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Abstract: Cardiovascular disease is the leading cause of death globally. To provide continuous
monitoring of blood pressure (BP), a parameter which has shown to improve health outcomes when
monitored closely, many groups are trying to measure blood pressure via noninvasive photoplethys-
mography (PPG). However, the PPG waveform is subject to variation as a function of patient-specific
and device factors and thus a platform to enable the evaluation of these factors on the PPG waveform
and subsequent hemodynamic parameter prediction would enable device development. Here, we
present a computational workflow that combines Monte Carlo modeling (MC), gaussian combination,
and additive noise to create synthetic dataset of volar fingertip PPG waveforms representative of
a diverse cohort. First, MC is used to determine PPG amplitude across age, skin tone, and device
wavelength. Then, gaussian combination generates accurate PPG waveforms, and signal processing
enables data filtration and feature extraction. We improve the limitations of current synthetic PPG
frameworks by enabling inclusion of physiological and anatomical effects from body site, skin tone,
and age. We then show how the datasets can be used to examine effects of device characteristics such
as wavelength, analog to digital converter specifications, filtering method, and feature extraction.
Lastly, we demonstrate the use of this framework to show the insensitivity of a support vector
machine predictive algorithm compared to a neural network and bagged trees algorithm.

Keywords: photoplethysmography; remote monitoring; computational modeling and simulation;
medical device design

1. Introduction

Cardiovascular disease (CVD) is the leading cause of death globally, with an estimated
17.9 million people dying from CVD in 2019 [1]. Of these deaths nearly 85% were due
to heart attack or stroke [1]. Nearly half of all adults in the United States (116 million
or 47%) have hypertension, commonly referred to as high blood pressure [2]. Studies
show that every 10 mmHg drop in systolic BP reduces the probability of heart attack and
stroke by ~50% for all age groups [3]. Lowering systolic BP from 140 to 120 mmHg has
also shown to reduce the risk of death by ~27% [4]. Thus, monitoring blood pressure to
identify and subsequently address hypertension is a common and effective way to reduce
risk of developing CVD [5]. Monitoring these parameters noninvasively and continuously
could provide additional insight into a patient’s blood pressure over time to enable earlier
detection and improved management of hypertension [6–8]. Noninvasive and continuous
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methods to monitor blood pressure are thus of great interest to the healthcare community
to provide care to individuals with CVD or those at-risk of developing CVD.

Photoplethysmography (PPG) is a non-invasive optical technique that has been ex-
tensively studied for its potential to non-invasively monitor blood pressure [9,10]. By
illuminating the skin and recording the light that reaches nearby photodetectors, the PPG
waveform resulting from diffusely reflected photons that interact with blood and tissue are
collected. The PPG waveform has a large “quasi-DC” component from static absorption
and scattering from tissue and blood, as well as a much smaller “AC” component that
is of great interest because it correlates to the pulsatile local blood volume dynamics of
microvasculature and/or macrovasculature—depending on the device wavelength and
target anatomy [11].

The PPG waveform is most often collected with a sampling frequency between
~120–1000 Hz, which enables Pulse Wave Analysis (PWA) of the AC component [12,13].
Through PWA, the PPG waveform is processed through feature extraction to derive the
values of specific characteristics of the waveform. Some PPG waveform features commonly
studied are listed in Table 1, and an example waveform with labeled systolic peak, dicrotic
notch, and pulse onset is shown in Figure 1. These features are studied as inputs to models
that estimate cardiovascular parameters such as blood pressure [14]. However, the PPG
waveform is subject to added variability and uncertainty from numerous sources. These
factors originate from patient physiology as well as environmental factors and device
designs [11]. For similar PPG-like optical absorption measurements such as SpO2, differ-
ences in measurement performance has been observed between patient skin tones [15,16].
Additionally, the changes in skin thickness and vessel compliance that accompany age also
affect the PPG waveform and signal quality [11]. Other factors such as device wavelength,
device analog-to-digital converter specifications, and filtering methodology can alter the
recorded PPG waveform and manipulate device signal quality [17,18], potentially impact-
ing if algorithms developed from one device are applicable to another. Thus, as efforts
continue to utilize PPG for hemodynamic monitoring applications, quantification of effects
of age-related changes, patient skin-tone, and device designs on PPG features can improve
robustness and generalizability. Additionally, resources that enable systematic assessment
of algorithmic performance on data that are inclusive of these factors could provide more
robust design of such devices.

Table 1. Common PPG Features.

Feature Name Definition

Pulse Rise Time Difference in time from pulse onset to systolic peak

Peak Amplitude Difference in signal amplitude between systolic peak
and onset (AC component)

“X”% Systolic Width
Difference in time between “Y” and the systolic peak,

where “Y” is the time at which “X”% of the peak
amplitude is achieved before the systolic peak [19]

“X”% Diastolic Width
Difference in time between “Y” and the systolic peak,

where “Y” is the time at which “X”% of the peak
amplitude is achieved after the systolic peak [19]

Inflection Point Area

The ratio a2/a1, where a2 is the area under the PPG
waveform from the dicrotic notch to the next onset and
a1 is the area under the PPG waveform from the onset to

the dicrotic notch [18]

Pulse Rate The number of systolic peaks observed over 60 s
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While available clinical monitoring databases such as the MIMIC-III Waveform Database
enable testing of algorithms on data from tens of thousands of patients, insufficient data
on patient characteristics such as skin tone can limit the utility to understanding specific
factors that may affect the performance of a new measurements [20,21]. Additionally,
important information on the devices used during clinical monitoring and characteristics
of those devices such as signal filter type and schematics of the light emitting diode (LED)
and photodiode (PD) may be unknown. Thus, the data available to support algorithm
development and how they can be applied to different device designs are limited. Compu-
tational modeling is a powerful tool to fill this gap as any permutation of factors can be
incorporated and explored.

