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A computational psychiatry 
approach identifies how alpha-2A 
noradrenergic agonist Guanfacine 
affects feature-based reinforcement 
learning in the macaque
S. A. Hassani1,*, M. Oemisch1,*, M. Balcarras1, S. Westendorff1, S. Ardid2, M. A. van der Meer3, 

P. Tiesinga4 & T. Womelsdorf1

Noradrenaline is believed to support cognitive flexibility through the alpha 2A noradrenergic receptor 
(a2A-NAR) acting in prefrontal cortex. Enhanced flexibility has been inferred from improved working 
memory with the a2A-NA agonist Guanfacine. But it has been unclear whether Guanfacine improves 
specific attention and learning mechanisms beyond working memory, and whether the drug effects 
can be formalized computationally to allow single subject predictions. We tested and confirmed these 
suggestions in a case study with a healthy nonhuman primate performing a feature-based reversal 
learning task evaluating performance using Bayesian and Reinforcement learning models. In an initial 
dose-testing phase we found a Guanfacine dose that increased performance accuracy, decreased 
distractibility and improved learning. In a second experimental phase using only that dose we 
examined the faster feature-based reversal learning with Guanfacine with single-subject computational 
modeling. Parameter estimation suggested that improved learning is not accounted for by varying 
a single reinforcement learning mechanism, but by changing the set of parameter values to higher 
learning rates and stronger suppression of non-chosen over chosen feature information. These findings 
provide an important starting point for developing nonhuman primate models to discern the synaptic 

mechanisms of attention and learning functions within the context of a computational neuropsychiatry 
framework.

Attentional �exibility is compromised in many neuropsychiatric diseases and becomes manifest in persevera-
tive behaviours, impulsivity, poor set-shi�ing abilities, or higher distractibility. �ese cognitive e�ects can be 
experimentally dissociated in reversal learning tasks, providing a rich test-bed to identify the neuromodulatory 
and synaptic mechanisms that support �exible attention during reversal learning. Previous studies have impli-
cated, in particular, dopaminergic and noradrenergic signaling in prefrontal-striatal loops to support cognitive  
�exibility1–3. One prominent receptor subtype involved is the alpha 2A noradrenergic receptor (a2A-NAR) whose 
activation at optimal concentrations enhances working memory representations in prefrontal cortex (PFC) by 
increasing neuronal �ring of memorized target locations4,5. Such an enhanced delay �ring during a2A-NAR acti-
vation could be the correlate for enhanced �exibility during goal-directed behaviour.

However, how improved working memory representations relate to otherwise dissociable measures of behav-
ioural �exibility, such as reduced impulsivity, reduced distractibility from irrelevant salient events, enhanced 
attentiveness/vigilance, improved sensitivity to salient events, or heightened sensitivity to behavioural outcomes 
to adjust behaviour in the light of errors has remained elusive. All these cognitive subfunctions render behaviour 
�exible and have also been linked to catecholaminergic action in the PFC. For example, noradrenergic activation 
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has been implicated to balance the relative weighting of explorative tendencies over exploitative tendencies dur-
ing periods of uncertainty6,7, and to enhance the focusing on relevant sensory information8,9. Such in�uences of 
noradrenergic action could act in addition to changes in working memory and could have complex behavioural 
e�ects that have not only bene�ts, but also costs to behavioural performance. For example, favoring exploratory 

Task

Processing Demands Dose E�ects and References

Stimulus 
Encoding

Working 
Memory

Attention 
Control /

Interference 
Control

Choice/Stim- 
Resp. Mapping

Learning 
Requirements

Formalized 
decision 
variable

Beh. E�ect of 
Guanfacine Reference

1
Delayed 2-well spatial 
response task

Stim. location
Location of 
reach goal

Location- to 
reach

Increasing delays —

✓ 
×

0.1–0.7 mg/kg 
0.01–0.001 mg/kg

14Franowicz 
and 

Arnsten, 
1998

(aged) ✓  
×

0.0001 mg/kg 
0.00001 mg/kg

62Rämä  
et al., 1996

(aged) ✓ 0.00001–0.1 mg/kg
30Arnsten  
et al., 1988

2
Delayed 2-well spatial 
response task with distractor 
interference

Stim. location
Location of 
reach goal

Visual 
distraction 

during delay 
(30% of trials)

Location- to 
reach

— — (aged) ✓ 0.0001–0.001 mg/kg

63Arnsten 
and 

Contant, 
1992

3
Delayed non-match to sample 
object

Object identity
Object 

type
Select new 

over old object
Select new 

object

Increasing 
delays +  increasing 

object lists
— ✓ 0.001 mg/kg

13Arnsten 
and 

Goldman-
Rakic, 1990

4 Delayed match-to-sample Object shape
Object 
shape 

4–32 sec.
— Touch Object Increasing delays —

(aged) ✓ 
(aged) ✓1

0.05 mg/kg  
0.001 mg/kg

64O’Neill  
et al., 2000

5 Visuospatial focused attention
1 moving 
worm like 

shape
—

Visually tracks 
target versus 

distractor 
worm

Touch when 
target reaches 

center
— —

6 Visuospatial divided attention
2 moving 
worm like 

shapes
—

Visually tracks 
two target 

worms

Touch targets 
when center is 

reached
— —

7
Acquisition of object-reward 
association

Object identity —
Select one of 
three objects

Reach to object
Increasing to 

criterion
— (aged) × 0.001 and 0.1 mg/kg 47Streere 

and 
Arnsten, 

19978
Reversal of object-reward 
association

Object identity —
Select one of 
three objects

Reach to object
Reversing object 

reward association 
(1 reversal/week)

—
(aged) ✓  

×

0.1 and 0.5 mg/kg 
0.001 mg/kg

9
Acquisition of shape-response 
direction associat.

Object shape —
Touch one of 
two objects

Touch Object
Daily novel pair of 

visual patterns
— × 0.1 mg/kg

65Wang  
et al., 2004

10
Acquisition of stim.-response 
associations

Object shape — —
Turn handle le� 
/ right for shape 

A / B
Daily a new shape —

✓  
×

0.001 and 0.1 mg/kg 
0.0001 mg/kg

11 Posner cueing paradigm
Peripheral cue 

location
—

Spatial 
readiness to 

make saccade 

Stim. location to 
saccade

— —
✓2  
×

0.0001 mg/kg 
0.00001 mg/kg

66Witte and 
Marrocco, 

1997

12
Continuous perform. task 
(sustained attn.)

Single colored 
squares

— (vigilance) Touch stimulus — —
(aged) ✓3  

×

0.0015 mg/kg  
0.5 mg/kg

67Decamp 
et al., 2011

13
Self-ordered, sequential 
non-match to sample with 
2 sec. delay

2–4 col. 
squares

Previ. 
Touched 
location 

(2 s delay)

(select 1 of 
2–4 stimuli)

Touch objects in 
sequence

Increasing number 
of objects (2–4)

— (aged) × 0.0015 and 0.5 mg/kg

14
Reward gambling with 
changing uncertainty and 
reward delays

Color and 
number of 

stimuli
—

Select one of 
two stimuli

Stimulus 
location to 

saccade
—

Temporal 
discounting 

risk 
preference

✓  
×

0.2 mg/kg 16Kim et al., 
2012

15
Feature-based reversal 
learning

2 stimuli 
color, motion, 

location
—

Select one of 
two stimuli 

based on color

Motion-
direction 
to saccade 
direction 
mapping

Reversing color-
reward association 
(~8 times per day)

Reinf. 
Learning4 

parameters

✓  
×

0.075 mg/kg 0.15 and 
0.3 mg/kg

Our study

Table 1.  Meta-survey of cognitive e�ects from systemic Guanfacine administration in non-human 
primates. Columns indicate the cognitive subfunctions, the dosages, and the obtained e�ect (tick mark 
indicates statistical signi�cance, cross indicates lack of signi�cance), and the study reporting the e�ect. Rows 
indicate the experimental manipulation tested during systemic drug administration. Note that some studies use 
di�erent tasks and di�erent dosages of Guanfacine. 1Low dose improved accuracy in one of two animals. 2No 
e�ects on accuracy and cue validity, and opposite signs of altering e�ect with increased and decreased reaction 
times in each monkey. 3Performance improvement evident in less omission errors, but accuracy (commission 
erros) was una�ected. 4Reinforcement learning parameters (learning rate, inverse temperature selection 
parameter) were not individually signi�cant, but contributed to improved learning.
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choices can enhance performance and reduces perseverative tendencies in uncertain situations, but it can also 
introduce noise and thereby reduce performance when the environment does not change akin to enhanced 
distractibility10.

