond the general physiological

range. Experimental studies [30] have demonstrated that when transmural pressure is

reduced progressively from an over systolic to minus value, the pattern of arterial wall

deformation changes from stretching to buckling and collapsing, exhibiting a highly

non-linear pressure-radius relation.

Flows in different arteries were linked by imposing the conservation of mass and

continuity of total pressure at the bifurcations [17-23].

Stenosis model

Eq. 2 cannot fully account for the pressure drop induced by an arterial stenosis. To

compensate for this limitation, an experiment-based empirical stenosis model [31] has

been incorporated to relate the stenosis-induced pressure drop to the geometry of ste-

nosis:
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where ∆P and Q denote pressure drop and flow rate through the stenosis, respec-

tively; Q is the time derivative of Q, A0 and As refer to the cross-sectional areas of the

normal and stenotic segments, respectively, Ls represents the stenosis length, and μis

the blood viscosity. Further, Kv, Kt and Ku are empirical coefficients, with Kv = 32

(0.83Ls + 1.64Ds)×(A0/As)
2/D0, Kt = 1.52, and Ku = 1.2, where D0 and Ds are the dia-

meters corresponding to A0 and As. The degree (severity) of stenosis is defined as the

percentage reduction in arterial diameter (= (1-Ds/D0) ×100%).

Governing equations for the 0-D sub-model of the cerebral circulation

Following the general 0-D modeling method [19,32,33], the viscous resistance, blood

inertia and compliance of each vascular segment were mimicked respectively by three

electric components (resistor (R), inductor (L) and capacitor (C)). In analogy to the

principles of electric circuit, the governing equations were formulated by imposing

mass and momentum conservation along the flow pathway (from arterioles to veins)

(see Figure 2).

At a ‘capacitor’ component, mass conservation reads

dVi,j

dt
= Qi,j − Qi+1,j, (5)

and at an ‘inductor’ component, momentum conservation reads

dQi,j

dt
=

Pi−1,j − Qi,jRi,j − Pi,j

Li,j
, (6)

where V, Q and P represent blood volume, flow rate and blood pressure, respectively;

P is related to V by P = V/C + Pe, with Pe being the critical closing pressure, here

taken to be 18.1 mmHg in accord with the cerebral autoregulation curve (see Figure

3). The subscript ‘i’ is a sequence number that is increased from the arterial side

toward the venous side (i Î I = [1,4]); whereas ‘j’ denotes the labeled number of the

cerebral efferent arteries in the 1-D sub-model (j Î J = {58, 61, 63, 65, 67, 70}) (see

Figure 2).

Specially, cerebral vein may collapse due to the effect of extravascular pressure (Pe),

resulting in a varying venous resistance. This has been accounted for by modeling cer-

ebral venous resistance (R5, j in Figure 2) as a function of cerebral venous blood pres-

sure (P4, j), downstream neck venous pressure (Pnv) and extravascular pressure (Pe)

[34,35].

R5,j = Rv0,j ·
P4,j − Pnv

P4,j − Pe
, (7)

where Rv0,j is a constant venous resistance component.

Cerebral venous flow (Q5, j in Figure 2) can be calculated as

Q5,j =
P4,j − Pnv

R5,j
. (8)
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Substituting Eq. 7 into Eq. 8, one gets

Q5,j =
P4,j − Pe

Rv0,j
. (9)

From Eq. 9, cerebral venous flow is independent of the extracranial venous pressure

(Pnv) as far as Pe is larger than Pnv [36].

0-D modeling of other portions of the cardiovascular system, such as the pulmonary

circulation, the heart, has been described in detail in [18,19].

Numerical methods

The equations system of the cardiovascular model consists of a 1D partial differential-

algebraic sub-system coupled with a 0D ordinary differential-algebraic sub-system. The

two sub-systems were solved numerically using the two-step Lax-Wendroff method

and a fourth-order Runge-Kutta method, respectively. The solutions of the sub-systems

were then linked at the 0-1D interfaces where mass and momentum conservation is

imposed. More details on the numerical methods employed to treat flow conditions at

the bifurcations and the 0-1D interfaces have been given elsewhere [19].

