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Purpose: To develop algorithms for creating realistic three-dimensional (3D) simulated breast

masses and embedding them within actual clinical mammograms. The proposed techniques yield

high-resolution simulated breast masses having randomized shapes, with user-defined mass type,

size, location, and shape characteristics.

Methods: The authors describe a method of producing 3D digital simulations of breast masses and

a technique for embedding these simulated masses within actual digitized mammograms. Simulated

3D breast masses were generated by using a modified stochastic Gaussian random sphere model

to generate a central tumor mass, and an iterative fractal branching algorithm to add complex

spicule structures. The simulated masses were embedded within actual digitized mammograms. The

authors evaluated the realism of the resulting hybrid phantoms by generating corresponding left- and

right-breast image pairs, consisting of one breast image containing a real mass, and the opposite breast

image of the same patient containing a similar simulated mass. The authors then used computer-aided

diagnosis (CAD) methods and expert radiologist readers to determine whether significant differences

can be observed between the real and hybrid images.

Results: The authors found no statistically significant difference between the CAD features obtained

from the real and simulated images of masses with either spiculated or nonspiculated margins.

Likewise, the authors found that expert human readers performed very poorly in discriminating their

hybrid images from real mammograms.

Conclusions: The authors’ proposed method permits the realistic simulation of 3D breast masses

having user-defined characteristics, enabling the creation of a large set of hybrid breast images

containing a well-characterized mass, embedded within real breast background. The computational

nature of the model makes it suitable for detectability studies, evaluation of computer aided diag-

nosis algorithms, and teaching purposes. C 2015 American Association of Physicists in Medicine.

[http://dx.doi.org/10.1118/1.4905232]
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1. INTRODUCTION

Computational phantom models are widely used in the

evaluation of imaging systems and algorithms, where it is

often important to have access to large and diverse sets

of image data having known characteristics. In this work,

we present a new method for generating realistic three-

dimensional (3D) mass phantoms, expanding on our prior

work.1 We describe an approach for creating simulated masses

and a method for embedding the simulated masses digitally

within real clinical mammograms to obtain digital hybrid

images.39 We then show that the resulting hybrid images

are, for practical purposes, essentially indistinguishable from

real mammograms as judged by both expert readers and

computer-aided diagnosis (CAD) procedures.

The model introduced in this work employs a Gaussian

random sphere (GRS) technique to generate a central mass

and an iterative branching algorithm to simulate spicules.

The branching process is informed by the principle of

minimum work. The random generation of simulated masses

is controlled by user-specified parameters. This permits the

user to produce an unlimited family mass having particular

characteristics.

Several previous approaches to breast tumor simulation

found in the literature (e.g., Refs. 2–4) are based on simple

shapes such as ellipsoids and cylinders. Typically, realism of
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a simulation method is quantified by the ability of readers to

distinguish real tumors from simulated ones, with area under

the receiver operating characteristic (ROC) curve (AUC) of

0.5 (pure guessing) being the ultimate goal. In a previous

published study by Saunders et al.,2 a proposed mass model

yielded AUC values of 0.68±0.07 for the benign masses

and 0.65±0.07 for the malignant masses. Thus, the results

differed significantly from the target AUC value of 0.5. A

similar reader study by Berks et al.3 was performed for a

different model, resulting in a similarly unsatisfactory AUC

result of 0.7± 0.09. Bliznakova et al.4 proposed a model

based on various geometrical shapes, but readers were easily

able to distinguish real masses from the simulated ones,

with accuracy exceeding 95%. Rashidnasab et al. proposed

several models for mass simulation in mammography using a

diffusion limited aggregation algorithm5 and a random walk

algorithm.6 Their simulated images were generated using the

same approach as previously described by us,1,7 in which

healthy mammography images are modified by substituting

the effect of a mixture of fatty and fibrous tissue with tumor

tissue. The range of structures created by their method was

able to be controlled by a set of parameters and produced

realistic looking results. However, their work did not provide

any distinction in the generation of different mass types (as

spiculated or nonspiculated). Further models that have been

proposed in the literature8–10 are either simplistic or lack

thorough validation. The purpose of this paper is to create

breast mass phantoms that are more detailed and realistic than

those produced by existing techniques, as well as producing

different mass types that can be differentiated by a spiculated

or nonspiculated margin.

Our work was originally motivated by a specific need

for highly detailed simulations for our research on phase

contrast imaging11,12 where fine details are clearly seen in the

image. Note that the purpose of this paper is not to faithfully

replicate the biological processes of tumor growth, but simply

to produce simulated masses that appear visually similar to

what is seen in medical imagery, so as to provide imaging

researchers with a tool for evaluating imaging systems and

algorithms. The proposed method may also be useful as a

training tool.

In Sec. 2, we discuss modeling of the simulated breast

mass, computation of its voxelized volume and projection,

and its geometrical interpretation. We also describe a method

for creation of hybrid digitized mammograms consisting of a

simulated mass that is computationally embedded within real

breast background. Experiments to measure the realism of the

results, using CAD methods and expert readers, are provided

in Sec. 3.A, and discussion follows in Sec. 4.

2. MATERIALS AND METHODS

In the proposed approach, simulated breast masses are

modeled according to the steps shown in Fig. 1. Figures

1(a)–1(c) show the process of simulating the central mass,

beginning from a shape constructed using GRS,13 and modi-

fying its surface with various irregularities, first by set of

F. 1. Process of generating a simulated mass model and embedding it into an existing mammogram.
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low-frequency modifications referred to colloquially as

“bumps” or “spikes,” and then by adding high-frequency

modifications to the surface defined as a “fuzzy” surface

texture. Next, if a spiculated mass is desired, spiculation

structure can be added to the central mass by using an iterative

branching algorithm, as shown in Fig. 1(d). Finally, as shown

in Figs. 1(e) and 1(f), a projection image of the simulated mass

can be embedded within a clinical mammogram to produce a

hybrid image (mammogram with simulated mass). The mass

is described as a 3D shape model, so it can also be used in

simulations of tomographic imaging; however, we did not

consider the performance of our method in that setting. The

simulated mass is generated in the form of a parametric surface

model, so it can be rasterized to form a volumetric image

represented on a 3D voxel grid; however, an analytic projection

approach has tremendous computational benefits, therefore we

describe the analytic solution for planar mammography in the

Appendix. Sections 2.A–2.D provide the details of each of the

steps of mass simulation shown in Fig. 1.

2.A. Modeling the central mass

2.A.1. GRS model [Fig. 1(a)]

In this section, we explain the first step shown in Fig. 1(a)

in which the central mass is simulated. We accomplish this

by employing a GRS model, which was originally designed

to model planets and comets13 but has also been used in other

fields.14 The GRS is a parametric surface model described by

the radial distance of the surface from the origin, r (θ,ϕ), which

is given by the following function of spherical coordinates θ

and ϕ (see Fig. 2):

r (θ,ϕ)=
α

√
1+σ2

exp[s(θ,ϕ)] (1)

in which the logarithmic radius s(θ,ϕ) (a random function)

is a series of spherical harmonics Ylm(θ,ϕ) truncated to a

F. 2. GRS surface with the introduction of two low-frequency modifi-

cations: A Gaussian bump (left side) and a spike irregularity (right side),

exaggerated here for illustration purposes.

maximum order lmax, defined as

s(θ,ϕ)=

lmax


l=0

l


m=−l

slmYlm(θ,ϕ). (2)

In Eq. (1), α is the mean of r (θ,ϕ), defining the size of the

mass, and σ2 is the variance of r (θ,ϕ), defining the degree of

irregularity of the surface of the mass.