To understand the speci�c cognitive consequences of noradrenergic action on goal-directed behaviour it 
seems therefore pivotal to study selective receptor systems in a variety of tasks. Guanfacine is a selective a2A-NAR 
agonist with low a�nity for the receptor subtypes alpha 2B and 2C11. For the selective a2A-NAR system, studies 
in rodents and nonhuman primates suggest that certain doses improve working memory (e.g. refs 12–14), as 
well as decrease impulsivity, reduce distractibility and possibly facilitate faster, more consistent learning15–17. At 
the molecular level, Guanfacine preferentially binds to post-synaptic alpha 2A receptors18. Pyramidal cells in 
prefrontal regions richly express post-synaptic alpha 2A receptors19, and stimulation of these receptors is thought 
to inhibit cyclic adenosine monophosphate (cAMP) production, which leads to closing of nearby HCN chan-
nels, which in turn leads to increased excitability in prefrontal pyramidal cells and increased connectivity within 
prefrontal microcircuits5,20. Guanfacine is suggested to exert its positive e�ects on cognitive functions via these 
actions on post-synaptic a2A-NAR receptors in the dorsolateral PFC5. Guanfacine is also suggested to suppress 
glutamatergic synaptic transmission and thereby neural excitability at deeper layers (V/VI) in PFC, potentially 
governed by similar intra-cellular mechanisms as those controlling HCN channels21,22. It has been proposed that 
at low concentrations, Guanfacine’s actions on HCN channels may predominate, while only at high concentra-
tions glutamate transmission is a�ected, potentially explaining an inverted-U type function of Guanfacine5,22. 
Guanfacine also binds to pre-synaptic alpha 2A receptors on locus coeruleus terminals that act as inhibitory 
auto-receptors, thereby decreasing NE release23, which may again suggest that high doses of Guanfacine could 
impair cognitive functions.

Figure 1. Feature-based reversal learning task. (A) Sketch of the reversal of colour-reward association with 
stimuli coloured in red (green) being associated with reward in successive blocks of trials. Colour-reward 
reversals were un-cued and triggered when the monkey reached a learning criterion or 50 trials. (B) Single 
trials started with �xation on a central �xation point. Two peripheral grating stimuli were shown for 0.4 sec. and 
either began to show movement in opposite directions, or they were coloured red/green. Following up to 0.9 sec. 
the feature (colour or motion) that was not present was added to the stimulus. �e animal had to respond to 
the dimming of the stimulus with the rewarded colour. �e dimming occurred either in both stimuli at the 
same time, or in the rewarded or the unrewarded stimulus �rst. Reward was provided when the animal made 
a saccade within 0.5 sec. a�er the dimming of the reward associated stimulus in the direction of motion of that 
stimulus. (C) Illustration that only colour was systematically associated with reward, while the location, motion 
direction or time of dimming were dimensions of the stimulus not linked to reward.
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�e evidence of positive e�ects seen with Guanfacine in rodents and non-human primates is not easily recon-
ciled with results from healthy human subjects, where the in�uence of single doses of Guanfacine on behavioural 
�exibility is inconclusive. Some studies report improved planning performance, improved working memory, and 
improved paired-associates learning24,25, while other studies did not see changes with Guanfacine on a broad 
range of executive function tests including spatial working memory, problem solving, intra-/extra- dimensional 
attentional shi� and behavioural inhibition tasks26. �is mixture of results in healthy humans following admin-
istration of a single dose contrasts to those from ADHD diagnosed subject groups in which Guanfacine has been 
found at the group level to improve interference control (Stroop task), and to enhance sustained attention in the 
continuous performance task (e.g. refs 27,28). �ese task improvements in clinical populations re�ect enhanced 
attentiveness (i.e. detecting more target stimuli, showing less omission errors) and reduced impulsiveness (i.e. 
higher capability to correctly withhold responding to non-target stimuli, less commission errors)27.

Here, we apply a computational psychiatry approach to understanding a2A-NA drug action on higher cog-
nitive functions, examining how a formal framework can add clarity to the complex empirical state of a2A-NA 
e�ects. Computational psychiatry includes as one branch quantitative Bayesian and Reinforcement learning (RL) 
modeling of drug actions on higher cognitive functioning28. Testing formal Bayes and RL models of drug action 
promises critical bene�ts over non-formal approaches. Firstly, they come with statistical tools of model selec-
tion and validation, thereby making it possible to quantitatively test di�erent theoretical constructs. Secondly, 
common model parameters provide a common language that facilitates comparisons between di�erent studies, 

Figure 2. Dose-dependent improvement of reversal learning performance. (A) Illustration of the dose-
identi�cation protocol with blinded application of sterile water (control condition) or 0.15 mg/kg Guanfacine 
on two successive days in the �rst 5 weeks, and 0.075 mg/kg on two successive days in the last 5 weeks. No drug 
or vehicle was administered in week 6. (B) Average proportion of rewarded choices for the control and drug 
conditions. �e bracket connects those points with statistically signi�cant di�erences (Wilcoxon rank sum test). 
�e grey background additionally highlights the signi�cantly di�erent pair. (C) Average proportion of rewarded 
choices separated by the time of change (top: simultaneous dimming; middle: rewarded stimulus dims �rst; 
bottom: rewarded stimulus dims second) of the rewarded versus the unrewarded stimulus for the Control and 
Guanfacine conditions. A signi�cant di�erence was only found in the simultaneous dimming condition  
(top) between the control and 0.075 mg/kg/24 h condition (grey background, Wilcoxon rank sum test).  
(D) Proportion of rewarded choices across trials since the colour-reward reversal (top panel) and the evolution of 
p-values (as −log(p)) (bottom panels). Dark grey box highlights the trials with signi�cantly better performance 
in the Guanfacine 0.075 mg/kg/24 h condition compared to the control condition (Wilcoxon rank sum test). 
(E) Proportion of trials with a premature abortion (�xation breaks) prior to onset of the stimulus colour. �ere 
were statistical trends for increased premature trial abortions with higher Guanfacine dosages. (F) Signi�cant 
reduction of erroneous �xation breaks (e.g. toward the peripheral stimuli and without reaching the response 
targets) during the dimming of the stimuli with Guanfacine 0.075 mg/kg/24 h compared to the control conditions 
(Wilcoxon rank sum test).
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task paradigms, and subject groups. �irdly, quantitative model selection enables single subject predictions of 
behavioral drug e�ects29. We utilize these bene�ts of a computational framework to identify which model and 
model parameters best account for alpha 2A in�uences on the performance of a healthy macaque monkey in a 
feature-based reversal learning task.

Results
We reviewed the literature in order to identify non-human primate studies where systemically delivered 
Guanfacine improved cognitive performance (Table 1). �e literature showed no consensus in the concen-
tration of Guanfacine that produced observable improvement in a number of various behavioral paradigms. 
Furthermore, between the tasks used to test the e�cacy of Guanfacine, there seemed to be considerable variation 
amongst the cognitive demands required for the performance of each task. �is leads us to conclude that there 
is a lack of clarity revolving the speci�c cognitive change brought about by Guanfacine that leads to behavioral 
improvement. Across the 11 studies we found we broke down the (n =  14) behavioral paradigms used to evaluate 
Guanfacine into six temporally sequenced processing demands: stimulus encoding, working memory, attentional 
or interference control, choice/stimulus response mapping, learning requirement and formalized decision vari-
able. Not all processing demands were present in every behavioral paradigm, of the 14 tasks in the 11 studies, 5 
tasks had a demand on working memory, 11 tasks explicitly required attention or interference control, 8 de�ned 
a learning requirement and only 1 study quanti�ed the in�uence of a formal decision variable using a computa-
tional model (see Table 1). Notably, of the 9 tasks that did not contain an explicit working memory component, 7 
reported improvements using Guanfacine with at least one concentration tested. �is survey result suggests that 
there are likely multiple routes through which Guanfacine a�ects goal directed behavior in addition to working 
memory.

