
ANZIAM J. 50 (CTAC2008) pp.C46–C59, 2008 C46

A computational neuron model based on
Poisson–Nernst–Planck theory

P. M. Nanninga1

(Received 1 August 2008; revised 17 September 2008)

Abstract

Modelling of the nerve impulse is often simplified to one spatial
dimension, for example by using cable theory. In reality signals prop-
agate in a complex three dimensional environment, and neurons may
electrostatically affect cells in close proximity. To investigate this,
the electrochemistry of the neuron environment is modelled using the
Poisson–Nernst–Planck theory of electrodiffusion. An accurate nu-
merical solver for the Poisson–Nernst–Planck equations in three di-
mensions is developed. The solver, integrated with a simple compu-
tational model of ion channels, is capable of simulating the dynamics
of multiple electrical charge species for an arbitrary configuration of
membranes and ion channels. Preliminary simulations of simplified
neurons show resting membrane potentials broadly consistent with
the Goldman equation of electrochemistry, but with interesting differ-
ences in some cases. The model can be applied to the detailed study
of the nerve impulse.

See http://anziamj.austms.org.au/ojs/index.php/ANZIAMJ/article/view/
1390 for this article, c© Austral. Mathematical Soc. 2008. Published September 21, 2008.
ISSN 1446-8735

http://anziamj.austms.org.au/ojs/index.php/ANZIAMJ/article/view/1390
http://anziamj.austms.org.au/ojs/index.php/ANZIAMJ/article/view/1390


Contents C47

Contents

1 Introduction C47

2 Poisson–Nernst–Planck theory C48
2.1 Poisson–Nernst–Planck equations . . . . . . . . . . . . . . C49
2.2 Poisson–Boltzmann equation . . . . . . . . . . . . . . . . . C50

3 Poisson–Nernst–Planck numerical solver C51

4 Ion channel model C54

5 Implementation and results C56

6 Conclusion C57

References C58

1 Introduction

The standard explanation for the electric potential observed to occur across
neuron cell membranes is the selective transport of ions, mainly through ion
channels (Nicholls et al. [7]). In this process of electrodiffusion, the tendency
of electric charge to diffuse toward areas of lower concentration (Fick’s law),
is offset by electric advection (Kohlrausch’s law) in which a drift velocity
is imparted to charged particles by the electric field of the surrounding ion
cloud. When confined to the direction of nerve impulse, the process of one
dimensional electrodiffusion may be approximated by cable theory (Qian and
Sejnowski [9]) in which the membrane is modelled as a network of electrical
resistors, capacitors and batteries. This theory provides the foundation for
Hodgkin and Huxley’s famous model of the nerve impulse.

This article develops a model of the neuron environment based on the
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Poisson–Nernst–Planck (pnp) theory (Chung et al. [1]) of electrodiffusion,
the pnp model. A computational implementation of the pnp model is de-
scribed, including an accurate numerical solver of the pnp equations. Note
that pnp theory is applied here at a scale between that of cable theory (pop-
ulations of ion channels) and molecular dynamics (individual ion channels).

The pnp computational model has been used for preliminary investiga-
tion of the resting potential of neurons. The simulations show non-zero
particle fluxes in the steady state, even with a single ion channel, indicating
the modelled neuron is not in thermodynamic equilibrium. Results, though
broadly consistent with the Goldman equation [3] of electrochemistry, show
interesting differences in some cases.

2 Poisson–Nernst–Planck theory

The neuron environment comprises densely packed neurons and neuroglia im-
mersed in ionic fluid. The main charge species associated with the membrane
potential are Ca2+, Cl−, K+, Na+ and organic anions A−.

Owing to their close proximity, neurons should have a direct electrodif-
fusive effect on their neighbours (Nicholson [8]). For example, in specialized
connections such as synapses and gap junctions the intercellular separation
may be as little as 3nm (nanometres) compared with a more common separa-
tion of 25nm. The ions form a cloud which tends to shield the electrodiffusive
effect, and the strength of this shielding depends on factors such as charge
concentration (a lower density having a weaker shielding effect) and geom-
etry. A measure of the range of electrostatic effects is the Debye–Hückel
screening length λ. For example, in the case of K+ ions at a concentra-
tion of 3mM/l (millimoles/litre) in mammal extracellular fluid, the screening
length λK+ ≈ 8.1nm.