Cerebral autoregulation

Generally, cerebral autoregulation is a dynamic process, for instance, it takes several to

several tens of seconds to restore cerebral perfusion upon an abrupt change in perfu-

sion pressure [37-39]. For the present problem, since a chronic ICA stenotic disease

imposes a long-term influence on cerebral perfusion, a static cerebral pressure-perfu-

sion rate relationship (herein termed cerebral autoregulation curve) would be sufficient,

and which has herein been constructed by fitting a fourth-degree polynomial function

Figure 3 Relationship between cerebral perfusion pressure and perfusion rate. The continuous line

represents the fitted fourth-degree polynomial function based on the experimental data.
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to available experimental data [40-42] (see Figure 3). Note that the data points that

deviate apparently from the neighboring data points have been considered as noise

data and removed from the input data of function fitting. The perfusion rate represents

the ratio of real flow rate to normal flow rate. The autoregulation curve was incorpo-

rated into the model by adjusting the cerebral arteriolar resistances via a negative feed-

back process.

Rn+1 = Rn

(

1 − α
Q̄T − Q̄n

Q̄T

)

(10)

Here R represents the arteriolar resistance corresponding to each cerebral efferent

artery and Q the mean flow rate averaged over a cardiac cycle. Since resistance adjust-

ment was performed at intervals of a cardiac cycle, the upper subscript ‘n’ denotes cur-

rent cardiac cycle, whereas ‘n+1’ indicates the next cardiac cycle. QT denotes the target

flow rate calculated from the cerebral autoregulation curve. a is the under-relaxation

factor used to stabilize the numerical simulation (here taken to be 0.9).

Anatomical variations in CoW

Based on the data collected from the literature [16,17,43,44], we categorized the fre-

quently observed anatomical variations in CoW into nine types (see Figure 1(C)). Each

type has a specific frequency of appearance in the population, with type 1 being the

most prevalent structure.

Physiological data

The geometrical parameters of the cerebral arteries were assigned based on the data

reported in the literature [17,24,27] and the in vivo data available in our lab. The elas-

tic parameters of the arteries have been estimated according to an elastic modulus-

artery radius relationship constructed based on experimental data [26]. The reference

flow rate through each cerebral efferent artery at normal perfusion pressure was

assigned based on previously reported data [24,27,43,45], giving a flow division among

PCA II, MCA and ACA II of 0.96:2:1 and a total cerebral flow rate of about 12 ml/s.

The assigned data for the cerebral circulation model are summarized in Table 1. The

data for other portions of the cardiovascular system have been given in our previous

studies [18,19].

Computation conditions

Each set of computation comprised three steps, with the computation for each step

being continuously run for 30 cardiac cycles to guarantee the convergence of computa-

tion (inter-cardiac cycle error for mean flow rate within 0.1%): during the first 30 car-

diac cycles (Step I), the reference cerebral arteriolar resistances are estimated under

normal perfusion conditions (in the absence of artery stenosis); during the second 30

cardiac cycles (Step II), stenoses are introduced in certain cerebral feeding arteries

(including at least one or both of the ICA) and the cerebral arteriolar resistances are

further modified to match the cerebral autoregulation curve; and at the beginning of

the last 30 cardiac cycles (Step III), an ICA stenosis is suddenly removed to simulate

CAS. The post-CAS hyperperfusion rate in each cerebral efferent artery is calculated at

the end of step III. It is noted that we have herein assumed that cerebral arteriolar
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resistances do not change immediately after CAS in order to simulate the largest post-

CAS hyperperfusion rate.

The nine types of CoW structure illustrated in Figure 1(C) were studied. Each type

of CoW structure was further investigated in combination with three distribution pat-

terns of stenosis in the cerebral feeding arteries: (1) unilateral ICA stenosis, (2) bilateral

ICA stenosis, and (3) coexisting unilateral ICA stenosis and basilar artery (BA) steno-

sis. The degree of each stenosis was set uniformly to be 75% to represent a severe ste-

notic condition. Heart rate has been fixed at 60BPM in all the computations.

Definition of hyperperfusion rate

Hyperperfusion rate (CH) was defined as the percentage change of post-CAS flow rate

relative to the pre-CAS value [4].

CH =
(

Q̄a/Q̄b − 1
)

× 100% (11)

Here, Qb and Qa refer respectively to the mean flow rates before and after CAS.

Results

Computed flow rates through the left/right ICA and the BA for different CoW structures

under normal conditions

The computed mean flow rates through the left/right ICA and the BA for three CoW

structures (Types 1 to 3) under normal conditions (in the absence of feeding artery

stenosis) are given in Table 2 in comparison with the corresponding in vivo data [43].