For s(θ,ϕ) to be normally distributed with zero mean

and an angular covariance function appropriate for a closed

surface,11 the expansion coefficients slm in Eq. (2) are defined

by

slm =



2πCl

2l+1

(

xG


1+δm0+ iyG


1−δm0

)

,

l = 0,. . ., lmax, m= 1,. . ., l, (3)

C0=C1= 0,

Cl =
C̃

lv
, l = 2, 3,. . ., lmax,

C̃ = ln
�
1+σ2

� 
lmax


l=0

1

lv


−1

,

where xG and yG are Gaussian random variables with zero

mean and unit variance, i =
√
−1 , and δm0 is the Kronecker

delta function. The exponent v is the power-law index of the

covariance function. In this work, we fixed v = 4 to correspond

to nonfractal shapes without sharp features in their geometry.14

The coefficients for the negative values of m are defined as

follows:

sl,−m = (−1)mslm
∗, l = 0, 1,. . ., lmax, m=−l,. . ., 0,

Im(s10)= 0, (4)

where the asterisk denotes complex conjugate and Im(·)
denotes the imaginary part.

The statistics of the GRS shapes are controlled by lmax

and σ2. For example, weighting the spectrum toward higher-

degree harmonics results in Gaussian spheres with finer sur-

face irregularities. Increasing the variance of the logarith-

mic radius enhances these irregularities radially. Setting the

variance to zero, for example, produces a sphere because all

surface locations have the same radial distance in this instance.

2.A.2. Introducing low-frequency modifications
[spikes and bumps; Fig. 1(c)]

In the next step, the GRS model is given an irregular

surface at discrete locations by introducing low-frequency

modifications we will refer to colloquially as spikes and

bumps [see Figs. 1(b) and 2]. Spikes introduce pointy localized

surface changes into the GRS model while bumps introduce

localized, lobulated surface changes. These modifications

were included to allow the central mass to have a greater

degree of surface variation and hence greater realism,

especially for nonspiculated masses for which these are the

only fine surface structures.

Spikes are introduced as follows. For each modification

j of the mass surface, a spherical coordinate pair
�
θc j,ϕc j

�
is randomly chosen, defining the axis of revolution of the
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modification. The initial GRS model r (θ,ϕ) is then modified

in the vicinity of each chosen coordinate pair, according to

a specified function as follows. For a given coordinate pair

�
θc j,ϕc j

�
, values of the random spike radius rspike and length

lspike are selected and the initial GRS surface is modified using

the quadratic ramp function

r ′(θ,ϕ)=


r (θ,ϕ)± lspike

*,
rspike−d

�
r (θ,ϕ),r

�
θc j,ϕc j

��
rspike

+-
4

, for d
�
r (θ,ϕ),r

�
θc j,ϕc j

��
≤ rspike

r (θ,ϕ), for d
�
r (θ,ϕ),r

�
θc j,ϕc j

��
> rspike

(5)

in which r ′(θ,ϕ) is the new radial position of the mass surface and d (·,·) is the Euclidean distance between two points on the

surface. The symbol ± indicates that these variations can be defined to grow outward (+) or inward (−) from the initial GRS

surface.

Bumps are introduced in the following manner. For a given coordinate pair (θci,ϕci), values of the random radius rGauss and

length lGauss are selected. Radial positions r (θ,ϕ) are altered to produce bump features according to

r ′(θ,ϕ)=


r (θ,ϕ)± lGauss


exp

(

−d (r(θ,ϕ),r(θci,ϕci))

2 · (rGauss/2)
2

)

−exp

(

−
9

2

)
, for d (r (θ,ϕ),r (θci,ϕci)) ≤ rGauss

r (θ,ϕ), for d (r (θ,ϕ),r (θci,ϕci)) ≤ rGauss

(6)

in a similar manner as for the spike shapes.

2.A.3. Introducing high-frequency modifications
[fuzzy surface texture; Fig. 1(b)]

A fuzzy surface is created by modifying the surface profile

function as follows:

r ′′(θ,ϕ)= r ′(θ,ϕ)(1+αn), (7)

where r ′′ is the new radial position of the mass surface, n is

a standard normal random variable, and α is a user-defined

parameter controlling the variance of the surface variations.

2.B. Modeling spicule structures

The process of mass generation may conclude at this

point; but if a spiculated mass is desired, then the algorithm

proceeds to the step illustrated in Fig. 1(d), in which

spicules are introduced into the central mass structure. This

is accomplished by an iterative fractal branching algorithm

that recursively creates a set of segments bn, n = 1,. . ., N

based on a set of growing rules. Each of these segments

is characterized by a starting location psn in 3D space, an

ending location pen, an initial radius rinin, and a final radius

rfinn, which defines a conical frustum with a hemisphere at

the end acting as a “cap,” as represented in Fig. 4. Additional

variation to the defined geometries is introduced by adding

a normal random variable to the distance to the center of

each geometry (the revolution axis in the case of the frustum

and the center location for the sphere), in a similar way as

the high-frequency variations were introduced in the central

mass [Eq. (7)]. The growth process is defined by user-selected

parameters, including the distribution, bifurcation probability,

direction of extension, emerging density, radius, and length of

the introduced frustum shapes. Next, we describe the iterative

algorithm formulated for the segment set generation.

2.B.1. Iterative branching structure generation

A temporary segment structure at a particular iteration

k is defined by the set Sk =

sk

1
,. . ., sk

j
,. . ., sk

Lk


, where sk

j

is the jth segment in the kth iteration of the algorithm,

defined by a starting spatial location qk
j
, a direction of growth

defined by angles
(

θk
j
,ϕk

j

)

, a length lk
j
, and an initial radius

rk
j
. The initial segment set S0 is generated as described

in the flowchart shown in Fig. 3. The user specifies the

number of initial segments L0 and a number Mgroup that

indicates the number of initial segments clustered within each

neighborhood. The latter is used to allow spicules to emerge in

bunches. The starting position coordinates q0
i

are grouped in

neighborhoods centered at r ′′
�
θini
m ,ϕini

m

�
, where the coordinates

are randomly selected within each neighborhood m. The

starting position of segment n is added to neighborhood m as

r ′′
�
θini
m +

��
log2 n

�
+γ1

�
π/50, ϕini

m

��
log2 n

�
+γ2

�
π/50

�
, where

γ1 and γ2 are uniform random variables. That is, one segment

emerges from the center of the neighborhood and the rest are

added at increasing angular distances from this neighborhood

center, each segment having a random length l0
i

and initial

radius r0
i

which are drawn from a Gaussian distribution with

user-defined properties. The direction of growth of these

segments is defined in spherical coordinates by

θ0
i = θ

ini
m +δ0 (8)

and

ϕ0
i = ϕ

ini
m +δ1, (9)
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F. 3. Flowchart for the generation of the initial set of simulated spicule

segments.

where δ0 and δ1 are normal random variables with zero mean

and a user-defined standard deviation (std) that controls the

possible variance expected in the direction of the emerging

segments from the radial direction with respect to the center

of the mass (in our work, the standard deviation of δ0 and δ1

was set to 15(180/π) rad).

Figure 4 illustrates an example of the first iteration (itera-

tion 0), showing an initial segment (with parameters having

superscript 0) and two child segments (denoted by super-

script 1). In Fig. 5, example simulations of spicule structures

are shown emanating from the same central mass, along with a

table of their user-defined parameter values. Figures 5(a)–5(c)

show that increasing the number of initial segments L0 pro-

duces a larger number of spiculations, and that increasing the

number of maximum emerging segments in a neighborhood

Mgroup causes the spicules to emerge from isolated regions in

the central mass, while decreasing this parameter results in a

more uniform distribution of spicules.