To investigate electrodiffusion in the full 3D neural environment, Poisson–
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Nernst–Planck (pnp) theory is adopted. This theory is based on the funda-
mental physical laws of mass and charge conservation. Charge conservation is
formalized through the Poisson equation and mass conservation through a set
of transport equations, one for each charge species. Fick’s and Kohlrausch’s
laws are incorporated into the transport equations. pnp theory assumes a
continuum, so that, for example, charge concentrations are assumed to be
(piecewise) continuous distributions. Within the neuron environment dis-
continuities occur where fluid meets cell membrane. In the standard mean-
field approximation, interactions between mobile charges are ignored (this
assumption must break down for sufficiently high ion concentrations), so
that pnp theory is essentially electrostatic.

Mathematically, pnp theory is formalized through a set of nonlinear sec-
ond order partial differential equations (elliptic and parabolic) which must
be solved self-consistently with the boundary conditions of the system being
considered. Analytic solution of the pnp equations is a topic in itself and I
investigate this in detail elsewhere.

2.1 Poisson–Nernst–Planck equations

Consider a continuum of fixed and mobile electric charges. Neglecting non-
electrostatic effects, the electric field ~E = −∇φ where the (electrostatic)
potential φ(~r, t) at location ~r and time t satisfies the Poisson equation

∇ · (ε∇φ) = −ρf − F

N∑
i=1

vici . (1)

In this equation, ε(~r, t) is the electric permittivity of the medium, ρf(~r, t) is
the density of fixed charges, F is the Faraday constant, vi 6= 0 is the valence
of the ith of N mobile charge species with ci(~r, t) the molar concentration.

Mass conservation requires the rate of change of a charge species’ con-
centration to balance the divergence of its flux. This gives one transport
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equation for each mobile charge species: ∂(NAci)/∂t + ∇ ·~ji = 0 , where

NA is Avogadro’s number and ~ji := −Di {[NAci/(kT)]∇Vi +∇(NAci)} is
the particle flux vector for the ith mobile charge species. Here Di(~r) is the
diffusion coefficient (diffusivity), k is Boltzmann’s constant, T is the temper-
ature, and Vi(~r, t) := Ui+qeviφ is the potential energy. In this last equation
qe is the magnitude of the electron charge and Ui is the potential energy due
to non-electrostatic interactions.

Again assuming electrostatic interactions dominate, set Ui = 0 so that
the flux~ji = −DiNA(ξvici∇φ+∇ci), where the constant ξ := qe/(kT). The
first term in this expression for the particle flux represents the contribution
from electric advection, and the second term represents flux due to diffusion.
The transport equations become

∂ci

∂t
= ∇ · [Di(ξvici∇φ+∇ci)] . (2)

The coupled system (1) and (2) are the pnp equations.

2.2 Poisson–Boltzmann equation

In a steady state the concentrations do not change with time: ∂ci/∂t = 0 .

If also the particle flux~ji = ~0 for all charge species, then the transport equa-
tions are all trivially satisfied. The vanishing of the particle fluxes requires
ξvici∇φ+∇ci = ~0 for all i, independent of diffusivities, which integrates to
ci = ci,0e

−ξvi(φ−φ0). This is a form of the Nernst equation (with concentra-
tions instead of chemical activities, the dilute concentrations assumption).
Substituting ci from the Nernst equation into the Poisson equation (1), gives
the nonlinear Poisson–Boltzmann (pb) equation

∇ · (ε∇φ) + F

N∑
i=1

vici,0e
−ξvi(φ−φ0) = −ρf . (3)

For given boundary conditions, the solution to the pb-equation is unique.
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3 Poisson–Nernst–Planck numerical solver

The core of the pnp computational model is a numerical solver of the pnp
equations. Kurnikova et al. [6] considered the pnp equations in the context
of an individual ion channel. However, their focus, like many others, has
been the steady state rather than dynamics. They transformed the steady
state transport equations and then solved the transformed system numeri-
cally using a successive over-relaxation method. To study the nerve impulse,
dynamics are of central interest, and so the full pnp equations must be solved.

Consider a 2D system (readily extended to 3D) modelled using a square
grid of side h with rows labelled i = 1, . . . ,m+1 and columns j = 1, . . . , n+

1 . Taking finite differences of the Poisson equation (1) at the edges of the
grid cell centred at the computational point i, j, and letting the total charge
density (fixed plus mobile) be ρ, then(