We also noted the concentration used by each study, whether the study involved aged primates, and noted if 
an e�ect was or was not found using that concentration (Table 1). �e concentrations with which task-related 
improvement was observed ranged from 0.00001 mg/kg to 0.2 mg/kg. �e concentration range was broad for 
studies that used both aged and non-aged primates. Studies suggest that higher concentrations of Guanfacine 
shi� its locus of action from post-synaptic to pre-synaptic a2A-NAR30. Pre-synaptic a2A-NAR’s are present in 
the locus coeruleus (LC) and act as inhibitory auto-receptors reducing NE release throughout the cortex31. �is 
suggests that depending on the concentration of Guanfacine used, di�erent adjustments to behavior may result 
from pre-synaptic a2A-NAR driven shi�s of NE concentrations5, which may help explain the variability seen in 
Table 1. From a general perspective this survey illustrates that Guanfacine can improve performance for healthy 
monkeys at di�erent age groups, for tasks requiring multiple di�erent processing components, and for concen-
tration ranges bene�tting behavior that are highly variable and presumably subject speci�c. We believe that this 
lends power to single subject studies in which careful analysis of the cognitive change from Guanfacine borne 
improvement can help inform us of its mechanism of action.

For this purpose, we report the in�uence of systemic Guanfacine injections on behavioural performance in a 
single case of a macaque monkey performing a feature-based reversal learning task (Fig. 1), in an initial 11-week 
dose-identifying test protocol and a subsequent 19-week behavioural testing protocol using the best working dose 
(for details, see Supplementary Methods).

During the initial 11-week drug testing protocol four doses were tested with a two doses per week schedule 
(see Fig. 2A), yielding for the lowest to highest dose 4, 4, 4, and 3 test sessions with 45, 31, 41, and 21 reversal 
blocks and 3049, 2091, 2068, 1418 trials for analysis of task performance, respectively. No drug dose had a sys-
tematic e�ect on the overall number of learned reversal blocks, but we found a dose-dependent e�ect in more 
�ne-grained performance metrics. Firstly, the overall accuracy indexed as the overall proportion of rewarded over 
unrewarded choices was signi�cantly enhanced with the 0.075 mg/kg/24 h dose compared to the control condi-
tion (Wilcoxon rank sum test, p =  0.0031), with no di�erences between control condition and 0.075 mg/kg/48 h, 
0.15 mg/kg/24 h, and 0.15 mg/kg/48 h dose condition (all n.s.) (Fig. 2B). �is enhanced overall performance 
improvement in the 0.075 mg/kg/24 h dose was particularly evident when calculated for the one third of trials 
in which the rewarded and unrewarded stimulus changed (dimmed) at the same time (Wilcoxon rank sum test, 
p =  0.019 for the di�erence of 0.075 mg/kg/24 h to control), compared to the other two third of trials in which the 
rewarded stimulus dimmed either before or a�er the unrewarded stimulus (Fig. 2C). �e stimulus change (dim-
ming) acted as go cue to elicit the choice if it occurred in the attended stimulus (see Methods). We next tested 
whether Guanfacine a�ected performance at di�erent stages of reversal learning and found that 0.075 mg/kg/24 h 
of Guanfacine signi�cantly increased performance over the control condition at trials 7 to 21 a�er the reversal 
event, i.e. during the learning period of the task and prior to asymptotic performance (see Fig. 2D, Wilcoxon rank 
sum test p values of p <  0.05 are shown on grey shaded area as − log(p)). In addition to this improved perfor-
mance during learning with the 0.075 mg/kg/24 h dose of Guanfacine, we found reduced performance at trials 10 
to 14 a�er colour-reward reversal for the highest dose (0.15 mg/kg/48 h) compared to the control condition (see 
Fig. 2D, Wilcoxon rank sum test p values of p <  0.05 are shown on grey shaded area as − log(p)). �e improved 
performance at low dose and decreased performance at high dose are thus occurring during overlapping time 
periods during the learning of reversed colour-reward associations.

Analysis of the pattern of errors showed that there were similar amounts of premature �xation break errors 
prior to any stimulus change event with 0.075 mg/kg/24 h compared to control days, while higher doses were 
loosely linked with a statistical trend to higher proportions of premature �xation break errors (Wilcoxon rank 
sum test, p =  0.0518) (Fig. 2E). Moreover, 0.075 mg/kg/24 h Guanfacine, but no other dose, signi�cantly reduced 
erroneous �xation breaks during the 0.5 sec. time period of the actual stimulus change (dimming) compared to 
the control condition (Wilcoxon rank sum test, p =  0.031). Further analysis of other subtypes of errors and their 
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relation to the learning improvement were hampered by the low number of errors and the low number of testing 
days during the dose-testing protocol.

�e previous results identi�ed 0.075 mg/kg/24 h Guanfacine as bene�cial for reversal learning performance. 
Higher dosages caused either no change, or were detrimental for performance and learning relative to control 
days. �is may be due to shi�s along the theoretical inverted-U plot of concentration for optimal behavioral per-
formance that many endogenous compounds and exogenous drugs share where concentrations that are relatively 
too low or too high are detrimental32. In our study, our subject bene�ted from 0.075 mg/kg/24 h Guanfacine 
suggesting that this dose placed them closer to the peak of this inverted-U curve of optimal behavior relative 
to the higher dose. We tested this behaviourally bene�cial dose for an extended 19-week testing protocol to test 
which of the behavioural performance e�ects would predominate and remain evident in a larger, statistically 
more robust dataset, and are independent of possible in�uences from additional injections of the drug in the 
same week. During this optimal dose testing protocol, the animal performed on average a similar number of 
reversal blocks per session in Control sessions (n: 7.96, SE: 0.38) and in Guanfacine sessions (n: 7.79, SE: 0.55) 
(Wilcoxon rank sum test, p =  0.4938). �is provided a similar total number of reversal learning blocks for analysis 
in Control (n: 151 blocks) sessions and Guanfacine (n: 148 blocks) sessions with a total of 19632 trials for analysis. 
Across sessions, the average number of performed choices was similar for Control days (n =  332.37, SE: 14.63) 
and Guanfacine days (n =  334.21, SE: 18.27) (Wilcoxon rank sum test, p =  0.12). Similarly, analysis of the pattern 
of erroneous choices, �xation breaks indicative of distractibility, or perseverative errors indicative of in�exibility 
showed no prominent e�ect of Guanfacine compared to Control day performance during the 19-week testing 
period (Supplementary Results 1).

�ese results illustrate that Guanfacine administered once a week for 19 weeks does not simply improve over-
all accuracy and reduce distractibility when administered at the dose (0.075 mg/kg) that has proven to improve 
accuracy and reduce distractibility during the multi-dose test protocol. However, the prolonged 19-week testing 
could entail more speci�c e�ects on subsets of trials during reversal learning, similar to the speci�c improvement 
of behaviour during trials 7–21 since reward reversal reported above (see Fig. 2D). To test for such e�ects of 