A fractal branching algorithm is applied iteratively to

generate the complete set of segments forming a spicule struc-

ture. At each iteration k, given the segments Sk generated in

the previous iteration (parent segments), a new set of segments

Sk+1 (child segments) is generated following the flowchart

shown in Fig. 6. The child segments act as parent segments

in the next iteration of the process, which continues until no

new segments are generated per a given set of growing rules.

Each parent segment produces zero, one, or two children,

with user-defined probabilities (Fig. 4 shows a two-child

generation event). The generated child segments have a

starting point that is the ending point of the parent, a radius

less than or equal to the final radius of the parent segment,

and a direction of growth that deviates randomly from that of

the parent. Child segment diameters are scaled such that the

flows within a branch follow the physiological principle of

minimum work.9,15 That is, the radii of the parent and child

branches can be related by

rk+1
j = rki d1/τ

r , (10)

rk+1
j+1 = rki (1−dr)

1/τ, (11)

where rk+1
j

and rk+1
j+1

are the resulting child segment radii,

rk
i

is the parent segment radius, dr , the dividing ratio, has a

value between 0.5 and 1, and τ is a constant known as the

diameter exponent16 (τ = 2.6 is used here per previous work9).

Child segments have equal radii when dr = 0.5 and the radius

difference increases as dr increases.

At the kth iteration, no new segments are added to the

structure if a parent segment has a length or initial radius

F. 4. Spatial interpretation of an initial parent segment (superscript 0) and child segments (superscript 1) generated in the branching algorithm.
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F. 5. An example mass with various spiculation structures added. The parameters defining the spiculation growth for these examples are shown in the table

below the images.

smaller than the maximum defined resolution (in this work, a

tenth of the pixel size of the imaging system where the breast

mass phantom will be used). Otherwise, one of three possible

different scenarios in the branching scheme is followed by

each parent segment with defined probabilities:

2.B.1.a. Continuing branch. One child segment sk+1
j

is

generated as a continuing segment from the parent sk
i
, with

slightly reduced length and radius, and a slight change in

direction. The radius of the child segment is computed,

rk+1
j = decreaserr

k
i , (12)

where decreaser is a chosen factor that models how fast

the radius of each branch decreases along its length in the

complete structure, the value of which is discussed later.

The length of the continuing child segment is computed in a

similar way

lk+1
j = decreasell

k
i , (13)

where decreasel is a chosen factor that models how fast the

segments’ lengths decrease along a branch. The orientation

of the continuing segment has a slight random variation from

the parents in terms of azimuth and inclination

θk+1
j = θ

k
i + (x1γbif), (14)

ϕk+1
j = ϕ

k
i + (x2γbif)− |x2|

ϕk
i

4
, (15)

where x1 and x2 are independent normal random variables

and γbif is an angle bifurcation factor. The factor γbif, defined

a priori, describes the angular variation in the direction of

child segments with respect to their parents, and has a value

between 0 and π (smaller values avoid potentially abrupt

random changes of the growth direction).

Medical Physics, Vol. 42, No. 2, February 2015
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F. 6. Flowchart for the generation of the iterative branching structure.

The factor − |x2|ϕ
k
i
/4 appears in Eq. (15) to give the

branches a tendency to be stretched along the X–Y plane,

which simulates the effect of breast compression. Thus, x2 is

either defined as an independent normal random variable

for the compressed-breast case, or set to zero for the

uncompressed-breast case. This stretching effect is illustrated

in Fig. 7.

After the continuing child is generated, the parent segment

sk
i

is added to the complete structure to form a new element

bn =
�
psn,pen,rinin,rfinn

�
of the form

psn = qk
i , (16)

pen = qk+1
i , (17)

rinin = rki , (18)

rfinn =
�
decreaserr

k
i

�
. (19)

2.B.1.b. Symmetric bifurcation. Two continuing child

segments sk+1
j

and sk+1
j+1

are generated from the parent, each

having similar length and radius, and a similar, but opposed

change, in direction. In this case, the dividing ratio dr shown

in Eqs. (10) and (11) is computed as a uniform random

variable taking values from 0.5 to 0.8. The radii of the two

child segments are computed,

rk+1
j =

�
decreaserr

k
i

� (
(dr)

1
2.6

)

, (20)

rk+1
j+1 =

�
decreaserr

k
i

� (
(1−dr)

1
2.6

)

. (21)

In the same way, the two child segment lengths are defined,

lk+1
j =

�
decreasell

k
i

� (
(dr)

1
2.6

)

, (22)

lk+1
j+1 =

�
decreasell

k
i

� (
(dr)

1
2.6

)

. (23)

The two different orientations for the child segments are

generated with opposed azimuth Gaussian variation

θk+1
j = θ

k
i + ((x1+1)γbif), (24)

θk+1
j+1 = θ

k
i + ((x2−1)γbif), (25)

ϕk+1
j = ϕ

k
i + (x3γbif)− |x5|

ϕk
i

4
, (26)

ϕk+1
j+1 = ϕ

k
i + (x4γbif)− |x6|

ϕk
i

4
, (27)

in which xi, i = 1,. . ., 4 are independent, normal random

variables. The variables x5 and x6 have the same horizontal

stretching interpretations as in the previous scenario

[parameter x2 in Eq. (15)], and assume values different from

zero when we consider breast compression. Once the two

bifurcating children are generated, the parent segment sk
i

is

added to the complete structure forming a new nth element

bn =
�
psn,pen,rinin,rfinn

�
. The starting point, ending point, and

initial radius are computed in the same way as in the previous

scenario [Eqs. (16)–(18)]. The final radius is computed using

the dividing ratio for this particular scenario

rfinn =
�
decreaserr

k
i

�
(dr)

1
2.6 . (28)

F. 7. Example of a generated mass phantom (a) without horizontal stretching and (b) with horizontal stretching.
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2.B.1.c. Asymmetric bifurcation. Two child segments sk+1
j

and sk+1
j+1

are generated: the first forms a continuation of the

parent branch; the second (smaller) branch diverges from

the parent. The radius and length of the child segments are

computed in a similar way as in the symmetric bifurcation

scenario, but with a dividing ratio dr computed as a

uniform random variable assuming values from 0.8 to 1.

The continuing segment also has lower angle deviation from

the parent segment than the bifurcation. Their orientations are

described in a manner similar to the previous scenario, but

with azimuth variations given by

θk+1
j = θ

k
i + (x1γbif), (29)

θk+1
j+1 = θ

k
i +

(

(x2γbif)±
π

5

)

. (30)

After the two bifurcating children are generated, the parent

segment sk
i

is added to the complete structure forming a new

nth element bn, defined in a manner similar to the previous

scenario.

In Figs. 5(c)–5(e), we can observe the effect of adjusting the

parameters of the spiculation model, as indicated in the inset

table. Comparing Figs. 5(c) and 5(d) shows that larger values

for the decreaser and decreasel parameters produce more-

extended spicule structures. Comparing Figs. 5(d) and 5(e)

shows that defining a higher continuing branch probability

reduces the chances of bifurcation, allowing the spicules to

grow more extensively.

2.C. Embedding in real tissue images

To allow us to validate the use of our proposed mass

simulation model in the context of mammography, we

developed a method of embedding the masses within actual

clinical digitized mammograms using published values of

breast tissue attenuation17 and a simulated mammography

source spectrum.18,19 Our goal was to computationally modify

the mammogram to include the simulated tumor projection

by substituting the attenuation effect produced by a mixture

of fat and fibrous tissue with that produced by tumor tissue. In

these experiments, we used digitized film mammograms from

the digital database for screening mammography (DDSM)

database.20,21 We began the embedding process by converting

the image values to film optical density values by using the

scanner conversion function (as indicated in Refs. 20 and 21).