ε1i,jφi+1,j + ε
2
i,jφi−1,j + ε

3
i,jφi,j+1 + ε4i,jφi,j−1 − ε0i,jφi,j

)
∼ −h2ρi,j (4)

in which ε1i,j := εi+ 1
2
,j , ε

2
i,j := εi− 1

2
,j , ε

3
i,j := εi,j+ 1

2
, ε4i,j := εi,j− 1

2
and

ε0i,j :=
∑4
k=1 ε

k
i,j . To get (4) the partial derivatives of the electric potential

evaluated at cell edges were approximated as (φx)i,j+ 1
2

∼ (φi,j+1 − φi,j)/h ,

(φx)i,j− 1
2

∼ (φi,j − φi,j−1)/h , (φy)i+ 1
2
,j ∼ (φi+1,j − φi,j)/h , and (φy)i− 1

2
,j ∼

(φi,j − φi−1,j)/h . The electric permittivity at cell edges was approximated
with an arithmetic mean, for example ε3i,j ∼ 1

2
(εi,j + εi,j+1), although a har-

monic mean may give better accuracy at discontinuities. With these approx-
imations, equation (4) becomes second order accurate in space.

At a dielectric discontinuity, such as the boundary between a membrane
and ionic fluid, continuity of the normal component of the electric displace-
ment vector (Visscher [10]) leads to the condition ε(−)~n · ∇φ(−) = ε(+)~n ·
∇φ(+), where −,+ denote the different dielectrics on either side of the discon-
tinuity and ~n is the normal vector to the interface. For example, at the com-
putational point i, j, assuming this was the location of a vertical discontinu-
ity, the continuity condition is approximated by εi,j−(φx)i,j− = εi,j+(φx)i,j+ .
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Using this with a finite volume approach it is demonstrated that the finite
differencing scheme retains second order accuracy at discontinuities.

Assuming Dirichlet boundary conditions, the set of equations (4), one
equation for every interior computational point in the system (there are a
total of k := (m − 1)(n − 1) interior points), may be expressed in matrix

form as A~φ = ~f where A is a k × k matrix of electric permittivity values,
~φ is a column vector with k elements which are the values φi,j listed in row

(lexicographic) order, and ~f is is a column vector with k elements which are
known (boundary) values in the difference equations. The matrix A is always
sparse and symmetric (in 2D this is because ε3i,j = ε4i,j+1). In 2D A is block
tridiagonal with two fringe diagonals (five diagonals in all). In 3D A is again
block tridiagonal but with two flanking pairs of fringe diagonals (so seven
diagonals in all). When A is positive definite (which it usually is), the linear

system A~φ = ~f is solved directly using, for example, some form of conjugate
gradient method. Alternatively, an approximate solution is obtained through
an iterative method.

The transport equation for the ith mobile charge species is given by (2).
To avoid confusion with subscripts identifying grid cells, in what follows the
subscript for the ith mobile charge species will be dropped, so that c will be
used to represent any concentration ci, with valence v = vi , etc.

The transport equation includes a time derivative term which is approx-
imated with a single level forward time method. Denoting evaluation at the
nth time level by a superscript (n), and evaluating the derivative at time

level n + 1
2

, then (∂c/∂t)
(n+ 1

2
)

i,j ∼ (c
(n+1)
i,j − c

(n)
i,j )/p , where p is the time-step

(independent of n) between levels n and n+ 1 . The right side of the trans-
port equation is differenced in the same way as the Poisson equation. For
computational point i, j at time level n, this centred differencing gives

(∇ ·~j)(n)
i,j ∼ (~j

y(n)

i+ 1
2
,j

−~j
y(n)

i− 1
2
,j
)/h+ (~j

x(n)

i,j+ 1
2

−~j
x(n)

i,j− 1
2

)/h (5)

where, for example, ~j
y(n)

i+ 1
2
,j

is the component of the vector flux in the y-
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direction at time level n through the side (at i + 1
2
) of the grid cell centred

at i, j. Particle fluxes through the four sides of this cell are approximated by

~j
y(n)

i±1
2
,j

∼ −D
(n)

i±1
2
,j

(
1

kT
c

(n)

i±1
2
,j
(Vx)

(n)

i±1
2
,j

+ (cx)
(n)

i±1
2
,j

)
,

~j
x(n)

i,j±1
2

∼ −D
(n)

i,j±1
2

(
1

kT
c

(n)

i,j±1
2

(Vx)
(n)

i,j±1
2

+ (cx)
(n)

i,j±1
2

)
. (6)

Here V := qevφ is the potential energy of the ith mobile charge species
(ignoring non-electrostatic interactions). Note that the diffusion coefficients
have been indexed by n to allow for changes in their values with time.

The partial derivatives in (6) are approximated in the same way as the
partial derivatives of the electric potential in the Poisson equation. Assume
the values of the concentration at the edges of the grid cells are approximated
by an arithmetic mean, for example ci,j+ 1

2
∼ (ci,j + ci,j+1)/2 .