It was observed that the pattern of flow division among the three cerebral feeding

Table 1 Physiological data of the cerebral circulation

No. Arterial segment L[cm] r0[cm] r1[cm] c0[m.s-1] RT [mmHg.s. ml-1]

5 R. common carotid 17.7 0.400 0.370 5.92 -

11 L. common carotid 20.8 0.400 0.370 5.92

6/16 R./L. vertebral 13.5 0.150 0.136 11.9 -

39/48 R./L. ext.carotid I 4.10 0.200 0.150 8.90 -

40/47 L./R. int. carotid I 17.6 0.250 0.200 7.90 -

56 Basilar 2.90 0.162 0.162 9.33 -

57/71 R./L. PCA I 0.50 0.107 0.107 12.93 -

58/70 R./L. PCA II 8.60 0.105 0.105 13.13 39.13

59/69 R./L. PCoA 1.50 0.073 0.073 17.24 -

60/68 R./L. int. carotid II 0.50 0.200 0.200 8.26 -

61/67 R./L. MCA 11.90 0.143 0.143 10.23 19.21

62/66 R./L. ACA I 1.20 0.117 0.117 12.03 -

63/65 R./L. ACA II 10.30 0.120 0.120 11.77 38.75

64 ACoA 0.3 0.100 0.100 17.08 -

72/73 L./R. ext.carotid II 6.10 0.200 0.200 8.53 -

74/75 L./R. sup. thy. asc. ph. lyng. fac. occ. 10.10 0.100 0.100 16.57 225.6

76/77 L./R. superf. temp. 6.10 0.160 0.160 9.62 -

78/79 L./R. maxillary 9.10 0.110 0.110 15.09 188.0

80/81 L./R. superf. temp. fron. bran. 10.0 0.110 0.110 15.09 188.0

82/83 L./R. superf. temp. pari. bran. 10.1 0.110 0.110 15.09 188.0

Here, r0 and r1 denote the proximal and distal radii of an arterial segment, c0 is the pulse wave velocity at the middle of

each arterial segment at the reference state (A0, U0), RT is the total distal vascular resistance corresponding to each

efferent artery.
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arteries depends strongly on the CoW structure. And the computations reasonably

captured the flow division patterns described by the in vivo data.

Hemodynamics before and after CAS

The type 6 CoW structure was taken as an example to illustrate the hemodynamic

changes corresponding to onset of ICA stenosis and CAS. Herein, a stenosis was gen-

erated in the left ICA at the beginning of Step II and removed at the beginning of Step

III. Before CAS, the cerebral distal resistance corresponding to each cerebral efferent

artery was gradually modified from its initial value to regulate the flow rate toward the

target value (see Figure 4). After CAS, the flow rates through the left MCA and ACA

II were remarkably increased; whereas the flow rates through other cerebral efferent

arteries were less changed. The computed hyperperfusion rates for the left MCA and

ACA II were both larger than 100% (being 171% and 173%, respectively), indicating

the occurrence of post-CAS hyperperfusion in the left MCA and ACA II territories.

The pre- and post-CAS blood flow/pressure waves in the six cerebral efferent arteries

are plotted together with the results for normal conditions (in the absence of ICA ste-

nosis) in Figure 5. As expected, the pressure/flow waves in the hyperperfusion-affected

arteries (left MCA, ACA II) changed significantly with the onset and removal of the

ICA stenosis. In contrast, the pressure/flow waves in the remaining cerebral efferent

arteries showed little change.

Figure 6 shows the transmural pressures distal to the left MCA (A) and right MCA

(B). The transmural pressures distal to the left MCA were reduced as the ICA stenosis

is present and increased after the stenosis is removed via CAS; whereas, those distal to

the right MCA showed little change during the entire process.

Hyperperfusion rates in the case of unilateral ICA stenosis

Figure 7 shows the computed post-CAS hyperperfusion rates for the nine types of

CoW structure in the cases of unilateral left ICA stenosis (A) and right ICA stenosis

(B). The type 6 and type 4 CoW structures were found to induce hyperperfusion in

the left ICA stenosis case and the right ICA stenosis case, respectively.

Hyperperfusion rates in the case of bilateral ICA stenosis

In the case of bilateral ICA stenosis, we selectively removed the left or right ICA ste-

nosis at each time. In this case, the types 4, 6, 8 and 9 CoW structures were found to

induce post-CAS cerebral hyperperfusion (see Figure 8). Unlike the cases of the types

4, 6 structures, cerebral hyperperfusion induced by the types 8, 9 structures was not

sensitive to the location side of the removed ICA stenosis and present in both

hemispheres.