We then computed normalized intensity values from the film

optical density values. Assuming a linear relationship between

inverse of the recorded optical density and the logarithm of

the intensity, we inverted the optical density values and later

inverted the logarithm relationship to compute the normalized

intensity image (normalized by the integral of the source

intensity, that is, values of pixels in air should be 1). According

to Beer’s law, the normalized intensity image follows:

I(x,y)=

 εmax

0
Id(x,y;ε)∂ε

 εmax

0
S(ε)∂ε

=

 εmax

0
S(ε)e−


L

0 µobj(x, y;ε)∂z∂ε
 εmax

0
S(ε)∂ε

,

(31)

where Id(x,y;ε) is the intensity recorded at the detector at

x-ray energy ε, S(ε) is the intensity of the source, εmax is

the maximum photon energy produced by the source, L is

the thickness of the sample in centimeter, and µobj(x,y;ε)

is the attenuation coefficient of the sample in cm−1, which

is energy-dependent. Since the attenuation coefficients have

a nonlinear dependence with energy (Ref. 17), the energy

dependence of the integrand Id(x,y;ε) in Eq. (31) is not

only on the source intensity but also on the breast thickness

and composition, which are not known a priori. Therefore,

in order to modify the equation to substitute the attenuation

effect produced by healthy tissue with that of the simulated

mass, we first need to estimate the composition and thickness

of the sample. We approximated the sample composition in

the form of a ratio of fat to fibrous tissue (we assume that

no lesion is located within the embedding area). Once these

factors are estimated, the integrand Id(x,y;ε) in Eq. (31) can

be approximated as

Î(x,y;ε)= Ŝ(ε) · e−(µfat(ε)ratiofat(x, y)+µfib(ε)ratiofib(x, y))L̂(x, y), (32)

where Ŝ(ε) is a simulated mammography source spec-

trum;18,19 µfat(ε) and µfib(ε) are the attenuation coefficients (in

cm−1) of fat and fibrous tissue, respectively; and ratiofat(x,y),

ratiofib(x,y), and L̂(x,y) are approximations of the fat tissue

ratio, fibrous tissue ratio, and tissue thickness observed in the

mammogram, respectively, computation of which is described

shortly. The simulated tumor projection is then embedded

within the original mammogram by substituting the effect

caused by the mixture of fat and fibrous tissue with tumor

tissue

IT(x,y)=

 εmax

0
Î(x,y;ε) · e(−µtum(ε)+µfat(ε)ratiofat(x, y)+µfib(ε)ratiofib(x, y))Ttum(x, y)∂ε

 εmax

0
Ŝ(ε)∂ε

, (33)

where µtum(ε) is the attenuation coefficient (in cm−1) of

tumorous tissue, either benign or carcinoma tissue, and

Ttum(x,y) is the thickness of the projected simulated tumor at

location (x,y) (in cm). The resulting hybrid intensity image

IT(x,y) was converted back to optical density values similar

to the ones presented in the original digitized mammograms

by considering the linear relationship between the log-

intensity and optical density values and inverting the particular

normalization of the scanner used to digitize the original film

mammogram.20,21

The breast thickness considered in Eq. (33) was approx-

imated by considering a secondary image IF(x,y), which
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approximately describes the intensity recorded by a breast

of similar thickness characteristics to the one presented, but

composed entirely of fat tissue. That is, in theory

IF(x,y)=

 εmax

0
S(ε) · e−µfat(ε)L(x, y)∂ε
 εmax

0
S(ε)∂ε

. (34)

We generated the image IF(x,y) by fitting a thin plate spline

(TPS)22 to a selection of candidate locations in I(x,y) where

fat tissue was the main breast component. These candidate

locations were chosen by selecting the pixels in I(x,y) that

are monotonically decreasing from nipple to chest wall. The

rationale behind this is that, assuming that breast tissue

thickness is not expected to decrease from nipple to chest wall,

higher intensity values in this direction should be observed

where fat tissue percentage is the most predominant, since fat

is the least-absorbing tissue type in breast. We can observe

an example of the resulting fat-tissue approximation image

in Fig. 8(b), where the logarithm of the intensity IF(x,y) is

shown (showing the image in terms of absorption), for easier

comparison to the original mammogram shown in Fig. 8(a).

Following Eq. (34), we can find the approximated thickness

map of the breast sample using a constrained least-squares

minimization process23

L̂(x,y)= arg min
L(x, y)


*,IF(x,y)−

 εmax

0
Ŝ(ε)e−µfat(ε)L(x, y)∂ε
 εmax

0
Ŝ(ε)∂ε

+-
2 ,

L(x,y) ≥ 0. (35)

Once the approximated sample thickness L̂(x,y) is com-

puted, we can obtain the approximate fibrous and fat ratios in

Eq. (32) using a similar constrained least-squares process

ratiofib(x,y)= arg min
ratiofib(x, y)


*,I(x,y)−

 εmax

0
Ŝ(ε)e−(µfat(ε)(1−ratiofib(x, y))+µfib(ε)ratiofib(x, y))L̂(x, y)∂ε

 εmax

0
Ŝ(ε)∂ε

+-
2 0 ≤ ratiofib(x,y) ≤ 1, (36)

ratiofat(x,y)= 1− ratiofib(x,y). (37)

A simulated mass can be embedded at any location within

any case so long as it can be accommodated within the

thickness and spatial extent of the breast at that location.

Figure 8(c) shows an example of the visually realistic results

obtained by the proposed embedding procedure. Figure 9

shows mammograms for two patients each having one

breast containing a real mass and one normal breast. We

embedded a simulated mass into the image of the normal

breast having similar visual characteristics (general shape,

degree of spiculation, size, and location) to that of the actual

mass in the opposite breast. In Fig. 9, the normal breast (left),

simulated mass in that breast (center), and actual mass in the

other breast (right) are shown.

2.D. System performance characteristics and variable
values

The modeling software was written in  and exe-

cuted using a Windows desktop computer (32-bit version

Microsoft Windows Vista; 2 GHz dual-core processor with

F. 8. Process of embedding a simulated mass in a real mammogram: (a) Original mammogram; (b) Fat tissue approximation obtained using thin-plate splines:

the gray values correspond to absorption produced by a fixed attenuation coefficient of fat tissue; (c) Hybrid image with real mammogram containing a simulated

tumor; and (d) Simulated tumor projection.
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F. 9. Examples showing the results of embedding the simulated mass phantoms into digitized mammograms. Each of these patients had one normal breast

and one breast containing a true mass. The locations of the simulated and actual masses are indicated by white arrows. (a)–(f) The normal breast is shown in

the left image; the center image shows the normal image with a simulated mass embedded; the right image shows the opposite breast image containing a real

mass. (g) and (h) Detail in the mammograms where the simulated (left) and normal (right) masses were embedded for spiculated and nonspiculated examples,

respectively.

4 GB RAM). The most challenging task given the limitations

of processing speed and memory was the computation of

a simulated mass projection and volume. Generating the

volume and projection of the simulated tumors directly from

a rasterized version proved to be computationally intensive;

therefore, we developed a more-efficient analytical solution

(described in the Appendix). The computational time and

memory requirements for the generation of the simulated
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T I. Computation times and memory requirements for algorithm steps.

Computation

time (min) Memory

Central mass surface modeling ∼3 ∼2 MB

Spiculation surface modeling ∼1 ∼2 MB

Convert mass phantom to volume image and

form projection image

∼1 ∼1.5 MB (projection), ∼320 MB (volume)

Convert spiculation phantom to volume image

and form projection image

∼5 ∼1.5 MB (projection), ∼320 MB (volume)

Complete phantom file ∼2 MB

mass structures, volume, and projection are summarized in

Table I. In our experiments, the simulated masses were defined

within a 1000×1000×1000 voxelized volume in which each

voxel had a size of 50 µm in each direction.