Monte Carlo modeling (MC) of the optical path and statistical modeling of waveform
morphology (e.g., through Gaussian combinations) are tools that have been used to eval-
uate the effects of physiology or device parameters on raw PPG signal strength [22–24].
Chatterjee et al. have used MC for this purpose [25]. MC results from Oxygen saturation
simulations at 660 nm and 880 nm across skin tone and source/detector separation were
compared to experimentally collected data, the model was validated and the origin of the
PPG signal was explored [24–26]. Boonya-ananta et al. focused on individuals with dark
skin tone and obesity, using MC to generate a single PPG period and then quantified the
impact those features have on PPG AC/DC ratio [22].

Despite such advances, it is noteworthy that the use of MC has not yet been extended to
evaluate the downstream effects these factors have on algorithm performance or clinical ac-
tion. One reason why this is the case is because computational time prevents large windows
of data from being created. Further, MC for photon propagation is inherently limited in its
inability to represent other necessary factors such as motion artifacts that do not manifest in
simulation geometry or optical properties. Gaussian combination is a previously reported
methodology to generate PPG waveforms over a larger window of time [23]. Tang et al.
improved on this work by publishing “PPGSynth” in 2020: a toolbox that uses Gaussian
combination to generate arrhythmic PPG signals with a specified sampling frequency,
length, heart rate, and noise with an easy-to-use user interface [27]. Gaussian combination,
however, is limited by its inability to represent the effect that physiological/anatomical
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factors have on the PPG waveform. Thus, both of these techniques face limitations to
simulate PPG waveforms across populations considering different device designs.

In this work, we combine MC and Gaussian combination to create a platform to assess
the impact of device wavelength, device analog to digital converter (ADC) resolution,
patient age, and patient skin-tone against PPG feature extraction. By leveraging the ability
of MC to represent patient-specific factors and the ability of gaussian combination to
generate entire waveforms without utilizing extensive computational resources, we propose
that the combination of these two methodologies will enable creation of physiologically and
anatomically accurate waveforms to evaluate patient and device specific effects on the PPG
waveform. The main purpose of the simulation tool is to generate databases of synthetic
PPG signals with customizable parameters that represent a diverse cohort. This will enable
end users who are currently developing blood pressure predictive algorithms to use this
tool as a cost-effective and accessible methodology to test the robustness of algorithms to
these factors. Additionally, as an example test case of this framework, synthesized data are
passed through feature extraction tools to study how the patient and device factors impact
the waveform characteristics. We then present a case example with different machine
learning models (Neural Network, Bagged Trees algorithm, Support Vector Machine)
trained to estimate blood pressure from PPG waveforms to show how such an approach
can be used to evaluate hemodynamic measurement performance changes as a function of
the aforementioned parameters.

2. Materials and Methods
2.1. Schema Overview

This workflow, conceptually illustrated in Figure 2, involves creating and processing
synthetic PPG waveforms with two primary components: the PPG signal generator and
the device algorithm simulator. Small icons indicate where a process (such as filtering)
or parameter (such as age or skin tone) is relevant. The PPG signal generator creates a
30 s window of data with a sampling frequency of 120 Hz that is representative of a PPG
derived from an individual of a specified skin tone and age and taken with a device of a
specified wavelength. The PPG signal generator has two sub-components: a Monte Carlo
(MC) model and a PPG waveform generator. The MC model estimates the AC and DC
components of a PPG signal derived from a combination of the above three factors by
simulating photon propagation through tissue, where the dimensions of the tissue and
its optical properties change as a function of the age, skin tone, and wavelength being
simulated. These AC and DC values are used as inputs into the PPG waveform generator,
which uses Gaussian combination and a generalized reduced gradient (GRG) solver to
create a waveform that is very similar to an input PPG wave shape from a template pulse.
By using Gaussian combination, the end user is able to explore any interpolated PPG
waveform morphology. PPG noise can be added to create PPG waveforms under various
conditions. Within the device algorithm simulator, these data are filtered, segmented into
30 s windows, and re-scaled to be passed through feature extraction where fiducial points
are calculated and used as inputs for blood pressure prediction algorithms. In the current
study, device filters are applied to the generated PPG waveforms.
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2.2. PPG Signal Generator
2.2.1. Monte Carlo Model

A six-layer MC model of the volar fingertip consisting of the epidermis, papillary
dermis, upper blood net dermis, reticular dermis, deep blood net dermis, and subcutaneous
fat was constructed using MCmatlab (Figure 3, isometric view) [24,28,29]. MCmatlab was
chosen due to its ability to simply manipulate geometrical and optical properties of the
models developed, as well as ease of use by someone not intimately familiar with MATLAB
or Monte Carlo. The isometric view in Figure 3 provides a graphical illustration of the
multi-layered model and a legend that names each layer based on the color used. The
geometrical and optical properties of the model were dependent on the simulated device
wavelength, patient age, and patient skin tone; and are listed in Table 2 [30–35]. A cardiac
pulse is simulated in the Monte Carlo model by completing two simulations for a given
combination of parameters: a first simulation where the optical properties are representative
of tissue at rest (“rest”), and a second simulation where the optical properties of the dermal
layer are changed to represent an increased blood volume (“pulse”). The result of the first
simulation is the DC value, and the result of the second simulation is the AC + DC.