Figure 3. Comparison of reversal learning on Guanfacine days versus Control days. (A) Distribution of the 
proportion of trials at which learning was statistically identi�ed across blocks in control sessions (upper panel) 
and in Guanfacine sessions (bottom panel). Open triangles denote the median learning trial (trial 12 for control, 
and trial 10 for Guanfacine sessions). (B) Overlay of the smoothed distribution lines from (A) illustrating a shi� 
to faster learning blocks relative to slower learning blocks in the Guanfacine condition. (C) Median probability 
of rewarded choices since the reversal across all blocks that showed learning in control (black) and Guanfacine 
(red) sessions. �e dark grey bar denotes the trial with a di�erence between conditions signi�cant at p <  0.05 
(dark grey), or only approaching signi�cance at p <  0.1. (D) Di�erence of the average probability of rewarded 
choices in control and Guanfacine condition. Grey bars as in (C).
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learning we used an ideal observer approach to quantify when the succession of monkey choices indicates the 
actual learning of a colour-reward association since the time of colour-reward reversal (see Methods). We �rst 
veri�ed across multiple examples that the ideal observer estimate of learning success reliably indexed reversal 
learning (Supplementary Fig. 1). Using the ideal observer statistics for extracting the learning trials across ses-
sions showed that the median learning was two trials earlier on Guanfacine days (median learning: trial 10) than 
on Control days (median learning: trial 12) (Fig. 3A). Directly comparing the distribution of learning trials across 
sessions between conditions illustrates that the proportion of blocks with relatively fast learning, within 10 trials 
a�er reward reversal, was enhanced with Guanfacine, while there were less blocks with slower learning in trials 11 
to 18 a�er reward reversal (Fig. 3B). To test statistically whether the di�erence between Guanfacine and Control 
conditions is evident at speci�c trials since reversal we directly compared the ideal observer con�dence (which is 
the probability of making rewarded choices) between conditions on a trial-by-trial basis (Fig. 3C,D). We found 
that the probability of rewarded choices was signi�cantly larger during 0.075 mg/kg Guanfacine than during 
Control days on trials 8–10 a�er reversal (p <  0.05, randomization test with multiple comparison correction, 
individual p values for trials 8–10 were: p =  0.0432, p =  0.0343, and p =  0.0359, respectively) (Fig. 3C,D). We next 
looked at the consistency of the behavioral enhancement of Guanfacine over all blocks in each recording day and 
found reliable enhancement early in the block but not late, and on average learning e�ects did not �uctuate across 
experimental sessions (see Supplementary Fig. 2 and Supplementary Results 2 and 3). In order to discern possible 
long-term e�ects of drug administration that may have an in�uence on overall performance we tested control 
session performance during the 19 week drug testing and found that learning performance remained similar for 
early and later control sessions (Supplementary Results 4).

Reinforcement learning mechanisms underlying faster versus slower learning. �e above results 
provide quantitative evidence that Guanfacine increases the proportion of blocks in which learning happens 
fast, i.e. within ~10 trials a�er reversal, relative to those blocks in which learning is slower. Such faster learning 
could be achieved by various underlying mechanisms that learn the reward value of stimulus features through 
trial-and-error (Fig. 4A). To discern which mechanism could underlie faster learning with Guanfacine we devised 
various learning models using either reinforcement learning (RL) of value predictions, Bayesian learning of 

Figure 4. Reinforcement learning (RL) modeling of reversal learning during drug and control sessions. 
(A) Conceptual overview of the basic RL parameters (le�) and RL mechanisms (right) used to account for 
feature based reversal learning. In the RL framework the selection of a stimulus depends on the (Q-) value 
prediction for the features of that stimulus (colour, location, and motion direction). Value representations can 
be weighted to enhance the in�uence of relevant features. Experiencing the outcome of stimulus selection and 
the saccadic choice results in a prediction error (PE), which is used to update the value prediction for future 
trials scaled according to a learning rate. In addition, previous studies suggest that values of non-chosen features 
decay according to a decay rate. (B) �e log likelihoods for eight models described in the main text. Lower LL’s 
indicate better trial-by-trial prediction of the rewarded target stimulus. Error bars are STDs across 100 cross-
validation training datasets. (C) �e Feature-Weighting +  Decay model provided the best LL prediction not 
only for the cross validation training datasets (see B), but also for independently predicting the 20% of reversal 
blocks of the test dataset. �e panels show the di�erence in LL for the cross validation test data for all models 
relative to the best model. More negative values denote worse test data prediction. Red and blue points (B) and 
bars (C) denote LLs for the Guanfacine and control sessions, respectively.
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reward probabilities, or hybrid approaches combining Bayesian learning and RL learning mechanisms33,34 (see 
Methods).

Evaluating the di�erent models using log-likelihood based optimization and cross-validation showed that 
both, drug and control performance, was best predicted by the same model (Fig. 4B,C) and Supplementary Fig. 3). 
�is feature-weighting plus decay (FW + Decay) RL model combined Bayesian- and RL- mechanisms using four 
parameters (see Fig. 4A): (1) An α parameter weights the relevance of stimulus features (color, location, and 
motion direction) in predicting high reward probabilities; (2) An η parameter implements the learning rate 
(scales the prediction error signal); (3) A β parameter sets the noise level of a so�max selection process for choos-
ing one versus the other stimulus (i.e. it translates di�erences in value predictions into choice probabilities); (4) A 
decay parameter (ω) scales how much the reward-value predictions of non-chosen stimulus features decay over 
time. With these four parameters the choice patterns on both, drug and control days were predicted with highest 
accuracy (Fig. 4A,B). Alternative models with either the same number or fewer parameters (e.g. without the α, 
or ω parameter) were less accurate in predicting choices as was evident in larger model log likelihoods for the 
training cross validation set (Fig. 4B), worse log likelihoods for the test cross validation set (Fig. 4C), and larger 
deviations (Sum of Squared Errors) of the model generated choice probabilities relative to monkey proportion of 
choices (Supplementary Fig. 3).

To ensure that the performance of the FW +  Decay RL model was not spurious due to using four parameters 
instead of three or two, we calculated the Akaike Information Criterion (AIC). �e AIC penalizes model perfor-
mance by the number of free parameters and show lowest AIC values for the model that conveys most informa-
tion a�er considering the number of free parameters. We found that the FW +  Decay RL model had the lowest 
AIC score (AIC: 3023.0) compared to all other models tested including a FW (feature-weighting) model with only 
three parameters lacking the decay parameter (AIC: 3331.1), and a Feature Value Decay RL model (see model 2 

Figure 5. Performance and parameter values for the most-predictive RL model. (A,B) Proportion of 
rewarded choices for the monkey and model across trials since reversal in Guanfacine (A) and control (B) 
sessions. �e model simulations are based on the best predicting Feature-Weighting +  Decay RL model (see 
Fig. 4). �e inset shows the sum of squared errors (SSD) between the proportion of correct monkey choices 
(x-axis) and the choice probability of the model across trials since reversal. (C) �e average parameter values 
for n =  100 models �tted to subsets of 80% (cross-validation) reversal blocks for the Guanfacine (red) and 
control (blue) sessions. Errors bars denote STD. �ree stars denote signi�cance at p <  0.001 a�er Bonferroni 
correction). Guanfacine reversal performance was based on models with higher learning rate, higher decay rate 
and lower beta (so�max selection noise).
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in methods) that included the value decay parameter, but lacked the relevance weighting of feature dimensions 
(AIC: 3394.6).

We next quantified whether the drug and the control performance was supported by different param-
eter values of the best �tting FW +  Decay RL model. To this end we used the parameter values of the 80/20 
cross-validation training sets as estimate for the variability of the parameter values across subsamples of the 
reversal blocks (Fig. 5C). We found that Guanfacine performance showed a higher learning rate (η drug: 0.648 
STD:0.118, η control: 0.561 STD:0.081, t-value: 6.1, p <  0.001, after Bonferroni correction) and a stronger 
value-decay (ω drug: 1.179 STD:0.108, ω control: 1.043 STD:0.092, t-value: 9.529, p <  0.001, a�er Bonferroni 
correction). Notably, the beta parameter value was signi�cantly lower for the drug condition than the control 
condition (β drug 2.12 STD:0.048 vs. β control 2.18 STD:0.053, t-test, t-value − 7.59, p <  0.001, a�er Bonferroni 
correction). Alpha values of the optimal model for Guanfacine performance (α =  0.41, STD 0.126) and control 
performance (α =  0.44, STD 0.084) were not signi�cantly di�erent (Fig. 5D, t-test, t-value − 2.18, p >  0.05, a�er 
Bonferroni correction).