The tumor simulation described by this model is random-

ized, following a series of user-defined variables describing

the angular undulation of central mass, shape, amount, and

size of the included modifications, number and density of

emerging spiculation structures, and their growth properties.

The parameters were chosen so as to match the appearance of

breast tumors found in clinical radiology, and were systemati-

cally changed in order to produce a lesion that visually looked

to be a mass with distinct features (e.g., lobulated margin

versus circumscribed margin). This was accomplished using

knowledge from published work,9,24–28 and guidance from two

of the authors (R.A.S. and R.M.N.), both of whom are experts

in breast radiology. The process of adjusting the parameters

to produce visually realistic simulated masses was conducted

independently from creation of the set of hybrid mammo-

grams in the evaluation, so as to avoid bias. The resulting

parameters of the cases included in the evaluation of our

method are summarized in Table II. The radius and length

factors included in the table indicate a factor of the mean

central mass radial distance value α, selected for the tumor

generation in the GRS model [Eq. (1)].

2.E. Evaluation of hybrid images

Figure 10 illustrates the overall design of the experiments

we conducted to validate the realism of our phantom model. A

set of clinical digitized mammograms was downloaded from

the DDSM,20,21 which contains 2620 cases in which breast

masses are described by shape, margin (including spiculated

and nonspiculated), and proven pathology is provided. We

identified 83 cases in which the patient exhibited one normal

breast and one breast with a spiculated or nonspiculated mass,

visible both in the craniocaudal (CC) and the mediolateral-

oblique (MLO) mammogram views. For each of these clinical

T II. Variable values in the generation of the breast tumor phantoms evaluated.

Nonspiculated masses Spiculated masses

Parameter

Mean

value

Standard

deviation

Mean

value

Standard

deviation

GRS variance
�
σ2

�
0.31 0.04 0.32 0.03

Number of low-frequency modifications in GRS 611.2 70.6 688.7 61.3

Shape of low-frequency modifications in GRS

(0 = spikes, 1 = bumps)

0.36 0.48 0.59 0.20

Low-frequency modification radius factor in GRS

(rGauss/α)
�
rspike/α

� 0.229 0.073 0.216 0.046

Low-frequency modification length factor in GRS

(lGauss/α)
�
lspike/α

� 0.113 0.021 0.109 0.012

Variance for fuzzy surface in GRS (α) 0.015 0 0.015 0

Number of emerging initial segments (L0) 0 0 1358 365.2

Maximum number segments in neighborhood�
Mgroup

� — — 8.98 1.89

Emerging segments radius factor
�
r0
i
/α

�
— — 0.0240 0.0053

Segment radius decrease factor (decreaser) — — 0.89 0.31

Emerging segments length factor
�
l0
i
/α

�
— — 0.173 0.018

Segment length decrease factor (decreasel) — — 0.91 0.30

Continuing branch probability — — 0.717 0.057

Symmetric bifurcation probability — — 0.142 0.028

Asymmetric bifurcation probability — — 0.142 0.028

Branching angle variance (γbif) (in degrees) — — 6.55 0.62
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F. 10. Overall outline of the validation study, based on the generation of image pairs, with one image exhibiting a real mass and the other containing a matched,

simulated mass.

cases, we selected a simulated mass with similar size and

spiculation level to the mass that was actually present in

the abnormal breast and embedded it in a similar breast

location (distribution of parameters shown in Table II). The

simulated masses were generated independently from the

case and location within the breast in which they were later

embedded. We embedded the simulated masses so as to

resemble the real breast masses in terms of size, degree

of spiculation, and location. (In concept, a simulated mass

generated by the proposed approach can be embedded at

any location in any case, provided that it fits within the

spatial extent and thickness of the breast at that location.)

The parameter value distribution was determined, and a set

of simulations was generated, in a process separate from

that used in the evaluation process, in consultation with

two experts in mammography (authors R.A.S. and R.M.N.).

We then digitally embedded each simulated mass within

the MLO or CC view (chosen randomly for each pair) of

the healthy breast using the proposed embedding scheme.

By this approach, we created 83 corresponding left- and

right-breast image pairs (a total of 166 images), in which

the image of one breast depicted an actual mass, while the

opposite breast image contained a similar simulated mass,

both in the same view (either CC or MLO). Of the 83

cases on which our experiments were based, 31 exhibited

benign masses that were classified as nonspiculated in the

DDSM database; the remaining 52 cases exhibited malignant

tumors that were classified as spiculated. Figure 11 presents

side-by-side example comparisons of corresponding left- and

right-breast image pairs of real and simulated nonspiculated

F. 11. Corresponding pairs of (a) real and (b) simulated masses for a nonspiculated tumor (left pair) and (c) real and (d) simulated masses for a spiculated

tumor (right pair). The tumor locations are indicated by arrows.
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and spiculated tumors in digitized mammograms. Additional

examples are shown in Fig. 12, where 3D representations of

the simulated masses are displayed alongside corresponding

regions of interest of the simulations embedded in real breast

tissue and their corresponding opposite breast containing a

real mass.

2.E.1. Validation of hybrid phantom images for CAD
analysis

To validate the proposed hybrid phantom images in the

context of CAD, we applied a well-established set of quan-

titative CAD features29–31 that are widely used to charac-

terize lesions in digital mammography, the purpose being

to observe whether our simulated masses yield the same

results as their matched real masses when analyzed using

CAD techniques. We only briefly describe the CAD proce-

dures, as the details of these methods can be found in prior

publications.

Prior to feature extraction, we segmented each mass in a

hybrid image using the region-growing algorithm proposed

in Ref. 29. Figure 13 shows an example segmentation of

one of our hybrid images, indicating the grown region of

the tumor, the tumor margin, an encompassing region, and

the surrounding periphery.30 The surrounding periphery is

obtained by a morphological opening applied to the grown

F. 12. Examples of simulated tumors with matched simulated and real mammogram regions. The first three columns show examples of nonspiculated masses;

the last three columns show spiculated masses. Each row shows (from left to right) a 3D representation of the simulated tumor, a region of interest in which the

simulated tumor has been embedded, and a corresponding region of interest from the opposite breast containing a real tumor with similar characteristics.
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F. 13. Region of interest in hybrid mammogram, indicating various findings as described in Ref. 30.

region.30 The encompassing region and surrounding periph-

ery simply extend the region window by 20 pixels along the

left, right, top, and bottom edges of the mass.

Five CAD features are next extracted from the detected

regions by the methods described in Refs. 29–31. Two of these

features—sharpness and full width at half maximum (FWHM)

angular deviation (related to spiculation level)—characterize

the tumor margin and are important to distinguishing

malignant tumors from benign ones; the other three features—

average gray level, contrast, and texture—characterize the

density of the mass. For more details about the extracted

CAD features, we refer the reader to Refs. 29–31.

2.E.2. Reader study design

Our study was based on 83 pairs of corresponding left- and

right-breast images, in which each pair consisted of a clinical

digitized mammogram of an abnormal breast with a real mass,

and a hybrid image (real mammogram with simulated mass)

of the opposite breast in the same patient. Thus, the total data

set consisted of 166 mammograms. All 166 images were rated

independently and sequentially by five expert radiologists.

Images containing real or simulated tumors were shown in

random order. Each reader assigned a score for each image

expressing his or her confidence that the mass shown was real

or simulated. Scoring was done on the following seven-point

scale: definitely real (0), probably real (1), possibly real (2),

unsure (3), possibly simulated (4), probably simulated (5), or

definitely simulated (6).