Biorender.com
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Table 2. Model Optical and Geometric Properties.

Age (Years) Wavelength (nm)

23 34.4 44.8 55 515 660 880

Thickness (mm)/Starting Depth (mm) µa
(cm−1)

µs
(cm−1)

µa
(cm−1)

µs
(cm−1)

µa
(cm−1)

µs
(cm−1)

Epidermis 0.55/0.00 0.55/0.00 0.55/0.00 0.55/0.00
(0.03/0.10/
0.20/0.30

VFM)

1.96/6.28/
12.43/18.58 388.35 0.86/2.75/

5.44/8.13 303.03 0.33/1.06/
2.09/3.13 227.27

Papillary
Dermis

0.075/0.55 0.071/0.55 0.067/0.55 0.064/0.55
Rest 1.2166

389.99
0.5249

208.65
0.2344

118.94
Pulsed 1.2202 0.5250 0.2346

Upper Blood
Net Dermis

0.04/0.63 0.038/0.62 0.036/0.62 0.033/0.61
Rest 1.5328

389.99
0.5398

208.65
0.2546

118.94
Pulsed 1.5593 0.5410 0.2558

Reticular
Dermis

0.75/0.67 0.71/0.66 0.67/0.65 0.64/0.65
Rest 1.2167

389.99
0.5256

208.65
0.2456

118.94
Pulsed 1.2202 0.5257 0.2458

Deep Blood
Net Dermis

0.05/1.42 0.05/1.37 0.04/1.33 0.04/1.28
Rest 1.2896

389.99
0.5288

208.65
0.2462

118.94
Pulsed 1.2985 0.5292 0.2466

Subcutaneous
Tissue 2.00/1.47 2.00/1.42 2.00/1.37 2.00/1.33 n/a 6.0798 336.18 0.2827 249.74 0.3195 191.53

Skin layer thickness are derived from previously published literature [31–33]. First, the
epidermal thickness was found in literature to be 0.055 cm and the total dermal thickness
for a control cohort (termed “healthy”) within a systemic sclerosis study of 61-year-old
subjects (4 male, 33 female) was found to be 0.075 cm [32,33]. Then, using data collected
by Shuster et al., a line of best fit correlating age to dermal thickness allows estimation
of appropriate dermal thickness for subjects of any age. In this work, the line of best fit
yielded an annual average decrease of 0.00044 mm [31]. Of the entire dermal thickness,
the papillary dermis is 8.2%, the upper blood net dermis is 4.37%, the reticular dermis is

Biorender.com
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81.97%, and the deep blood net is 5.46% [28]. From this, the thickness of each sublayer at
the simulated ages are calculated and can be seen in Table 2.

The Monte Carlo model layers are derived from previous literature: Meglinski et al.
created a four-layer dermis for MC modeling, and modifying the blood volume fraction to
represent the systolic peak of a PPG waveform has been done previously by Fine et al. and
Chatterjee et al. [26,28,36]. Additionally, the optical properties of these layers are derived
from Jacques et al. [30]. The model presented herein differs from previous literature by being
the first to incorporate patient age by varying dermal layer thickness and vessel compliance.

Many tissue optical properties are included natively in MCmatlab (as derived from
Jacques et al.) [29,30]. The epidermal absorption coefficient is changed to account for
volume fraction melanosomes (VFM) on the volar fingertip that for this work we used the
range from 0.03 to 0.30, shown to be within physiological range for other body sites [37].
The range 0.03 to 0.30 was chosen for this work instead of the typical 0.03 to 0.43 because
fingertips have less melanin than most body sites; however, it is a limitation that there is not
a direct reference for experimental values at this site. Additionally, the default MCmatlab
subcutaneous fat absorption coefficient is multiplied by 0.10 to be respective of values
found in literature [38].

In the case of the pulse Monte Carlo model, the absorption coefficient of the dermal
sublayers is increased to represent an additional absorptive contribution by oxygenated
blood. Modifying the magnitude of increase also allows simulating changes in vessel
compliance that accompany age, as the volar fingertip is vascularized by a subungual
arcade instead of a discrete artery. The increase in blood volume is calculated based on
values from literature. The change in carotid artery diameter during the cardiac cycle across
ages was converted to a change in area [34]. Next, the change in area of the carotid artery as
a function of age was assumed to be constant for the largest artery supplying the subungual
arcade of the fingertip- the proper digital artery, which increases in diameter 6% and has a
cross sectional area change of 12% for a healthy ~20 year old subject [39]. Finally, it was
estimated that the increase in blood volume at the systolic peak is approximately 1.124×
for a 23-year-old, 1.099× for a 34.4-year-old, 1.083× for a 44.8-year-old, and 1.073× for a
55-year-old.

For this study, the Monte Carlo model used a square LED-type emitter (top-hat
distribution in the near field and Lambertian distribution in the far field) with a side length
of 1.0 mm and a half angle of 2.4 radians. The photodiode is donut-shaped surrounding
the emitter with an inner radius of 0.0071 mm and an outer radius of 0.0091 mm. However,
photodiode and LED size, half angles, and distributions can be changed as needed for the
end user. These use-case values were chosen to be similar to the existing Apple Watch
LED/PD configuration.