Table 2 Mean flow rates through the cerebral feeding arteries computed for three CoW

structures under normal conditions (compared with measured data [43])

CoW structure Computation Measurement [43]

L. ICA R. ICA BA L. ICA R. ICA BA

Type 1 4.81 4.85 2.36 5.07 5.18 2.75

Type 2 6.14 3.50 2.36 6.12 3.93 2.35

Type 3 4.80 5.70 1.49 5.28 5.91 1.50

All the values have a unit of ml/s.
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Figure 4 Computed changes in distal resistances of (Panel A) and mean flow rates through (Panel

B) the efferent arteries of the type 6 CoW structure before and after CAS (unilateral left ICA

stenosis). In the absence of ICA stenosis, the distal resistance corresponding to each cerebral efferent

artery is gradually changed from its initial value (roughly assigned at the beginning of computation) to a

reference value (step I). The distal resistances of the left MCA and ACA II are further reduced by about 50%

following the onset of the left ICA stenosis (step II). After CAS is implemented at the beginning of step III,

marked flow overshoots through the left MCA and ACA II appear.
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Hyperperfusion rates in the case of coexisting BA stenosis and unilateral ICA stenosis

When BA stenosis existed concurrently with unilateral ICA stenosis, the types 4, 6

CoW structures that have been found to induce post-CAS hyperperfusion either in the

case of left ICA stenosis or in the case of right ICA stenosis induced hyperperfusion in

both cases (see Figure 9). Moreover, there was a significant enlargement of the cerebral

region affected by post-CAS hyperperfusion (compare Figure 7 with Figure 9).

Discussion

The pre-CAS status of cerebral hemodynamics has been found to be an important fac-

tor for assessing post-CAS cerebral hyperperfusion in patients with severe ICA stenosis

[5,6,8]. Cerebral hemodynamics may be evaluated directly by measuring intra-arterial

blood flow using magnetic resonance angiography or transcranial Doppler sonography

[10,12,46,47] or indirectly via cerebral vasoreativity test [3], measurement of brain tem-

perature [48] or brain oxygenation [49]. Despite the existence of these methods, an

accurate measurement of blood flow rates in all the major cerebral arteries is yet diffi-

cult in clinical settings, which considerably hampers a full understanding of the collat-

eral function of the cerebral artery network in pathological conditions. In contrast, the

geometry of large cerebral arteries can nowadays be measured with satisfactory accu-

racy in clinical settings [11]. Computational hemodynamic modeling offers an alterna-

tive way to assess cerebral hemodynamics based on available geometrical data of

cerebral arteries. A significant advantage of a computational model is that it allows us

not only to quantify the blood flow rate in any cerebral artery of interest but also to

Figure 5 Computed changes in pressure/flow waves in the efferent arteries of the type 6 CoW

structure before and after CAS: continuous line (normal), dashed line (in the presence of left ICA

stenosis), dash-dotted line (after removal of the stenosis).
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Figure 6 Computed changes in transmural pressures distal to the left MCA (Panel A) and right

MCA (Panel B) of the type 6 CoW structure before and after CAS (unilateral left ICA stenosis). The

onset and removal of the left ICA stenosis induce pronounced changes in transmural pressures distal to

the left MCA in which post-CAS hyperperfusion occurs, but have little influence on transmural pressures

distal to the right MCA.
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evaluate the role of the entire cerebral artery network in regulating cerebral blood

flows under various physiological/pathological conditions.

In this context, we have developed a 0-1D multi-scale model of the cerebral circula-

tion (coupled with the global cardiovascular system) and applied it to investigate the

Figure 7 Polar plots of the computed post-CAS hyperperfusion rates in the cerebral efferent

arteries in the cases of unilateral left ICA stenosis (Panel A) and right ICA stenosis (Panel B).
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influence of the anatomy of the CoW on post-CAS cerebral hyperperfusion. We should

stress that although fully three-dimensional (3-D) modeling of the cerebral arteries can

provide a more accurate and detailed description of blood flows compared to 0-D or

1-D modeling [45,50]; it is not practical for the present study due to its high computa-

tional cost. In this study, each set of computation has to be run continually for tens of

Figure 8 Polar plots of the computed post-CAS hyperperfusion rates in the cerebral efferent

arteries in the case of bilateral ICA stenosis: removal of the left ICA stenosis (Panel A), removal of

the right ICA stenosis (Panel B).
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cardiac cycles, for which reason a modeling method that incurs lower computational

cost would be more favorable. Reducing 3-D modeling into 1-D modeling significantly

reduces the required computational effort, but at the expense of the loss of some geo-

metric information, such as local artery surface shape, curvature and bifurcation