The notation introduced earlier is extended to diffusivity values D1i,j :=

Di+ 1
2
,j , D

2
i,j := Di− 1

2
,j , D

3
i,j := Di,j+ 1

2
, and D4i,j := Di,j− 1

2
. Similarly for

the concentrations c0i,j := ci,j , c
1
i,j := ci+1,j , c

2
i,j := ci−1,j , c

3
i,j := ci,j+1 ,

and c4i,j := ci,j−1 . The notation for the concentrations applies in exactly
the same way to the potential energy V . Also, it is convenient to define
η
k(n)
i,j := 1 + (V

k(n)
i,j − V

0(n)
i,j )/(2kT) and ψ

k(n)
i,j := 1 − (V

k(n)
i,j − V

0(n)
i,j )/(2kT).

Then the fluxes in (6) are written compactly as

~j
y(n)

i+ 1
2
,j

∼ −D
1(n)
i,j

(
−c

0(n)
i,j ψ

1(n)
i,j + c

1(n)
i,j η

1(n)
i,j

)
/h ,

~j
y(n)

i− 1
2
,j

∼ −D
2(n)
i,j

(
c
0(n)
i,j ψ

2(n)
i,j − c

2(n)
i,j η

2(n)
i,j

)
/h ,

~j
x(n)

i,j+ 1
2

∼ −D
3(n)
i,j

(
−c

0(n)
i,j ψ

3(n)
i,j + c

3(n)
i,j η

3(n)
i,j

)
/h ,

~j
x(n)

i,j− 1
2

∼ −D
4(n)
i,j

(
c
0(n)
i,j ψ

4(n)
i,j − c

4(n)
i,j η

4(n)
i,j

)
/h . (7)

In the backward Euler or backward time approximation, time level n + 1 is
used instead of time level n. A more accurate approximation than either
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the forward or backward time methods, is to use the average of both. This
is the Crank–Nicolson method (Crank and Nicolson [2]), and it is second
order accurate in time and space. Adopting the Crank–Nicolson method to
approximate the flux divergence, the transport equation becomes(

c
(n+1)
i,j − c

(n)
i,j

)
/p ∼ −

[
(∇ ·~j)(n)

i,j + (∇ ·~j)(n+1)
i,j

]
/2 . (8)

Now use (7) in (5) and then use the result in (8). Collecting time level n+ 1

terms on the left and time level n terms on the right, then gives

c
0(n+1)
i,j α

(n+1)
i,j −

4∑
k=1

c
k(n+1)
i,j β

k(n+1)
i,j ∼ c

0(n)
i,j γ

(n)
i,j +

4∑
k=1

c
k(n)
i,j β

k(n)
i,j (9)

where α
(n)
i,j := 1 + λ

∑4
k=1D

k(n)
i,j ψ

k(n)
i,j , β

k(n)
i,j := λD

k(n)
i,j η

k(n)
i,j for k = 1, . . . , 4 ,

γ
(n)
i,j := 1 − λ

∑4
k=1D

k(n)
i,j ψ

k(n)
i,j , and λ := p/(2h2). The extension from a 2D

grid to a 3D (hexahedral) grid is now simple: the index k in (9) runs to
six instead of four. The above differencing scheme is readily adapted to a
non-uniform discretization, if required. Other methods to solve advection-
diffusion-reaction equations are given by Hundsdorfer [5].

As with the discretized Poisson equation, (9) is readily formulated as
a sparse linear system, allowing concentrations to be computed from their
values at the previous time step, and the values of the electrostatic potential.
The newly computed concentrations are then used to update the electric
potential values by solving the linear system A~φ = ~f . In this way the coupled
pnp equations are solved numerically. Testing against analytic solutions
shows that the scheme works accurately.

4 Ion channel model

Ion channels are central to the standard explanation of membrane potentials
and the nerve impulse (Hille [4]). When an ion passes close to an ion channel
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protein molecule, there will be discrete charge effects from individual atoms
in close proximity to the ion, and the protein molecule itself is subject to
complex conformational changes. These and other effects lead to the detailed
operation of an ion channel. To understand the operation of ion channels, an
approach such as molecular dynamics is useful (Chung et al. [1]), although
pnp theory has been applied with success to the modelling of individual ion
channels (Chung et al. [1], Kurnikova et al. [6]).

In the pnp computational model the ion channel is simply a narrow pas-
sage through the membrane. Grid cell elements in the model are tagged
with attributes identifying them as belonging to intracellular or extracellular
fluid, lipid membrane, ion channel protein, ion channel fluid, etc. The type
of ion channel is also tagged, for example passive K+ channel, voltage-gated
Na+ channel, and ligand-activated channel. The electric permittivities and
diffusivities are permitted to take on different values according to the cell tag
values.