The simulations were completed on a PowerSpec G900 (Micro Electronics Inc, Hilliard,
OH, USA) and were parallelized to the GPU: an NVIDIA GeForce RTX 3070 8 GB (NVIDIA
Corporation, Santa Clara, CA, USA). To determine the number of photons required for
each simulation, every simulation was completed in triplicate (a given combination of
parameters required 3 rest simulations and 3 pulse simulations) and repeated with an
increasing number of photons until the coefficient of variation of the AC across the trip-
licate results was less than 10%. The AC is defined as the result of the pulse simulation
minus the result of the rest simulation, whereas the DC is the result of the rest simulation.
This value was found to be dependent on the parameters of a given simulation, ranging
from 5 × 108 photons for the case of device wavelength of 515 nm and volume fraction
melanosomes 0.03 to 1 × 1011 photons in the case of device wavelength of 880 nm and
volume fraction melanosomes 0.30. In total, 96 simulations were completed at the sufficient
number of photons, requiring approximately 3.5 weeks.

The outputs of these simulations are synthetic AC and DC amplitudes. To enable com-
parison of AC values across wavelength, age, and skin tone as well as assess the simulated
results with respect to other works; the AC values were normalized to the maximum value
such that the largest AC value has a normalized value of 1. Lastly, a blue/white colormap
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was applied to enable qualitative comparisons such that the maximum value is blue and
the minimum value is white. The same procedure was applied to the DC amplitudes.

2.2.2. PPG Waveform Generator

The PPG waveform generator creates a continuous and synthetic PPG waveform
intended to represent a combination of patient- and device- specific factors. For this work,
the shape of a single waveform period was derived from Allen and Murray, which details
the average volar fingertip PPG waveform from individuals that are 23 years-old (YO),
34.4 YO, 44.8 YO, and 55 YO [40]. These four waveforms were chosen as they represent
morphologically different waveforms observed in PPG data analysis: namely, loss of
diastolic peak and dicrotic notch. Other waveforms were not included to maintain a
reasonable length work and limit time needed to run all simulations. To generate full
waveforms representative of patients with various ages for the study, the PPG Waveform
Generator utilizes an input waveform collected from the volar fingertip with an infra-
red LED found in literature [41]. A generalized reduced gradient (GRG) solver native to
Microsoft excel was used to determine the amplitude (a1, a2, a3), bias (b1, b2, b3) and
width (c1, c2, c3) of three Gaussians that additively combine and minimize relative error
when compared to the input waveforms from the literature, and enables creation of PPG
waveforms by the end user not included within this work.

After a single 0.8 s period of the PPG waveform is created, a heart rate (75 beats per
minute), and sampling frequency (120 Hz) are specified and the waveform is repeated for
a specified signal length. Finally, any second waveform or noise, including noise from
real PPG data, can be added to the waveform to imitate noise. Here, the noise waveform
is constructed via adding sinusoids of customizable frequencies and relative amplitudes
to mimic common noise frequencies for PPG signals. Specifically, in this work, three
noise sinusoids at 20 Hz, 40 Hz, and 60 Hz and amplitudes 38%, 59%, and 59% of the AC
amplitude were used, as measured in previous literature [42].

To analyze the accuracy of the waveform generator, one period of the resultant wave-
form for each of the four ages is compared to the waveform derived from literature [41].
Median relative error was the chosen statistical measure to make this comparison, as it pro-
vides the ability to compare difference between the input and output waveforms while also
being robust to larger relative differences at the tail ends of the waveforms that would have
their relative difference overrepresented with other measures, such as mean relative error.

2.3. Device Algorithm Simulator
2.3.1. Signal Preprocessing

The main components of signal preprocessing simulated here includes high level
components: filtering, ADC simulation, and rescaling. The data is filtered by one of
the following: a 0.1–7 Hz 4th order Butterworth Bandpass, a 0.1–7 Hz 4th order Inverse
Chebyshev bandpass with a 10-element moving average filter, and a 7 Hz 4th order Inverse
Chebyshev lowpass with a 10-element moving average filter. ADC simulation is completed
by allowing the user to specify an ADC resolution in bits, a reference current in amps, and
LED power in Watts. The ADC value is found by using Equation (1):

ADC Values = MC_Out × (2ˆADC Resolution)/Reference Current (1)

where MC_Out is the output AC of the MC simulation modified by:

MC_Out = 10 × AC × LED power × photodiode area (2)

The morphology of the PPG waveforms with the smallest and largest AC amplitudes
are evaluated across ADC values. First, an assumed reference current of 32 uA and an
assumed LED power of 50 mW are used. PPG waveform data is simulated with an ADC
from 1 bit to 25 bits for the patient-specific and device factors that yield the highest and
lowest AC amplitudes. Next, waveforms collected with select simulated ADC resolutions
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are qualitatively compared to determine the impact that insufficient ADC resolution can
have on PPG morphology. The percent difference between a PPG waveform at a given
ADC resolution and the PPG waveform at an ADC resolution of 25 bits is compared as
a suggested methodology for end users to identify sufficient ADC resolutions. Lastly, all
data taken from a single combination of parameters (i.e., 23 years old, 515 nm, 0.03 VFM,
Chebyshev Bandpass) is rescaled to range from 0.5 to 2.7 via MATLAB’s rescale function.
This was performed to match the approximate range of values seen in the training data for
feature extraction and machine learning.