We next validated that the observed parameter value space of the RL model for Guanfacine does indeed relate 
to the main behavioral analysis results showing faster learning with Guanfacine (see Fig. 3). To this end we �t the 
FW + Decay RL model to subsets of reversal blocks showing fast, intermediate and slow learning. �is approach 
allows identifying the set of model parameter values that best explains the di�erent reversal learning speeds using 
the actual choices of the monkey. Blocks were split into �ve bins according to whether the ideal observer statistics 
used in the behavioral analysis (see Fig. 3) identi�ed learning to have occurred within trials 1–10, 5–15, 10–20, 
15–25, or > 20). Data from both, drug and control conditions were combined for this analysis to retain maximal 

Figure 6. Parameter values for the Feature-Weighting + Decay RL model applied to di�erent sets of 
reversal blocks showing slow and fast learning. (A–D) �e value decay parameter values (y-axis) of the feature 
value decay model optimized for di�erent sets of reversal learning blocks (x-axis). Bins with fast to slow reversal 
learning contained blocks selected according to the learning trial identi�ed by the ideal observer statistics 
applied for results in Fig. 3 (see Methods). �e �ve bins were 10 trials wide and slid over the data every 5 trials. 
�e mean learning trial for each of the �ve bins was 6 (SE 2.6), 9.9 (SE 2.8), 14.8 (SE 3.0), 20.3 (SE 2.7), and 27.3 
(SE 5.5). �e panels show the optimal values for the parameters value decay (A), beta (B), eta (C), alpha (D). 
�e error shading denote 95% con�dence intervals.
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number of blocks in each bin when optimizing for minimal negative log-likelihood of the model �t. We found 
that faster reversal learning speed is characterized by a model with higher learning rate (η) (Fig. 6C) and relatively 
larger feature-value decay (Fig. 6A). �e beta parameter value remains high (β values > 1.95) for the �rst three 
bins with relatively fast learning (with mean learning occurring at trials 6 (SE 2.6), 9.9 SE 2.8, and 14.8 (SE 3.0)) 
and is relatively lower in the slowest two sets of learning blocks (with mean learning occurring at trials 20.3 (SE 
2.7) and 27.3 (SE 5.5)) (Fig. 6B). �e α parameter value varies non-monotonically across the sets of learning 
speed (Fig. 6D). �is pattern of learning speed dependent changes in parameter value space closely corresponds 
to the overall e�ect of Guanfacine on RL parameter values showing enhanced learning rate and enhanced value 
decay for non-chosen values (above). In summary, this analysis establishes a link between the behavioral analysis 
showing faster learning with Guanfacine and the RL model �tting approach showing variations of parameter 
values best explaining the learning behavior under Guanfacine.

Figure 7. Relation of model parameters underlying reversal performance. (A–C) Changes in learning rate 
(x-axis) across n =  100 cross validation training models are positively correlated with value decay (A) and beta 
selection noise (B), and negatively correlated with feature weighting (C). Red and blue numbers denote the 
correlation coe�cient for Guanfacine (red) and control (blue) data points. (D–F) Same format as (A–C) but 
showing scatterplots of the correlation between beta selection noise, decay rate and feature weighting.
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�e modeling results showed that Guanfacine performance is linked to changes of more than one RL parame-
ter raising the question on whether the model parameters are a�ected independently, or whether they co-vary to 
account for the faster learning performance. We tested this question by correlating the values of pairs of param-
eters from the optimal FW +  Decay RL model of the n =  100 subsampled datasets (from the 80/20 training cross 
validation runs). �is analysis showed signi�cant correlations among all parameter pairs (Fig. 7). Larger learning 
rates were associated with larger value decay (ω) and larger β values (Fig. 7A,B,D), while larger feature-weighting 
(α) was associated with lower learning rate, β, and feature value decay (ω) (Fig. 7C,E,F). �ese �ndings corrob-
orate the suggestion that compared to control performance Guanfacine modulates the values of more than one 
parameter and hence acts on multiple RL mechanisms.

Discussion
Using behavioral analysis and computational modeling of a single subject’s performance, we found that 
Guanfacine can enhance speci�c reinforcement learning mechanisms supporting reversal learning. Initial dose 
testing over a short time period showed that this concentration was capable of enhancing overall performance 
and reducing distractibility from simultaneous luminance changes occurring in non-relevant and relevant stim-
uli (Fig. 2). Higher doses of Guanfacine did not improve performance and, when given for two successive days, 
signi�cantly reduced performance. �e second, longer experimental phase similarly showed improved learning 
e�ects with the best Guanfacine concentration, becoming evident in reliably faster reversal blocks with increased 
learning success within the �rst 10 trials in the drug condition compared to the control condition. �is enhance-
ment in reversal learning was evident in the absence of changes in other performance measures such as (1) overall 
motivation to perform the task (number and length of performed trials), (2) attentional interference control 
(in�uences of distractors on accuracy), (3) impulsivity (proportion of premature responses), or (4) perseveration 
tendencies (repetitions of unrewarded responses). Analysis of the reinforcement learning mechanisms identi�ed 
one model that best accounted for both, drug and control performance. �e model parameter values suggested 
that the Guanfacine e�ect on fast learning is not achieved by modifying a single learning parameter. Rather, our 
�ndings suggest that Guanfacine may shi� values in the parameter space of the reinforcement learning towards 
higher learning rates and more pronounced decaying of the value of non-chosen stimulus features. Both of these 
parameters showed higher values for faster as opposed to slower learning blocks validating that the Guanfacine 
e�ect on learning improvement could originate from larger learning rates and stronger decay of feature values 
of non-chosen stimuli. In summary, these �ndings indicate that Guanfacine facilitated behavioural �exibility at 
the subject-speci�c drug concentration in a task requiring selective attention to the value of stimulus features 
and their reward outcomes over multiple reversals of stimulus relevance per daily session. �ese results may have 
implications for the clinical usage of Guanfacine for treating ADHD and multiple other conditions characterized 
by learning disabilities, attention de�cits, or impaired behavioural �exibility1,32.

Alpha 2A noradrenergic action supports multiple routes to behavioural flexibility. �e primary 
behavioural signature of Guanfacine in our task is an enhanced reliability to learn from trial-and-error during 
the �rst ten trials a�er reversal. �is reversal was un-cued and hence became apparent to the subject by experi-
encing unexpected erroneous outcomes a�er attending a now non-rewarded (in the current block), but previ-
ously rewarded (in previous block) stimulus colour. Guanfacine enhanced the likelihood to use these erroneous 
outcomes and to increase more quickly the ideal observer con�dence that a new colour has become rewarded. 
�is behavioural pattern parsimoniously can be described to re�ect enhanced �exibility to adjust to changing 
reward contingencies in the task environment, e.g. by identifying how a current task situation (or ‘state’) dif-
fers to a previous situation35 and by updating the internal beliefs about feature-reward contingencies36,37. Such 
update-speci�c action of noreprinephrine has been inferred in previous human studies from putatively norep-
inephrine mediated pupil dilation changes speci�cally during task epochs that required an update of beliefs to 
better predict future events36 and to better predict future saccade target locations37. �ese studies support the 
interpretation that the main e�ect of Guanfacine in our task was to facilitate the updating of color-reward contin-
gencies during the learning process. According to this interpretation, Guanfacine increases endogenous control 
over stimulus selection during periods when changing environmental reward contingencies call for adjusting 
beliefs and behavior38,39. �ere are multiple routes how such a higher level e�ect could be implemented and 
supported by Guanfacine action. For example, to improve �exibility in responding to environmental changes 
can be achieved by (1) enhanced attentiveness and control of interference from distractors, (2) from preventing 
perseverations and habitual responding, (3) from increased vigilance and arousal, (4) from increasing the rep-
resentations about which features are relevant in a working memory that persist across trials, or (5) from lowering 
impulsive response tendencies.

Among these many possibilities of Guanfacine action, the best understood e�ect is enhanced working mem-
ory. Previous nonhuman primate studies have documented improved working memory performance in delayed 
response, delayed match-to-sample, and delayed non-match-to-sample tasks, requiring short-term maintenance 
of stimulus locations and object identities1. Young and aged nonhuman primates tolerate increased delays at sub-
ject speci�c Guanfacine doses ranging from as low as 0.00015 to 0.5 mg/kg (see Table 1). �is working memory 
bene�t has been traced back to Guanfacine induced increases in spatially speci�c delay �ring in lateral PFC4,5. 
�is prefrontal e�ect of a2A-NAR activation is well explained by blocking cAMP signaling and concomitant 
increases in NMDA conductance at the spines of pyramidal cells4,5,40.