Customized software was developed to conduct the reader

study. The software displays the images sequentially in

random order to avoid ordering effects, and indicates the

position of the tumor to be evaluated in each image. The

observers were able to control the pan, zoom, white balance,
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T III. CAD feature values [mean, (std)] for the mammograms in each category (nonspiculated, spiculated) and p-values from a t-test of the difference in

feature values between real and hybrid mammograms.

Nonspiculated Spiculated

CAD feature Real Hybrid p-values Real Hybrid p-values

Sharpness 44.76 (10.5) × 103 43.82 (9.59) × 103 0.693 49.00 (10.16) × 103 44.83 (10.0) × 103 0.084

FWHM 121.58 (36.89) 119.12 (28.76) 0.754 174.84 (28.09) 164.67 (31.97) 0.156

Average gray level 42.88 (5.26) × 103 44.78 (4.90) × 103 0.118 47.72 (4.45) × 103 47.47 (4.12) × 103 0.807

Contrast 8.65 (4.68) × 103 7.63 (3.90) × 103 0.318 10.60 (5.17) × 103 8.88 (4.08) × 103 0.121

Texture 18.65 (5.17) × 103 17.78 (4.44) × 103 0.444 19.62 (4.09) × 103 18.00 (4.08) × 103 0.097

and contrast of each image individually. The readers were

entirely free to choose the reading pace; however, after

an image was scored, the next image was displayed and

the readers were not permitted to revisit previous images.

The images were displayed on a 5-megapixel mammographic

monitor (Totoku ME551i) with 11-bit grayscale, calibrated by

the vendor to the DICOM grayscale standard display function.

The ratings were saved for each reader independently, and

later processed in a multiple-reader multiple-case (MRMC)

analysis.32–38

3. RESULTS

3.A. Results of CAD analysis of hybrid images

3.A.1. CAD features

Table III summarizes the mean and std values for each of

the features extracted from the real and hybrid mammograms,

for both nonspiculated and spiculated tumors. Table III also

contains the resulting p-values from a t-test comparing feature

values from real and hybrid mammograms for each of the

five CAD features. Results for nonspiculated and spiculated

tumors were computed independently. The result shown in

Table II is that none of the comparisons showed a statistically

significant difference between results from the real and hybrid

images at the level p < 0.05, i.e., p exceeded 0.05 in every

comparison, in many cases by a large margin.

3.A.2. Discrimination power of features

We further explored the generated hybrid images in the

context of CAD by determining the extent to which the CAD

methods behave similarly on the hybrid images and real

mammograms. We accomplished this by applying univariate

classifiers to discriminate nonspiculated tumors from spic-

ulated ones, following the approach described in Ref. 30,

using either real or hybrid images. Classifier performance

was then evaluated using ROC curves, with AUC being used

to summarize the performance. In our data set, all the real

tumors observed in the mammograms that were classified

as nonspiculated were found to be benign at histology, and

those classified as spiculated were found to be malignant (his-

tology data acquired from the DDSM database20,21). So in this

case, the task for discerning tumors according to their spicu-

lation level was equivalent to discerning benign tumors from

malignant ones. The resulting measured mean and 95% confi-

dence interval (CI) of the AUCs are summarized in Table IV,

together with the results from a similar analysis obtained from

previously published work on real breast tumors,30 demon-

strating, in general, good agreement between the real and

simulated tumors and the published data. The AUCs for our

simulated tumors were all slightly lower than that measured

for our real tumors, but within the margin of error.

We compared the performance in terms of AUC obtained

from the extracted features using ANOVA analysis, employing

the - software,32–38 testing the hypothesis that each

feature’s performance in distinguishing between nonspicu-

lated and spiculated masses is the same for the real masses

as for the masses simulated using the proposed model. The

mean differences, 95% CI, and p-values obtained by using

ANOVA analysis to test this similarity are summarized in

Table V. The performance differences were very small and

all p-values observed were well above 0.05, showing that no

significant differences in performance between the real and

simulated masses for the considered extracted features were

observed.

T IV. AUC (mean ± 95% CI) of the computer-extracted features in distinguishing between benign and

malignant tumors for the real tumor set, the simulated tumor set, and previously published data (Ref. 30).

Extracted feature

AUC for real

tumors

AUC for simulated

tumors

Published AUC from real tumors

(Ref. 30)

Sharpness 0.62 ± 0.14 0.54 ± 0.14 0.56

FWHM 0.88 ± 0.08 0.86 ± 0.09 0.88

Average gray level 0.76 ± 0.11 0.66 ± 0.12 0.65

Contrast 0.63 ± 0.13 0.61 ± 0.14 0.59

Texture 0.59 ± 0.12 0.55 ± 0.11 0.54
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T V. ANOVA results of the AUC differences among real and simulated masses for each extracted feature.

Real vs simulated tumor AUC

differences

ANOVA test Extracted feature Mean (95% CI) p-value

Real vs simulated tumors performance

differentiating between nonspiculated

and spiculated

Sharpness 0.081 (−0.075, 0.237) 0.307

FWHM 0.023 (−0.087, 0.135) 0.674

Average gray level 0.098 (−0.017, 0.214) 0.1

Contrast 0.020 (−0.09, 0.13) 0.722

Texture 0.035 (−0.08, 0.156) 0.561

3.B. Reader study to evaluate visual realism

Figure 14 shows the distribution of realism scores assigned

by each radiologist (on the seven-point scale), displaying

their means and 95% confidence intervals. Table VI provides

a statistical comparison of the distribution of these ratings

for each radiologist by the Mann–Whitney U-test, testing

against the null hypothesis that the scores are drawn from

equivalent distributions, similar to comparisons in previous

studies where breast tumor simulations were proposed.2,3

The collected data were also used to construct ROC curves

for the task of distinguishing real from simulated tumors

for each radiologist individually and in a MRMC analysis

using the - software available from the University

of Chicago.32–38 The resulting AUC values in the MRMC

scenario analysis, as well as the independent AUC values

for each radiologist, are reported in Table VI, showing that

AUC= 0.5 was in the 95% CI for each reader and mass type

(nonspiculated and spiculated).

4. DISCUSSION

We have presented a method to generate a collection of

random simulated 3D breast masses, with a user-defined

spiculation degree. We have also described a method for

embedding the simulated masses within real digitized

mammograms, yielding hybrid images for which the ground

truth about the tumor location, extent, and characteristics is

known. We evaluated the realism of the simulated masses by

measuring the extent to which CAD features extracted from

our proposed hybrid images are similar to those extracted from

digitized mammograms containing real masses, both in terms

of the features’ values as well as their discriminating power

(as judged by AUC). We also conducted an expert reader

study to evaluate visual realism of the simulated hybrid

images, in which we measured the readers’ ability to

distinguish real and hybrid images, and found that they were

not able to achieve significantly better than random guessing.

The values reported in Table III show that CAD features

extracted from the hybrid mammograms resulted in a distri-

bution similar to that obtained from the real mammograms.

We found no statistically significant difference for any of

the features (at level p < 0.05) between the real and hybrid

images. Indeed, many of the comparisons yielded very high p-

values, suggesting good correspondence between the features

computed from the real and hybrid mammograms. We further

evaluated the discrimination power of each feature to discern

between nonspiculated and spiculated masses, both for the

real and hybrid mammograms, yielding the results reported

in Table IV. The features were found to perform similarly on

the real and hybrid images, and yielded discrimination power

similar to that reported for these specific features in an inde-

pendent study (Ref. 30). Although differences can be observed

in the mean performance in real and hybrid images, further

investigation of these differences by ANOVA analysis yielded

no evidence of statistically significant differences (Table V).