2.3.2. Feature Extraction

PPG feature extraction was performed in Python using in-house code and the heartPy
library to extract the systolic peak and onset [43]. The feature extraction identifies 30 s of
data wherein heartPy successfully extracts >90% of the expected number of systolic peaks
and rejects fewer than 10% of the expected number of systolic peaks. Then, 38 features
found in Table A1 are calculated with 3 fiducial points: the systolic onset determined from
heartPy, the systolic peak determined from heartPy, and the dicrotic notch determined by
identifying the “c” peak in the second derivative of the PPG waveform [44]. The second
derivative is smoothed and scaled to enable easier detection for PPGs with less-visible
dicrotic notches. Once all of the 38 features were extracted, we aimed to determine the
effect of patient-specific and device factors on the value of these features. This was done
by comparing the mean and standard deviation of each feature across each factor. Then, a
colormap that shows the range of values for each feature across each factor was created to
enable visual inspection of the data.

2.3.3. Machine Learning Algorithms

As an example use-case of this framework, three separate models were trained to
estimate blood pressure from PPG-derived features with MATLAB 2020b (The Mathworks,
Natick, MA, USA). A Support Vector Machine (SVM) and Bagged Trees algorithm were
developed with MATLAB’s Regression Learning Application and a Neural Network was
developed with MATLAB’s Neural Network Fitting Application.

All models were trained with data from the publicly available and deidentified MIMIC
III Matched Data Set [20]. From this database, 40,000 patient data samples from 2437 pa-
tients that included arterial blood pressure (ABP) measured from an invasive arterial line
and PPG waveforms were identified via stratified random sampling and 17,517 data sam-
ples, 30 s in length, were passed to feature extraction. The systolic peak and diastolic
peak within the ABP data over 30 s was used to determine the systolic and diastolic blood
pressure, respectively. Extracted features were then pre-processed as follows: data with
systolic/diastolic ranges greater than 20 mmHg/12 mmHg within the 30 s were discarded
and statistical outliers (defined as samples with data beyond 3 standard deviations) were
removed. PPG feature values were then rescaled from zero to one. These methods are
derived from ISO-81060-2 standard [45].

The SVM was trained on 70% of the MIMIC-III data with 10-fold validation, and then
tested on the remaining 30% of the data. All data were standardized together to have a
mean of zero and standard deviation of one. A fine Gaussian kernel function with a kernel
scale of 1.5 was used. The artificial neural network was trained on 70% of the data, tested
on 15% of the data, and validated on the remaining 15% of the data. Levenberg-Marquardt
backpropagation was used with 100 hidden layers and mean squared error as an error
function. The bagged trees algorithm was trained on 70% of the MIMIC-III data with
10-fold cross-validation and tested on the remaining 30% of the data. After training the
algorithms, features originating from the synthetic data were used to predict systolic and
diastolic blood pressure and the standard deviations of these predictions were analyzed
as a way to assess the sensitivity of these algorithms to patient and device specific factors.
Lastly, the predicted blood pressure is analyzed via mean error and standard deviation.
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This decision was informed by “ISO-81060-2, Non-invasive Sphygmamonometers—Part 2:
Clinical investigation of intermittent automated measurement type” [45].

3. Results and Discussion
3.1. PPG Signal Generator Verification
3.1.1. Monte Carlo Model

Figure 4 shows changes in PPG normalized AC and DC amplitudes with respect
to wavelength, VFM, and age relative to the maximum amplitude (515 nm, 0.03 VFM,
23 years old for AC and 880 nm, 0.03 VFM, 23 years old for DC). Note that while AC and
DC amplitudes are shown separately, the AC/DC ratio is another parameter discussed in
literature to gauge PPG waveform signal quality. However, it was not used here since the
smaller AC/DC values in dark skin tones require more photons to precisely and accurately
resolve than what was used in this work. Since a target coefficient of variation of less than
10% was set as a target for simulation precision, the derived value AC/DC would have
a coefficient of variation greater than 10% because it is a derived value consisting of the
AC divided by the DC. This limitation is caused by the computational complexity of these
simulations wherein it would take weeks to properly simulate this scenario. Differences
between this work and others with respect to simulated conditions (age, wavelengths, etc.)
and the lack of details in other work prevent exact comparisons from being made. However,
it is valuable to demonstrate agreement of trends between the simulations presented here
and data collected elsewhere.

Experimental and in silico research has been published exploring the relationship be-
tween PPG wavelength and amplitude. Moco et al. observed a decrease of PPG amplitude
from 515 nm to 660 nm by 55% and then a subsequent 150% increase in signal from 660 nm
to 880 nm [46]. We observed a similar trend, namely a 59% decrease in PPG amplitude
from 515 nm to 600 nm and a 107% increase in signal from 660 nm to 880 nm. Factors such
as skin thickness and device characteristics explain the absolute differences in results from
660 nm to 880 nm.

The second variable explored in Figure 4 is the impact of VFM on the PPG signal.
Ajmal et al. used MC modeling to explore the impact of skin tone on the wrist, an anatomy
with more melanin than the fingertip. Specifically, they explored the impact of Fitzpatrick
Skin Tone I (set by Ajmal et al. to be 0.03 VFM) and Fitzpatrick Skin Tone VI (set by
Ajmal et al. to be 0.42 VFM), on the AC/DC ratio of various commercial PPG-based heart
rate monitors [47]. While error propagation in this study limits conclusions regarding the
AC/DC ratio on dark skin tones, our results agree with those presented in the literature
as AC/DC ratio does not change in 0.03 and 0.10 VFM [47]. Ajmal et al. presented that
AC/DC ratio decrease as a function of skin tone ranged from less than 1% to approximately
15% depending on the wearable source/detector configuration. This study is different from
the current effort, as Ajmal et al. performed their work at the wrist with different source to
detector configurations.