�ese insights reveal that a2A-NAR activation speci�cally increases task relevant representations in the PFC, 
making it likely that such an e�ect contributes to the behavioural improvements that we report. �is contribution 
would be plausible if Guanfacine would not only increase the representation of stimulus location or prospec-
tive saccade location that would explain previous studies’ e�ects, but if it would enhance the representation of 
colour-reward conjunctions irrespective of the location or saccadic action plan. An enhanced working memory of 
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which stimulus features are currently task relevant (rewarded) could reduce the need for explorative choices and 
increase the con�dence in trial-by-trial selections9. �ese e�ects could indirectly become visible in the enhanced 
decay, i.e. active suppression, of values from non-chosen stimuli, and thus could culminate in faster learning rates 
as we observed in the RL model. However, this account predicts that Guanfacine should not only improve the 
initial reversal learning, but should increase overall performance accuracy. We did not �nd this e�ect, suggesting 
that Guanfacine’s primary behavioral e�ects are on alternate mechanisms.

One alternate mechanism that has been associated with phasic noradrenergic activation is enhanced control 
of interference, a main pre-requisite for �exible behaviour that strives towards achieving a goal irrespective of 
distractions8,41,42. Evidence for this suggestion derives from rodent studies43 (see also ref. 44) and from human 
studies describing reduced scores of distractibility in ADHD patients treated with Guanfacine27. Intriguingly, 
we observed enhanced focusing in our task during the three sessions of drug testing at the optimal 0.075 mg/kg 
dose with enhanced performance during trials with an enhanced stimulus con�ict, i.e. when targets and distrac-
tors dimmed simultaneously rather than at separate times (Fig. 2D). However, this e�ect did not retain across 
the nineteen-week behavioural testing sessions that commenced a�er the dose testing at the same concentra-
tion (0.075 mg/kg), which notably is in the same range (0.05–0.12 mg/kg) proposed to be e�ective for extended 
release medication in ADHD45,46. �is suggests that the in�uence of a2A-NAR activation on interference control 
at the dose tested is not a primary e�ect in healthy brains and may only appear when the attention system is 
compromised. �is conclusion resonates with the di�culty to observe Guanfacine e�ects in healthy humans 
on attentional set shi�ing tasks19, and with a previous Guanfacine study in aged monkeys showing an improved 
performance to select rewarded over non-rewarded objects that were reversed once over the course of a week47. 
Taken these lines of evidence together suggests that Guanfacine’s in�uences on interference control do not explain 
our main �ndings in this study, but rather may be unmasked in aging or disease states when the strength of target 
representations is compromised.

Another contribution to improved learning in our task could be an increase in vigilance, or so-called ‘scanning 
attentiveness’ that has been hypothesized to be a main route for noradrenergic action30. �is aspect is particu-
larly important for our task, because it required repeated reward reversals in a single experimental session that 
continued for an extended duration (≥ 55 min) until the subject self-terminated working. We can rule out that 
Guanfacine simply prolonged vigilance, as we did neither observe longer performance, nor a change in the aver-
age number of learning blocks per session, and learning speed at the end of experimental sessions was similar for 
control and Guanfacine days (Supplementary Fig. 3).

Reinforcement learning modeling of behavioural drug effects advances computational psychiatry.  
Our study tested eight reinforcement learning models to recover the possible learning mechanisms underlying the 
observed behavioural drug e�ect on reversal learning and arrived at the same model, the feature-weighting +  decay 
(FW +  decay) RL model, to account for both, drug and control reversal learning. We found that this model pro-
vided the best independent prediction for test-data during cross-validation (Fig. 4C), and allowed the generation 
of choices that closely resembled the subject’s choice patterns (Fig. 5A,B). Moreover, we found that the two model 
parameters that characterized faster learning during Guanfacine than control sessions, were directly linked to 
the results from the model-free behavioral analysis results that showed faster learning with Guanfacine. �is 
observation provides evidence that the model captures some fundamental learning principles underlying task 
performance, supporting the notion that such modeling will be pivotal to understand the working mechanisms 
of behavioural neuromodulation48 and, more generally, to approach better testable theories of cognitive dys-
function in the new �eld of computational psychiatry49. We see our RL modeling as an early starting point to 
approach individualized, subject-speci�c characterization of cognitive pro�les that are called upon in currently 
developed neuropsychiatric research frameworks (e.g. ref. 50). �is framework accepts that there will be indi-
vidual di�erences in learning and choice behaviors that call upon the characterization of what could be called a 
subject-speci�c drug e�ect on the parameter space of the underlying learning and attention systems. We embrace 
this approach with this single-case monkey study, but note the necessity that large samples of subjects are needed 
to arrive at conclusions that hold at the population level. We expect that future studies will extend this modeling 
endeavor, for example, by separating learning rates from sensitivity to reward per se51, dissociating value-based 
prediction processes from value-independent biases of subjects (e.g. ref. 34), and estimating the type of state rep-
resentation that best explains value predictions and choices in various tasks employed33,52,53.

In conclusion, the results presented here illustrate how a computational approach links the in�uence of alpha 
2AR activation to variations of formally de�ned reinforcement learning mechanisms. We expect that such a 
linkage will be pivotal to advance our understanding of higher-order cognitive phenomena such as distractibil-
ity and �exible adjustments of attentional sets following feedback29. Firstly, these phenomena closely relate to 
fundamental RL mechanisms and thus can be captured with a common terminology in a unifying theoretical 
framework28,54,55. Such common terminology will facilitate comparison of results between studies, task para-
digms, study subjects and between species. Secondly, the power to predict single-subject drug e�ects on behavior 
bears enormous potential for individualizing treatments in psychiatry. For example, recent studies have shown 
that knowledge of the formal model and parameter values best describing individual subjects, provide hints to 
the underlying cognitive weaknesses that can be targeted with drugs a�ecting those speci�c weaknesses (e.g.  
refs 56,57). �irdly, we believe that a computational framework as we applied here may prove to be essential to 
identifying the neuronal mechanisms underlying the neurochemistry of higher cognitive functions. A main rea-
son for this potential is that formal Bayesian and RL models provide essential information about hidden variables 
that account for variations in behaviour not captured by raw performance data (e.g. refs 58,59).
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Methods
Subject and apparatus. Data was collected from a 9 year-old male rhesus macaque (Macaca mulatta). 
All animal care and experimental protocols were approved by the York University Animal Care Committee and 
were in accordance with the Canadian Council on Animal Care guidelines. Eye positions were monitored using 
a video-based eye-tracking system (Eyelink 1000 Osgoode, Ontario, Canada, 500 Hz sampling rate), and cali-
brated prior to each experiment to a 9-point �xation pattern. During the experiments, stimulus presentation, eye 
position monitoring, and reward delivery were controlled via MonkeyLogic (open-source so�ware http://www.
monkeylogic.net). Reward was delivered as liquid drops from a sipper tube in front of the monkey’s mouth and 
controlled from an air-pressured mechanical valve system (Neuronitek, London, Ontario, Canada). To ensure the 
monkey’s motivation, �uid intake was controlled during training and experimental sessions; unrestricted access 
to monkey chow was available. �e experiments proceeded in a dark experimental booth with the animal sitting 
in a custom made primate chair with the eyes 65 cm away from a 21′ LCD monitor refreshed at 85 Hz.