Figure 9 Polar plots of the computed post-CAS hyperperfusion rates in the cerebral efferent

arteries in the case of coexisting BA stenosis and unilateral ICA stenosis: left ICA stenosis (Panel

A), right ICA stenosis (Panel B).
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structure. There is evidence that computation results obtained with 1-D and 3-D mod-

els of the cerebral arterial network are in good agreement in terms of mass-flow distri-

bution and pressure drop along arteries [50]. The purpose of the present study

determines that we are interested in mass-flow distribution rather than in local flow

patterns; therefore, 1-D modeling should be a choice with a good balance between

computational demand and physical detail for the description of the cerebral arterial

network. For the peripheral portion of the cerebral circulation, its extreme complexity

determines that 0-D modeling is the only practical way. Particularly, 0-D modeling

allows us to readily account for certain physiological or pathological conditions by

modifying model parameters.

The computed results presented in Figure 7, 8, 9 indicate that (1) the anatomy of the

CoW and the distribution pattern of stenosis in the cerebral feeding arteries jointly

determine the risk and the localization of post-CAS cerebral hyperperfusion; (2) the

existence of BA stenosis or contralateral ICA stenosis tends to increase the risk of

post-CAS hyperperfusion and enlarge the cerebral region affected by hyperperfusion;

and (3) some CoW structures may induce post-CAS hyperperfusion in both hemi-

spheres under certain conditions, such as the types 8, 9 CoW structures combined

with bilateral ICA stenosis.

CoW structures susceptible to post-CAS hyperperfusion

As discussed above, the risk of a CoW structure for inducing post-CAS hyperperfusion

should be always assessed in conjunction with the location of stenosis in the cerebral

feeding arteries. According to the computed results, high-risk CoW structures are

those (types 4 and 6) lacking collateral pathways from the contralateral ICA in the

case of unilateral ICA stenosis and those lacking collateral pathways either from the

contralateral ICA (types 4 and 6) or from the BA (types 8 and 9) in the case of bilat-

eral ICA stenosis.

Influences of the diameters of the cerebral communicating arteries and the severity of

ICA stenosis on post-CAS hyperperfusion

Although the major objective of this study is to investigate the influence of the anat-

omy of the CoW on post-CAS hyperperfusion, we should point out that the dia-

meters of the cerebral communicating arteries and the severity of cerebral feeding

artery stenosis are important factors for assessing post-CAS hyperperfusion as well.

To confirm this viewpoint, we additionally carried out two sets of computation. In

both sets of computations, the stenosis was located in the left ICA. In the first set of

computation, the diameters of the ACoA and PCoAs of the type 1 CoW structure

were reduced step by step to 10% of their reference values; whereas in the second

set of computation, the severity of the ICA stenosis was increased gradually from

60% to 80% (herein the type 6 CoW structure was studied). The computed post-CAS

hyperperfusion rates in the left MCA for the two cases are plotted in panels A and B

of Figure 10, respectively. It was observed that even the complete CoW structure

may induce hyperperfusion if the communicating arteries are small, and the value of

hyperperfusion rate is highly sensitive to the severity of the ICA stenosis, especially

when the severity is greater than 70%.
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Sensitivity of cerebral arterial territory to post-CAS hyperperfusion

In the case of unilateral ICA stenosis, there is no apparent difference in hyperperfusion

sensitivity between the ACA territory and the PCA territory; whereas, in the case of

bilateral ICA stenosis, the ACA territory is more frequently affected by hyperperfusion

in comparison with the PCA territory, with the appearance frequencies of

Figure 10 Computed changes in hyperperfusion rate in the L. MCA with changes in: (A) the diameters

of the cerebral communicating arteries (type 1 CoW structure), and (B) the degree of the ICA stenosis (type

6 CoW structure). In both cases, the stenosis is located in the left ICA. The diameter values shown in the

horizontal axis of Figure 10(A) are normalized by the default values of the communicating arteries.
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hyperperfusion in these territories being 9 times vs. 3 times. The results support the

clinical finding that a pronounced increase of blood flow velocity is often observed in

the anterior part of the CoW immediately after CAS in the case of bilateral ICA steno-

sis [51]. This phenomenon can be explained from the fact that the PCA territory often

possesses richer collateral pathways from the BA than the ACA territory, and the influ-

ence of this difference on cerebral perfusion is enhanced by the presence of bilateral

ICA stenosis which reduces blood flows through both ICA, making cerebral perfusion

rely more strongly on the blood flow supplied by the BA.