The last variable shown in Figure 4 is age. The effect of age on PPG signal amplitude is
largely unexplored, however previous work showed that at least two physiological changes
create an effect: (1) decrease in skin thickness, and (2) decrease in vessel compliance. The
former increases PPG signal amplitude and the later decreases PPG signal amplitude by
reducing the change in blood volume caused by the cardiac cycle [11]. Both of these factors
are included in determining the effect of age on PPG amplitude in Figure 4. In previous
literature, the significant decrease in vessel compliance observed with age supports the
trend observed in the results of a decrease in PPG amplitude [34]. To increase the accuracy
of the model with respect to varying age, the epidermal layer should also decrease in
thickness as age changes. This factor was not included in this work, as decreasing epidermal
thickness would require increasing simulation resolution and to substantially increase the
time required to collect results. It is hypothesized that decreased epidermal thickness
would increase PPG signal, however it is unknown whether this effect would negate the
decrease in signal caused by changes in vessel compliance. However, PPG amplitude is
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not the only change that age causes in PPG feature extraction, rather the main change is
morphological [41].
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3.1.2. PPG Waveform Generator

The ability of the workflow to replicate PPG waveforms was assessed. Table 3 shows
the Gaussian parameters used to generate waveforms across four ages. To analyze the
ability of the gaussian combination method to replicate literature-sourced waveforms,
median relative error was chosen as it is robust to large percent differences when the
waveforms approach zero. In all cases, between 23 and 55 years old, median relative error
was below 5% indicating strong ability to generate data derived from waveforms supplied
by the end user or specified in this work. Qualitatively, as depicted in Figure 5, these
waveforms also demonstrated well-studied morphological changes in PPG waveforms as a
function of subject age: the dicrotic notch and diastolic peak become less noticeable as age
increases [18]. These individual waveforms are repeated over a window of time to generate
continuous data for signal processing, an example of this is shown in Figure 6.

Table 3. PPG Waveform Gaussian Parameters and Median Relative Error for GRG nonlinear solver.

Age (Years) Gaussian 1
Parameters (a1, b1, c1)

Gaussian 2
Parameters (a2, b2, c2)

Gaussian 3
Parameters (a3, b3, c3) Median Relative Error (%)

23 0.57,0.19,0.09 0.47,0.11,0.05 0.77,0.39,0.30 3.58
34.4 0.80,0.28,0.25 0.77,0.59,0.44 0.74,0.13,0.11 2.12
44.8 0.59,0.21,0.12 0.38,0.11,0.06 0.75,0.40,0.29 4.14
55.0 0.77,0.28,0.25 0.67,0.14,0.13 0.79,0.58,0.44 1.79
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3.2. Impact on PPG Morphology and Features

A simple ADC simulation component was included in the Device Algorithm Simulator
to be able to study the minimum resolution needed to accurately resolve the PPG waveform
features. Figure 7a,b shows a PPG waveform originating from a synthetic patient with
an excitation wavelength of 515 nm, 0.30 VFM (b) or 0.03 VFM (a) and 23 years old (a)
or 55 years old (b). This synthetic data was filtered through a bandpass Butterworth and
then put through the ADC simulator. The lowest ADC resolution, shown in blue, has
false features in both subfigures after the systolic peak that were artificially added by
the filter in an attempt to process a digitized signal. Additionally, the systolic onset is
greater and the systolic peak is less than their high-resolution counterparts. This waveform
would be unable to undergo feature extraction, or would yield incorrect feature values if
processed. However, as the resolution increases, the waveform regains its morphology.
Figure 7c demonstrates the framework’s ability to analyze the impact of ADC resolution
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on waveform morphology. This data illustrates the relative percent difference between the
PPG waveform at a given ADC resolution, compared to the same waveform at the high
resolution of 25 bits which serves as a near-perfect waveform for this analysis. According
to Figure 4, the synthetic data yielding the black curve is approximately 300× greater in
amplitude than the magenta curve. This amplitude difference manifests itself in ADC
resolution necessary to sufficiently resolve the signal. In order to obtain a signal <1%
different than the high-resolution signal, a 10-bit resolution is necessary for the 23 year
old, whereas the synthetic data yielding the magenta curve (55 year old) requires a 19-bit
resolution. This functionality can also be used to evaluate appropriate LED intensity, as it
is expected that increasing the LED intensity to yield a matching PPG amplitude across
features would potentially yield equivalently resolved features, even though this action
would similarly amplify noise and the DC component of the PPG waveform.
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Figure 8, an abbreviated version of Figure A1, illustrates that by comparing values
of a given feature within a patient-specific or device facto, we can study which factors
modulate which features. Skin tone, or rather VFM from 0.03 to 0.30, and wavelength
did not significantly impact any feature measured. This intuitively makes sense, as their
representation within this framework is through changing optical properties of tissue
and thus their impact is in the amplitude of the PPG waveform (shown in Figure 4).
Dicrotic notch height, an amplitude-based feature in Figure 8, does not change as one of
the aforementioned components of signal processing was data rescaling. There is very
limited evidence suggesting that skin tone or wavelength may impact the PPG waveform,
but such an effect would largely be caused by changes in optical properties of tissue
leading to manipulating whether the PPG signal is predominately provided by superficial
arterioles or deeper arteries [48]. However, in this work, where the simulated anatomy
is primarily vascularized by superficial arterioles in the form of subungual arcades and
their branches, this is not a likely outcome [49]. Filter methodology and age are shown to
have significant impacts on extracted feature values. Specifically, “DivWidthTime” features
decrease as age increases, and most “WidthTime” features increase as a function of age. As
the target percentage for the WidthTime features decrease, the impact of age also decreases.
For example, x75WidthTime increases from 0.16 to 0.23 for 23-year old’s to 55-year old’s,
but x10WidthTime changes from 0.67 to 0.68 as age increases. This effect is inverted
for “DivWidthTime” features as a higher target percentage changes less as a function of
age. X75DivWidthTime changes from 2.53 to 2.12 as age increases and X10DivWidthTime
changes from 4.68 to 3.26 as age increases. Signal filtering is shown to impact extracted
feature values. The inverse Chebyshev bandpass has the least accurate performance,
consistently leading to underestimated features values compared to the control data when
the feature is related to timing. However, these waveforms assume that ADC resolution
is sufficiently high. Identifying the appropriate ADC resolution is a key component of
device design.
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3.3. Blood Pressure Estimation from Synthetic PPG Features