Behavioural paradigm. The monkey performed a variant of a feature-based reversal learning task47 
that required covert spatial attention to one of the two stimuli, the identity of which depended on the current 
colour-reward association. To obtain reward, an up-/downward saccade had to be performed to the motion direc-
tion of the attended stimulus, which was varied independently from the colour of the stimuli. �e colour-reward 
associations were reversed in an un-cued manner between blocks of trials with constant colour-reward associa-
tion (Fig. 1A). By separating the location of attention from the location of the saccadic response, this task allowed 
studying visual attention functions independent of motor intention related processes during reversal learning. 
Each trial started with the appearance of a grey central �xation point, which the monkey had to �xate. A�er 
0.5–0.9 s, two black/white dri�ing gratings appeared to the le� and right of the central �xation point (Fig. 1B). 
Following another 0.4 s the two stimulus gratings either changed colour to black/green and black/red, or started 
moving in opposite directions up and down, followed a�er 0.5–0.9 s by the onset of the second stimulus fea-
ture that had not been presented so far, i.e. if a�er 0.4 s the stimulus gratings changed colour then a�er another 
0.5–0.9 s they started moving in opposite directions or vice versa. A�er 0.4–1 s either the red and green stimulus 
dimmed simultaneously for 0.3 s or they dimmed separated by 0.55 s, whereby either the red or green stimulus 
could dim �rst. �e dimming represented the go-cue to make a saccade to one of two response targets displayed 
above and below the central �xation point (Fig. 1B). Please note that the monkey needed to keep central �xation 
until this dimming event occurred. A saccadic response following the dimming was only rewarded if it was made 
to the response target that corresponded to the movement direction of the stimulus with the colour that was 
associated with reward in the current block of trials, i.e. if the red stimulus was the currently rewarded target and 
was moving upward, a saccade had to be made to the upper response target at the time the red stimulus dimmed. 
A saccadic response was not rewarded if it was made to the response target that corresponded to the movement 
direction of the stimulus with the non-reward associated colour. A correct response was followed by 0.33 ml of 
water delivered to the monkey’s mouth. Across trials within a block, the colour-reward association remained con-
stant for 30 to a maximum of 50 trials. Performance of 90% rewarded trials (calculated as running average over 
the last 12 trials) automatically induced a block change. �e block change was un-cued, requiring the subject to 
use the reward outcome they received to learn when the colour-reward association was reversed in order to cov-
ertly select the stimulus with the rewarded colour. In contrast to colour, other stimulus features (motion direction 
or stimulus location) were only randomly related to reward outcome (Fig. 1C).

To ensure the deployment of covert attentional stimulus selection we dimmed the rewarded stimulus only 
a�er the dimming of the unrewarded stimulus in one third of the trials (requiring the attentional �ltering of the 
unrewarded stimulus). In another third of trials the rewarded and unrewarded stimulus dimmed at the same 
time, which probed the animal to focus attention prior to the dimming to resolve the stimulus con�ict from the 
simultaneous dimming. In the remaining third of trials the rewarded stimulus dimmed prior to the un-rewarded 
stimulus. �is timing regime ensured that �rst, second and same-time dimming of the rewarded versus unre-
warded stimulus occurred unpredictably for the monkey. Saccadic responses had to be initialized within 0.5 s a�er 
dimming onset to be considered a choice (rewarded or non-rewarded). All other saccadic responses, e.g. towards 
the peripheral stimuli, were considered non-choice errors.

Experimental procedures for dose identification testing protocol. In each experimental session the 
monkey was given the opportunity to perform the task for a minimum of 55 minutes a�er which, if he chose to 
continue, he could do so inde�nitely. However, if he chose to stop working, he was given an additional 5 minutes 
before the session was stopped by the experimenter. If a trial was successfully completed within these 5 minutes, 
the timer would re-set and allow him another 5 minutes before the daily behavioural session was ended. �is 
procedure led to an average working duration of 68.7 minutes (SE 0.21).

For treatment sessions, the monkey received an intramuscular (IM) administration of Guanfacine (Guanfacine 
hydrochloride, Sigma-Aldrich, St. Louis, MO), or an IM injection of sterile water at about 2.5 h before the �rst 
trial of the experimental session (across sessions the average time was 150.8 minutes (SE: 0.88)). �is time frame 
is similar to previous studies that have shown signi�cant e�ects of Guanfacine on cognition in young and aged 
monkeys14,30. Immediately prior to IM administration, Guanfacine was mixed with sterile water as vehicle; the 
total injection volume was 0.1 ml. Doses of Guanfacine investigated were 0.3, 0.15 and 0.075 mg/kg. 0.3 mg/kg was 
used in only two sessions and was discarded because it caused increased �xation breaks of the animal during the 
trial, which ruled out overall positive e�ects at that dose. Doses were chosen as previous studies have found sig-
ni�cant enhancements in cognition with similar doses of Guanfacine (e.g. ref. 14). We performed a meta-survey 
of all available nonhuman primate studies that used Guanfacine to evaluate the dose range and expected cognitive 
e�ects in our study (please see Table 1).

http://www.monkeylogic.net
http://www.monkeylogic.net
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To identify the dose of Guanfacine that is behaviourally bene�cial we applied an e�cient 11-week dose identi-
�cation testing protocol that allowed us to discern drug e�ects of the same dosage given on two consecutive days 
(Fig. 2A). All other days prior or following treatment days were control days with control injections. Treatment 
days were shi�ed randomly weekly and could occur on any two consecutive days during the week, thereby bal-
ancing the drug injection weekdays across the testing period. During the entire dose identifying protocol, drug 
administration was blinded, hence the experimenter did not know whether a given day was a treatment or control 
day. All experimental sessions were conducted at the same time of day. Prior to this experiment, the monkey had 
not received any Guanfacine, or any other catecholaminergic drugs, in an experimental setting.

Experimental procedures for optimal dose testing protocol. Following the 11-week dose testing 
protocol and a 4-week washout period we tested the in�uence of the dose that resulted in improved behavioural 
learning during the dose identifying test protocol. To this end we applied control injections on one day a week and 
Guanfacine (0.075 mg/kg) injections on another day of the week 75–120 min prior to commencing behavioural 
testing of the animal. Injection procedures were identical to those described above. �is optimal-dose testing pro-
tocol provided 19 control sessions and 19 sessions with Guanfacine 0.075 mg/kg. Behavioural task, �uid control 
regimes for the animal, and reward schedules were identical to the previous testing protocol.

Behavioural analysis of learning trials. Analysis was performed with custom MATLAB code 
(Mathworks, Natick, MA), utilizing functionality from the open-source �eldtrip toolbox (http://www.ru.nl/
fcdonders/�eldtrip/). To identify at which trial during a block the monkey showed statistically reliable learning 
we analyzed the monkeys’ trial-by-trial choice dynamics using the state–space framework introduced by Smith 
and Brown60 (see ref. 32, Supplementary Methods and Supplementary Fig. 1 for examples).

Testing for trial-by-trial differences of the probability of rewarded choices. To test whether the 
probability of rewarded choices di�ered between drug and control conditions in speci�c trials following the �rst 
trial a�er the reversal we applied permutation statistics. In particular, we tested the null hypothesis that the prob-
ability of rewarded choices at individual trials since reversal is the same in drug and control conditions. To test 
this hypothesis we extracted the average (median) probability of rewarded choices for each trial since the reversal 
until trial 30 across blocks of the Guanfacine condition and across blocks of the control condition. We used the 
di�erence in the average probability of rewarded choices between conditions for each trial since reversal as test 
statistics in a randomization test that corrected for multiple comparisons across trials. For the randomization 
procedure, we extracted the di�erence in the average probability of rewarded choices for each trial since reversal 
n =  1000 times with randomly assigned condition labels. To correct for multiple comparisons, we pooled the ran-
dom distributions across trials and calculated the 95% threshold value (the 28.500’s of 30.000 values) of the di�er-
ence in the probability of rewarded choices that would be obtained when the condition labels were unknown. We 
then compared the observed di�erences between Guanfacine and Control conditions in trials 1 to 30 to the 95% 
threshold value. If the observed di�erence at any trial in the block exceeds the threshold value it can be inferred 
that reward probability is signi�cantly higher in the Guanfacine compared to the control condition at p <  0.05. 
�is randomization procedure prevents multiple comparison correction by calculating a single threshold value 
across trials.