Change in transmural pressure after CAS

The most pronounced changes in transmural pressure after CAS were observed in the

microcirculations of the cerebral territories subjected to post-CAS hyperperfusion. For

instance, the proximal (arteriolar limb) capillary pressure in the left MCA territory

(type 6 CoW structure with L. ICA stenosis) increased from a pre-CAS value of 18.6

mmHg to a post-CAS value of 46.9 mmHg (see Figure 6(A)). This phenomenon is

attributable to a reduction in arteriolar resistance under pre-CAS ischemic conditions,

which leads to a shift of pressure distribution from the arterioles toward the capillaries,

ultimately resulting in a high capillary pressure when the proximal arterial perfusion

pressure is recovered after CAS. The prediction is consistent with the results of the

ischemia-reperfusion experiments on the isolated dog hind limb [52]; whereas, whether

the similar phenomenon occurs in vivo in the human cerebral circulation remains not

well known. If it were true, it might augment capillary leakage, increase the risk of

edema, and hence be another causative factor for post-CAS CHS in addition to

increased blood flow rate [53].

Limitations

A major limitation of this study is the absence of a sufficient comparison between

model predictions and in vivo measurements. Actually, so far, we are not aware of any

in vivo studies that systemically investigate the relationship between post-CAS hyper-

perfusion and the anatomy of the cerebral artery network with account of the distribu-

tion pattern of stenosis in the cerebral feeding arteries. At this point, further in vivo

studies would be required to confirm the findings of the present study. Another limita-

tion of this study may arise from the exclusion of the secondary cerebral collateral ves-

sels from the present model, which potentially makes the model overestimate post-

CAS hyperperfusion rate. Moreover, the CoW structures investigated in this study are

limited to those illustrated in Figure 1(C), other CoW structures, such as those

described elsewhere [14,18,44], would deserve further studies. Finally, since we did not

take into account cerebral autoregulation in post-CAS computation by assuming cere-

bral distal resistances to remain constant after CAS, the predicted results may repre-

sent the largest values of post-CAS hyperperfusion rates. The dynamic cerebral

autoregulation has been found to be significantly impaired in some patients with severe

ICA stenoses [3,7,54]. After CAS, the immediate restoration of perfusion pressure does

not guarantee an immediate sufficient restoration of cerebral autoregulation. In fact,

hyperperfusion or impaired cerebrovascular reserve has been identified several days

after CAS [3,7,55], indicating that cerebral autoregulation may remain insufficient for a

fairly long time after CAS in some patients. In this sense, under in vivo conditions, the
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values of post-CAS hyperperfusion rates should be time-dependent, changing in close

association with the post-CAS restoration of cerebral autoregulation. So far, the post-

CAS restoring process of cerebral autoregulation remains not fully understood and

seems to be strongly patient-specific [55], preventing us from developing a general

model for describing post-CAS cerebral autoregulation. This limitation might be over-

come if sufficient experimental data would be reported in the future.

Despite these limitations, some model-based findings regarding the factors tending to

increase the risk of cerebral hyperperfusion (e.g., the existence of contralateral ICA ste-

nosis, high-grade ICA stenosis) and the sensitivity of cerebral arterial territory to post-

CAS hyperperfusion are in agreement with previous clinical findings [2,7,51]. Other

model-based findings regarding the influences of BA stenosis and the diameters of the

cerebral communicating arteries on the risk of post-CAS cerebral hyperperfusion and

the change in capillary transmural pressure after CAS are reported for the first time.

These findings, though awaiting further experiment-based confirmation, are of poten-

tial significance in the assessment and treatment of cerebral hyperperfusion.

Conclusions

Using a computational model, this study demonstrated the importance of considering

the anatomy of the CoW in assessing the risk of post-CAS cerebral hyperperfusion.

Particularly, the finding that the anatomy of the CoW and the distribution pattern of

stenosis in the cerebral feeding arteries jointly determine the risk and localization of

post-CAS cerebral hyperperfusion suggests that a patient-specific hemodynamic analy-

sis aimed to help physicians identify patients at high risk of post-operative cerebral

hyperperfusion should account for the combined effect of the anatomy of cerebral

arteries and cerebral feeding artery stenoses on cerebral hemodynamics.
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