A number of machine learning approaches have been studied for non-invasive blood
pressure (BP) prediction from PPG [19,50,51]. This includes variations in features as well as
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variation in methodology/algorithms. As a test case of utilizing this framework to evaluate
the robustness of trained algorithms against patient and device specific factors, a Support
Vector Machine (SVM) algorithm, a Bagged Trees (BT) algorithm, and a Neural Network
(NN) were developed. The algorithms were selected after analyzing commonly used
techniques to predict blood pressure from PPG data in the literature. Similar to previous
work, each model was trained using 70% of data extracted from the MIMIC-III dataset and
tested on the remaining 30% of extracted data (15% for the NN, as 15% was withheld for
validation) [52]. Table 4 displays the mean average error and standard deviation of error for
the trained models on the MIMIC dataset in the first two rows, and the standard deviation
of predicted values for each algorithm on the synthetic dataset in the bottom two rows.
The bottom two rows show the standard deviation of prediction because the true blood
pressure values in the synthetic data are unknown. Mean average error on the test data
was found to be within ISO-81060-2 standards of <5 mmHg, and the standard deviation
of the error was found to be greater than the ISO-81060-2 threshold of 8 mmHg for these
example algorithms [45]. However, the purpose of this test case is to examine the variation
of predicted blood pressures across synthetic data for each trained model, not to develop
models for blood pressure prediction; thus we do not anticipate the standard deviation
of error to impact conclusions derived within this work. While the true blood pressure of
the synthetic data is unknown, the standard deviation of predictions from each algorithm
can be used to assess sensitivity or insensitivity to the factors discussed in this work. It
was found that the SVM had a low standard deviation of measurement of 0.10 mmHg and
0.12 mmHg for diastolic and systolic BP, respectively across synthetic data. In contrast,
the NN had much greater standard deviations of prediction 14.53 mmHg and 9.44 mmHg
for systolic and diastolic BP, respectively. Thus, this workflow was able to show that the
systolic and diastolic outputs of the SVM models developed in this work were less sensitive
to the diverse cohort of synthetic PPG signals, compared to the NN or Bagged Trees models.

Table 4. Algorithm Mean Error and Standard Deviation.

Support Vector Machine Bagged Trees Neural Network

Mean Error
(mmHg)

Standard
Deviation (mmHg)

Mean Error
(mmHg)

Standard
Deviation (mmHg)

Mean Error
(mmHg)

Standard
Deviation (mmHg)

Systolic 0.55 11.56 −0.02 12.4 −0.36 15.53
Diastolic −0.72 8.24 −0.11 8.63 −0.16 10.75

Systolic-Synthetic N/A 0.12 N/A 3.46 N/A 14.53
Diastolic-Synthetic N/A 0.10 N/A 4.34 N/A 9.44

4. Conclusions

Due to the number of anatomical, physiological, and device recording factors that
can impact the morphology of a PPG waveform, it is important to have tools to enable
the systematic assessment of hemodynamic measurement algorithms to these factors. We
considered a framework and developed an initial software implementation towards this
purpose. We demonstrated how this can be used to generate synthetic data specific to de-
vice characteristics and inclusive of patient-specific factors, one can systematically evaluate
feature and algorithm robustness across a range of patient and device-specific character-
istics. This type of framework can enable rapid development of algorithms and devices
that aim to predict blood pressure, or potentially other hemodynamic measurements, from
pulse wave analysis of the PPG waveform by combining in silico developmental tools to
overcome individual limitations. Namely, this research includes both physiological and
anatomical considerations in designing PPG-based medical devices and external sources
of noise. Other frameworks that are Monte Carlo based explored changes in PPG ampli-
tude caused by physiological factors, and frameworks that were Gaussian combination
-based explored noise-based changes in the PPG waveform. The framework described here
enables studying the impact of both categories on the PPG waveform. It also allows the
understanding of how the effects may propagate through data recording and processing
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algorithms to the end clinical parameters by performing feature extraction on the simulated
waveforms. This study presented the use of this framework for a single anatomy due to the
computational power of the computers used for simulations. Increasing the computational
power, and consequently the number of photons used in the Monte Carlo simulations
would enable evaluation of derived parameters such as AC/DC, particularly for darker
skin tones. The simulated PPG waveforms presented herein assume physiotypical subjects
and are created/validated with data from literature, which limits control over the health
of patients from which the data originated. It is anticipated that nonhealthy patients may
present changes to the model that may include but are not limited to changes in skin thick-
ness, optical properties of the skin layers, and vessel compliance. Thus, future work might
include conducting studies to gather the parameters such as skin thickness used in this
work that are controlled to important variables such as cardiovascular health. Additionally,
some works used as reference have uneven gender distributions that might impact the re-
sults incorporated to build the simulations presented herein. Generalized signal processing
was performed in this work that does not represent the full processing of any known device.
Additionally, the research presented herein uses a single source/detector configuration
as a case study and is not representative of any specific product configuration. Lastly,
increased validation and uncertainty quantification would further enable functionalities
such as including template PPG waveforms for patients of any age.
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Appendix A