The operation of an ion channel is explicitly coded into the model. For
example, the fluid inside a K+ ion channel acts as an impermeable barrier to
any ions other than K+. For K+ ions the fluid inside a passive channel acts
like extracellular or intracellular ionic fluid and is subject to the usual drivers
of diffusion and electric advection. The situation is different for a voltage-
gated K+ channel because it is tagged with a voltage threshold value. If the
local membrane potential exceeds this threshold, then the channel fluid acts
as ionic fluid and the ions may pass; but if the threshold is not exceeded,
then the channel will act as an impermeable barrier. For a ligand-activated
channel, the presence of at least a threshold level of ligand concentration is
required to (selectively) open the channel. A similar approach may be taken
to the modelling of ion pumps, synapses, etc.
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5 Implementation and results

The pnp computational model has been implemented using matlab since
it offers efficient solution of large sparse linear systems, and provides useful
graphing, plotting and other facilities. The model has been validated against
several analytic solutions of the pnp equations and gives accurate results.
For example, for a uniform fluid of five mobile charge species subject to an
external applied voltage the model converges smoothly to the analytic (pb)
solution with negligible error, independent of diffusivities.

Although the model validates well against analytic solutions and is rea-
sonably computationally efficient, testing its fidelity as a biological model
requires further work. At this stage simplified neurons with only one or
two ion channels have been simulated, but with realistic values for biological
parameters such as membrane thickness, electric permittivity, ion concen-
trations and diffusivities. The results verify the standard model as far as
the basic generation of an equilibrium potential is concerned. For example,
with a grid cell size of 1nm and time-step of 0.1ns a 2D closed membrane
with a single passive K+ ion channel and a single passive Cl− channel was
modelled. For the initial concentrations of Ca2+, Cl−, K+, Na+ and A− ions,
the intracellular values assumed were respectively (in mM/l) 10−4, 8, 140, 15
and 147, and the initial extracellular concentration values assumed were 1.2,
130, 3, 150 and 25. The computational pnp model produced a steady state
membrane potential of approximately −80mV, which is close to the exper-
imentally observed K+ equilibrium potential and a typical resting potential
of −73mV.

Even with a single passive ion channel, the computational pnp model
does not give a zero flux steady state, so the system is not in thermodynamic
equilibrium and the Nernst equation does not apply. In electrochemistry the
Goldman equation, an alternative to the Nernst equation, allows for non-zero
particle fluxes, and the membrane potential is then a weighted sum (each
weight is the ratio of an ion’s permeability to the total permeability) of the
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equilibrium (Nernst) potential for each ion able to permeate the membrane.

According to the Goldman equation the resting potential for a single
K+ ion channel ought to be the K+ equilibrium potential (because the K+-
permeability is the same as the total permeability). So the Goldman equation
assumes zero flux for this case, which is quite different from what the pnp
model gives. Such differences arise because of the simplifying assumptions
behind the Goldman equation.

The Goldman equation may be derived by assuming that the total current
density is zero (~Je := qe

∑N
i=1 vi

~ji = ~0). The pnp computational model
indicates that this assumption holds in the bulk of the fluids (when there is
more than one type of ion channel), but breaks down within and near to ion
channels (because they only allow specific ion types to pass through, so the
total current density cannot be zero there).

6 Conclusion

A computational model for the 3D continuum dynamics of electric charges
(in the electrostatic approximation) has been developed, with application
to the neuron environment (and to the study of semiconductors). The pnp
model fills the gap in scale between the very detailed molecular dynamics ap-
proach suitable for individual ion channels, and the semi-empirical approach
of the cable equation and Hodgkin–Huxley equations. The pnp model allows
investigation of the electrical behaviour of neurons and neuroglia in close
proximity without assuming idealized geometrical shapes for the structures.
Preliminary results with simplified neuron models qualitatively and quanti-
tatively agree with the standard model, but indicate that even with a single
type of passive ion channel there is always a particle flux in the steady state,
so that the Nernst equation does not apply. The Goldman equation also only
approximates the results of the pnp model.
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The permeabilities in the Goldman equation are often derived empiri-
cally, so it would be interesting to compare the membrane potential com-
puted using the Goldman equation with the steady state obtained from the
computational pnp model for various configurations of ion channels. Other
possible applications and extensions of the pnp model include: further inves-
tigation of the resting potential; simulation of the nerve impulse; modelling
of synapses and gap junctions; and investigation of electrostatic effects of
neurons and neuroglia in close proximity.
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