We also evaluated realism by measuring the ability of five

experienced radiologist readers to distinguish the real masses

from the simulated ones. The realism scores assigned by the

readers (Fig. 14) showed similar distributions for both real

and simulated masses, all yielding values around 2–3 on the

0-to-6 realism scale (i.e., the readers rated all masses, whether

real or simulated, as “unsure” or “possibly simulated”). This

fact, together with comments received from the observers

about the difficulty of the discrimination task, suggests that

the hybrid phantoms are indeed realistic.

F. 14. Rating distribution for each radiologist in the reader study. Error bars indicate 95% confidence intervals.
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T VI. U-test comparison of ratings between real and simulated tumors for each observer, testing for the

hypothesis that real and simulated tumors have the same score distributions. AUC values are shown for each

individual reader and for a MRMC analysis.

U-test p values Mean AUC (95% CI)

Reader Years of experience Nonspiculated Spiculated Nonspiculated Spiculated

Reader 1 2 0.3 0.861 0.57 (0.42, 0.69) 0.49 (0.38, 0.60)

Reader 2 8 0.752 0.006 0.52 (0.37, 0.67) 0.69 (0.58, 0.78)

Reader 3 4 0.670 0.164 0.47 (0.32, 0.62) 0.57 (0.47, 0.68)

Reader 4 4 0.709 0.049 0.47 (0.34, 0.63) 0.61 (0.50, 0.71)

Reader 5 39 0.009 0.136 0.68 (0.55, 0.78) 0.58 (0.47, 0.68)

MRMC — — — 0.54 (0.44, 0.65) 0.58 (0.50, 0.68)

We quantitatively analyzed the overall performance of the

readers given the collected scores for the task of discerning

real and simulated masses in a MRMC scenario, which

resulted in a mean AUC of 0.544, with a 95% CI of (0.44,

0.65) for nonspiculated tumors; and a mean AUC of 0.588,

with a 95% confidence interval of (0.50, 0.68) for spiculated

tumors, as indicated in Table VI. The independent AUC values

for each observer are also indicated in the same table. The

results suggest that the readers were not able to perform

significantly better than random guessing in distinguishing

between the real and simulated tumors. These AUCs are

lower than previously published AUCs (Refs. 2–4) and close

to the ideal 0.5. The large overlap of confidence intervals

may be also due to the relatively small number of readers and

reader variability and statistical significance might have been

established if a greater number of simulations or readers were

available. There was also some reader variability, which raises

the question of whether less-experienced readers may behave

differently from more-experienced ones. Reader 2 presented

the highest accuracy in distinguishing real from simulated

tumors in the spiculated category, while showing low accuracy

in the nonspiculated category. Surprisingly, Reader 5, who has

substantially more experience than the others, presented the

highest accuracy in the nonspiculated category, but moderate

accuracy in the spiculated category. One of the previously

published methods with highest accuracy was described in

Ref. 5, with mean AUC of 0.55 (but without a distinction

between masses according to their margin spiculation level).

As their computational embedding approach was based on

previous work described by our group,1,7 and which is

expanded in this paper, we hypothesize that the proposed

embedding process may play an important role in the realistic

appearance of the simulations.

The method for generating an array of random simulations

presented here depends on a large set of parameters that were

user-defined and describe the shape of the simulated masses.

The goal of the project was to develop a method that is capable

of simulating the wide variation in appearance of breast masses

on mammograms. We were not trying to develop a model

from first principles, so we took a more pragmatic approach.

With our goal in mind, we varied the parameters to change

the appearance of the mass to get the desired appearance.

The exact values of the parameters were less important than

the appearance of the lesion and how the parameters can be

changed to change the appearance of the lesion. The parameter

distribution employed in the evaluation of our method was

determined by an iterative process guided by authors R.A.S.

and R.M.N. Several simulation sets were generated from an

array of parameter values, and these were later adjusted after

discussion of the appearance of the generated simulations prior

to the embedding process, followed by the generation of a new

set and repeating the process until the authors were satisfied

with the realism of the results. As the parameters reported in

Table II correspond to those in our evaluation study, we suggest

that they can be used as a guideline to generate successful

simulations of breast masses. However, the sensitivity of each

of these parameters for the generation of visually realistic

results is not presented here and remains a matter to be studied

in future work.

It is also important to also note that our methodology of

embedding simulated masses projections onto real digitized

mammograms does not explicitly take into account film

blurring or scatter;8 however, the manner in which we used

the real background appears to have preserved sufficient blur

and noise effects so as to obtain very realistic phantoms,

as demonstrated from the CAD and human reader studies.

But, we acknowledge that further considerations of sharpness

and noise effect may improve the results of the embedding

process, which will be taken up in future work.

Owing to the availability and ease of use of the DDSM

database, we based these first experiments on that source

of images. However, we anticipate that our 3D modeling

approach can be adapted to other data sets and imaging

modalities, which we will study in future research. Further

validation studies would be required to prove the effectiveness

of our method in these new settings.

The benefit of the proposed 3D mass phantom is that it

allows a large number of breast masses to be simulated with

known characteristics, extent, and location. We anticipate

that the proposed method could have useful application in

training of radiologists and in the evaluation and optimization

of imaging systems and algorithms.

5. CONCLUSIONS

In this work, we have presented a realistic, 3D compu-

tational breast mass simulation model exhibiting the fine
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structures and details observed in mammographic images and

we have described a method of embedding the simulated

masses within real clinical digitized mammograms. The

model’s versatility allows the creation of a large number

of different tumor cases, both benign and malignant, with

borders ranging from smooth to highly spiculated. We have

demonstrated that computer-aided diagnosis (CA) algorithms

yield very similar results when applied to our hybrid

mammograms and real ones and we have found that expert

readers did not perform significantly better than random

guessing in discriminating our hybrid mammograms from

real ones. This tool may be helpful in detectability studies for

modern breast imaging techniques where a large database of

tumors of different sizes and characteristics with knowledge

of ground truth of the mass replicated is a requirement. The

method may also be useful for training purposes. We plan

to make mass model data available via a web site; in the

meantime, interested parties can obtain data examples by

contacting the corresponding author.
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APPENDIX: ANALYTICAL SOLUTION FOR VOXEL
POPULATION WITH SPICULE STRUCTURES

The following appendix derives an analytic solution for

the population of a voxelized volume with simulated spicules,

defined as tubular structures described by a set of segments,

as explained earlier in the paper. Considering a position

p =
�
xp,yp

�
in the projection plane, we computed the two

intersection points of a line perpendicular to such plane and

passing through p with each defined segment in the structure

independently. The process was repeated for a discrete

grid of locations in the projection plane defined within the

limits of each particular segment considered. The voxelized

volume was produced by populating the voxels between the

intersection points for each location in the defined grid. The

correspondence of voxelized volume and projected image

follows the assumption that the rays are perpendicular to the

projection plane, which is not necessarily true for imaging

modalities such as tomosynthesis or computed tomography,

but was satisfactory for the simulations presented here.

For situations in which this assumption does not hold, the

simulated image can be created by projecting a voxelized

volume of the simulated tumor using a forward imaging

model appropriate to the given imaging modality.

As defined in Sec. 2.B, each segment is described as a

conical frustum [defined by parameters b = (ps,pe,rini,rfin)],

capped by a hemisphere (see Fig. 15). (Note that we will

suppress the subscript n defining the segment number to

simplify the notation.)