Table A1. PPG Features. The left column is the name of the PPG feature, and the right column is a
brief description of the associated feature.

Feature Name Definition

Mean Peak Amplitude distance from systolic onset to systolic peak over
30 s window

Mean Pulse Rising Time time from systolic onset to systolic peak over
30 s window

x75 Systolic Width Time Time from systolic peak to the point before the systolic
peak with amplitude of 75% of peak amplitude
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Table A1. Cont.

Feature Name Definition

X75 Diastolic Width Time Time from systolic peak to the point after the systolic
peak with amplitude of 75% of peak amplitude

X66 Systolic Width Time Time from systolic peak to the point before the systolic
peak with amplitude of 66% of peak amplitude

X66 Diastolic Width Time Time from systolic peak to the point after the systolic
peak with amplitude of 66% of peak amplitude

X50 Systolic Width Time Time from systolic peak to the point before the systolic
peak with amplitude of 50% of peak amplitude

X50 Diastolic Width Time Time from systolic peak to the point after the systolic
peak with amplitude of 50% of peak amplitude

X33 Systolic Width Time Time from systolic peak to the point before the systolic
peak with amplitude of 33% of peak amplitude

X33 Diastolic Width Time Time from systolic peak to the point after the systolic
peak with amplitude of 33% of peak amplitude

X25 Systolic Width Time Time from systolic peak to the point before the systolic
peak with amplitude of 25% of peak amplitude

X25 Diastolic Width Time Time from systolic peak to the point after the systolic
peak with amplitude of 25% of peak amplitude

X10 Systolic Width Time Time from systolic peak to the point before the systolic
peak with amplitude of 10% of peak amplitude

X10 Diastolic Width Time Time from systolic peak to the point after the systolic
peak with amplitude of 10% of peak amplitude

X75 Width Time
Time from the point on systolic rising edge to the point

after the systolic rising edge where 75% of peak
amplitude occurs

X66 Width Time
Time from the point on systolic rising edge to the point

after the systolic rising edge where 66% of peak
amplitude occurs

X50 Width Time
Time from the point on systolic rising edge to the point

after the systolic rising edge where 50% of peak
amplitude occurs

X33 Width Time
Time from the point on systolic rising edge to the point

after the systolic rising edge where 33% of peak
amplitude occurs

X25 Width Time
Time from the point on systolic rising edge to the point

after the systolic rising edge where 25% of peak
amplitude occurs

X10 Width Time
Time from the point on systolic rising edge to the point

after the systolic rising edge where 10% of peak
amplitude occurs

X75 Div Width Time X75 Systolic Width Time/X75 Diastolic Width Time

X66 Div Width Time X66 Systolic Width Time/X66 Diastolic Width Time

X50 Div Width Time X50 Systolic Width Time/X50 Diastolic Width Time

X33 Div Width Time X33 Systolic Width Time/X33 Diastolic Width Time

X25 Div Width Time X25 Systolic Width Time/X25 Diastolic Width Time

X10 Div Width Time X10 Systolic Width Time/X10 Diastolic Width Time

Width Difference The absolute difference of X50 Systolic Width Time and
X50 Diastolic Width Time
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Table A1. Cont.

Feature Name Definition

Mean Max Slope The maximum slope observed across 3 points in the
systolic rising edge

Inflection Point Area
The integral of the PPG waveform from the dicrotic

notch to the next systolic onset divided by the integral of
the PPG waveform from the onset to the dicrotic notch

Diastolic Time Time from the systolic peak to the next systolic onset

Heart Rate Systolic peaks identified over 30 s × 2

P2p1 Mean The ratio of dicrotic notch amplitude to systolic
peak amplitude

Dicrotic Notch Height Dicrotic notch amplitude

Mean Time Between Peak and
Next Notch Time between the systolic peak and dicrotic notch

Cardiac Period Average time between systolic peaks

Onset Period Average time between systolic onsets

PPG Integral Area under the PPG waveform

Appendix B
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Figure A1. Synthetic PPG Feature Values Across Parameters, Filter 1 is a 4th order bandpass Butter-
worth (0.1–0.7 Hz), Filter 2 is a 4th order bandpass Inverse Chebyshev (0.1–0.7 Hz), Filter 3 is a 4th
order Low pass Inverse Chebyshev, and Filter 4 is control data that has no noise and no filters applied.
Colormap was determined by normalizing each row. Standard deviations are in parentheses.
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