Finding the possible intersection of a line at p perpendicular

to the projection plane with a sphere is trivial. We define

a variable indicating whether there is intersection with

the sphere for the point p: Intsp(p) and the top and

bottom intersecting points with the sphere are indicated

by
�
xxspt(p),yxspt(p),zxspt(p)

�
and

�
xxspb(p),yxspb(p),zxspb(p)

�
,

respectively. The intersection of a line perpendicular to

the projection plane and passing through location p with

the conical frustum is computed for those locations inside

the area projected by the frustum. The area projected

by this tubular structure consists of two ellipses (one

produced by its base and one by its top) joined together

with the two lines tangent to both of them, as we can

observe in Fig. 15. This tubular object is defined by its

starting point ps= (xs,ys,zs), its ending point pe= (xe,ye,ze),

its initial radius rini, and its final radius rfin. We find

the projection of the starting and ending points in the

projected plane at (xs,ys,0) and (xe,ye,0), respectively.

We also compute the direction of the axis of the tubular

object: dt= pe−ps=
�
dt x,dt y,dt z

�
. Then, we can find a vector

perpendicular to the axis of the cylinder and parallel to the

projection plane: nt = (dt y,−dt x,0). A vector contained in the

plane formed the cylinder base (or top) and perpendicular to

the vector parallel to the projection plane can be found by the

cross product of those two. This vector describes the direction

to follow in order to find the highest and lowest points for

the base (or top) of the frustum, which will be needed when

computing the projection

vt=
dt× nt

∥dt× nt∥
= (vt x,vt y,vt z), (A1)

pbh= (xbh,ybh,zbh)=


ps+rini

�
vt x,vt y,vt z

�
if vt z ≥ 0

ps+rini

�
vt x,vt y,−vt z

�
if vt z < 0

, (A2)

pbl= (xbl,ybl,zbl)=


ps+rini

�
vt x,vt y,−vt z

�
if vt z ≥ 0

ps+rini

�
vt x,vt y,vt z

�
if vt z < 0

, (A3)

pth= (xth,yth,zth)=


pe+rfin

�
vt x,vt y,vt z

�
if vt z ≥ 0

pe+rfin

�
vt x,vt y,−vt z

�
if vt z < 0

, (A4)

ptl= (xt l,yt l,zt l)=


pe+rfin

�
vt x,vt y,−vt z

�
if vt z ≥ 0

pe+rfin

�
vt x,vt y,vt z

�
if vt z < 0

, (A5)

where pbh, pbl and pth, ptl are the highest and lowest points

in the base of the cylinder and the highest and lowest points

in the top of the cylinder, respectively. We define the top

axis of the cylinder at= (pth−pbh)=
�
at x,at y,at z

�
(the highest

line going along the cylinder length) and the bottom axis

ab = (ptl−pbl) =
�
abx,aby,abz

�
(the lowest line going along

the cylinder length). We can then specify the boundaries of

the ellipses projected from the base and top of the frustum

(Fig. 15). The ellipse projected by its base has a major

axis equal to the initial radius abase = rini, and a minor

axis equal to bbase =

 
(xbh− xbl)

2
+ (ybh− ybl)

2
 

2. In the

same way, the ellipse projected by its top has a major axis

equal to the final radius atop = rfin, and a minor axis equal

to btop =

 
(xth− xtl)

2
+ (yth− ytl)

2
 

2. The point in the line

formed by the projection of the frustum axis in the projection
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F. 15. Example representation of an individual segment and its projection.

plane which is the closest to p, which we will call pline, can

be found,

u=

�
xp− xs,yp− ys

�
·
�
dt x,dt y

�
�

dtx
2+dty

2
� , (A6)

pline= (xs,ys)+u
�
dt x,dt y

�
. (A7)

We should then expect the segment defined between p and

pline to be perpendicular to the projection of the cylinder axis.

Computing the distance D between those two points let us set

up the rules to decide whether p is inside the area projected by

the frustum, distinguishing between the two ellipses formed

from its base and top or in the rest of the area. This distinction

is important, since it affects the way the frustum surface

intersects with a line perpendicular to the projection plane

D =
�
pline−p

�
. (A8)

As we can observe in Fig. 15, the intersection of the

frustum with a plane containing p (displayed in red in the

figure) perpendicular to the projection plane and perpendicu-

lar to the projection of the frustum axis, always forms a ellipse

as long as it is not intersecting with the frustum base or top,

following the geometric definition of ellipse in conic theory.

We can compute the intersection of such plane with the top

and bottom axis of the cylinder, defined as at and ab

ut =

�
xp− xbh,yp− ybh

��
at x,at y

�
�

at x
2+at y

2
� , (A9)

pt−line = (xbh,ybh,zbh)+ut

�
at x,at y,at z

�
= (xt−line,yt−line,zt−line),

(A10)

ub =

�
xp− xbl,yp− ybl

��
abx,aby

�
�

abx
2+aby

2
� , (A11)

pb−line = (xbl,ybl,zbl)+ub

�
abx,aby,abz

�
= (xb−line,yb−line,zb−line),

(A12)

where pt−line and pb−line are the intersection points of the

defined top and bottom axis and the plane containing p

perpendicular to the projection plane and projection of the

axis. This way, the Z coordinates of those two points, zt−line

and zb−line, define the major axis acyl of the intersecting ellipse

between plane and frustum. The middle point between the

top and bottom intersecting points specifies the center of such

ellipse, pcenter
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acyl= zt−line− zb−line, (A13)

pcenter=
(pt−line+pb−line)

2
= (xcenter,ycenter,zcenter). (A14)

In order to find the minor axis of the ellipse, we need to find

the corresponding frustum radius defined at that middle point,

which we call rrad. This radius is determined by the point in

the center axis of the frustum which is the closest to pcenter in

a similar way as described before,

urad=
(pcenter−ps) ·dt

∥dt∥
, (A15)

prad= ps+urad dt= (xrad,yrad,zrad), (A16)

rrad= ((rfin ·urad)+rini(1−urad)). (A17)

Considering that the base of the frustum is spherical, we

can then find the value of the minor axis of the intersecting

ellipse, bcyl

bcyl=



(

rrad
2−

�
pcenter−prad

�2
)

. (A18)

Then, the area covered by the frustum in the projection

plane can be determined

Inteb(p)=


1 if

�����u


dt x
2+dt y

2
����� ≤ bbase


and


|u|



dt x
2+dt y

2

bbase
2

+
D2

abase
2
≤ 1


0 otherwise

(A19)

Intet(p)=


1 if

�����(u−1)



dt x
2+dt y

2
����� ≤ btop


and


(u−1)



dt x
2+dt y

2

btop
2

+
D2

atop
2
≤ 1


0 otherwise

(A20)

Intec (p)=


1 if [0 ≤ u ≤ 1] &
�
D ≤ bcyl

�
and

�
Inteb

�
xp,yp

�
= 0

�
and

�
Intet

�
xp,yp

�
= 0

�
,

0 otherwise
(A21)

where Inteb(p), Intet(p), and Intec(p) indicate if the point

(p) is inside (1) or outside (0) of the projected area of the

base, top, and rest of the conical frustum in the projection

plane, respectively, as shown in Fig. 15, with the boundaries

indicated in yellow. The top and bottom intersecting points,�
xxcylt(p),yxcylt(p),zxcylt(p)

�
and

�
xxcylb(p),yxcylb(p),zxcylb(p)

�
,

respectively, are then found following the definition of the

ellipse formed with the intersection of the frustum and plane:�
xxcylt(p),yxcylt(p),zxcylt(p)

�

=
*.,xp,yp,zcenter+acyl





*,1−
D2

bcyl
2
+-
+/-, (A22)

�
xxcylb(p),yxcylb(p),zxcylb(p)

�

=
*.,xp,yp,zcenter−acyl





*,1−
D2

bcyl
2
+-
+/-. (A23)
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