Testing for the consistency of learning differences across blocks within sessions. �e e�ect of 
Guanfacine on learning could be consistent within an experimental session, or it could increase or decrease across 
blocks within a session. We tested for the consistency of learning e�ects by �rst extracting the learning trials for 
all blocks performed during behavioural test sessions using the ideal observer estimate of learning described 
above61. We then calculated the average (median) learning trial across four successive blocks starting with the �rst 
four blocks since reversal and stepping from the �rst to the eights block of a session. For each set of blocks we cal-
culated the median learning trial in the Guanfacine sessions and in the control sessions. �is procedure provided 
the average learning trial for each block relative to the �rst block in a session. We then repeated the procedure, 
but starting from the last block in a session and going backwards, averaging the learning trials in the last four 
blocks, the second to last four blocks, etc. until the seventh to last block. �is procedure provided an estimate of 
the change in median learning trials relative to the end of the session. �is was done to account for the variability 
in the number of blocks completed in any given experimental session.

To test whether the average learning trials were consistently earlier or later in the Guanfacine condition rel-
ative to the control condition we used a randomization procedure. For this purpose we used as test statistics the 
proportion of blocks with an average learning trial that was earlier in the Guanfacine condition than in the con-
trol condition. �is test statistics included eight average learning trials since reversal and seven average learning 
trials since the last block in a session (see above and Fig. 5). We then tested the null hypothesis that the drug 
condition label (Guanfacine or Control) has no e�ect on the proportion of earlier learning trials. To this end we 
computed n =  1000 times the proportion of blocks with an earlier learning trial in a random condition A relative 
to condition B with random assignment of Guanfacine and Control blocks to conditions A and B. We then cal-
culated the p-value as 1 minus the proportion within which the truly observed proportion of blocks with earlier 
learning trials in the Guanfacine condition relative to the control condition exceeded the proportion of earlier 
learning in the n =  1000 random distribution. Guanfacine would consistently have resulted in earlier learning 
trials across blocks when the true observed learning trial was earlier than in control conditions in > 95% of the 
random distribution that was blind to the condition label.

http://www.ru.nl/fcdonders/fieldtrip/
http://www.ru.nl/fcdonders/fieldtrip/
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Reinforcement learning modeling. In order to infer possible learning mechanisms underlying the behav-
ioral drug e�ects we tested various computational models using reinforcement learning and Bayesian learning 
principles following an approach and terminology from Niv and Wilson and colleagues33,61. �ese models aim to 
�nd the potential variables that can predict which of the two stimuli the subject picks on a given trial given the 
history of stimuli, rewards, and choices on past trials up to trial t, which will be denoted by  t1: . We assume that 
the subject represents the past trials’ data as a set of values, rather than keep the entire past in memory, that is, 
there are quantities that can act as so called su�cient statistics. Models are comprised of specifying whether fea-
tures (color, motion, location), feature values (colour A, colour B, downward motion, upward motion, le�, right), 
or stimuli (combinations of feature values) are assigned a value, and how this value is updated following a new 
choice and its outcome (i.e. whether a reward was received or not).

�e �rst model, Feature-Value Reinforcement Learning (FV RL), assigns values to feature values that de�ne 
each stimulus. �ere are three features in each of the two stimuli, the location (le� (L) versus right (R)), the 
direction of motion (up (U) or down (D)) and the color (1 or 2). Across the whole experiment there are only two 
di�erent colors in each presented stimulus con�guration, hence we indicate them just as 1 and 2. �is yields six 
di�erent feature values: L, R, U, D, 1, 2, which we will label with the indices 1 to 6, the corresponding value is thus 
Vi. A presented stimulus has a value for each of three features, and thus possesses 3 feature value combinations 
(FVCs), the other stimulus has the remainder of the FVCs. All the FVCs corresponding to the chosen stimulus 
are updated, because each of them in principle could be a target that was rewarded, which of the three FVCs is the 
target can only be disambiguated across the presentation of multiple informative stimulus con�gurations. A�er 
receiving an outcome R (1 if rewarded, 0 if non rewarded) the value update is done according to

η= + −
+

V V R V( ), (1)i t i t t i t, 1 , ,

for all FVCs i that belong to the stimulus. �is equation ensures that when there is a di�erence between the 
received reward and the expected (predicted) reward, the value gets updated to get closer to the received reward–
implementing the delta rule of classical prediction error learning, with η  representing the learning rate. When 
η  =  1, the new value is set to Rt, when η  exceeds 2, the update becomes unstable, as it can grow without bound.

�e choice Ct (which stimulus) is made by a so�max rule according to the sum of values of each FVC that 
belongs to the stimulus. We indicate the stimulus by the index j and the set of feature values that belong to it by sj.

β

β
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∑ ∑
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∈

∈
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j i s i t
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�e second model, Feature-Value plus Decay Reinforcement Learning (FV +  Decay RL), is an extension of the 
�rst model, and includes in addition a decay constant, which reduces the value of the FVCs of the stimuli that 
were not chosen. �e feature values belonging to the chosen stimulus are updated according to eq. 1. �e feature 
values i of the non-chosen stimulus decay according to

ω= −
+

V V(1 ) , (3)i t i t, 1 ,

�e decay parameter is denoted by ω . �e choice is made as before (eq. 2).
�e third model, Feature-Value with 2-Learning Rate Reinforcement Learning (FV +  2 Eta RL), is also an 

extension of the �rst model, in that it includes two di�erent learning rates, one for when the choice is rewarded (η 1)  
and the other (η 0) for when it is not. �e value update proceeds according to

η η= + − + −
+

V V R R R V( (1 ) )( ) (4)i t i t t t t i t, 1 , 0 1 ,

�e choice again is made as described before (eq. 2).

Bayesian learning modeling. �e remaining models have a Bayesian component, which we introduce 
here and which has been described in detail elsewhere33. �e learning goal is to choose the stimulus that gives a 
reward, hence the one that has the target feature value (color 1 or 2). �e information provided in each trial can 
be accumulated across trials by using Bayes’ rule. �is starts from the probability of obtaining a reward Rt as a 
function of the presented stimulus St and the choice Ct made assuming the target feature value combination is f: 
p(Rt|Ct, f) =  prRt +  (1 −  pr)(1 −  Rt) and thus that the chosen stimulus SCt contains f. �e expression tells us that the 
probability for getting reward (Rt =  1) is pr and for getting no reward (Rt =  0) is (1 − pr). When the chosen stimu-
lus SCt does not contain f, p(Rt|Ct, f) =  pnRt +  (1 −  pn)(1 −  Rt). We can combine these two expressions into one by 
de�ning SCt(f) =  1, when it contains feature f, and zero otherwise yielding

= + − − + − + − − .p R C f S f p R p R S f p R p R( , ) ( )[ (1 )(1 )] (1 ( ))[ (1 )(1 )] (5)t t C r t r t C n t n tt t

�e calculations simplify further when choosing pn =  1 −  pr. What we are interested in is p f( )t1: , and aim to 
express it iteratively in terms of 

−

p f( )t1: 1 . We start the iteration from a uniform initial distribution representing 
the lack of knowledge about the target. Each trial gives independent information, hence we can write

= = .
− −

p f p f R C p f
p R C f p f

p R
p f( ) ( , ) ( )

( , ) ( )

( )
( )

(6)
t t t t
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t
t1: 1: 1 1: 1  
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�e expression depends only on f and factors that do not depend on f, such as p(Rt), will be taken into account 
as a consequence of normalization of this probability distribution across f. On trial t, when ignoring the past, 
target f could be anything, hence p(f) is constant, we thus obtain:

∝
−

p f p R C f p f( ) ( , ) ( ), (7)t t t t1: 1: 1 

where a�er each update we need to normalize this distribution again.
�e fourth model BI (Bayesian integration), adapted from previous reports33,61, uses as a value the probability 

of reward on a new trial, as a function of the choice (still to be made), given the past data:

 ∑= = =+ + + +V p R C p R C i f p f( , ) ( , ) ( )
(8)

i t t t t
f

t t t, 1 1 1: 1 1 1:

�e choice is then made in the same way as before using a Boltzman function with parameter β :

β
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∑
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We noticed that Bayesian updates are much faster than expected from the subjects’ choices (see e.g. 
Supplementary Fig. 3A), hence we kept pr as a parameter. In the experimental setup the subject will receive a 
reward when it makes the correct choice, hence pr =  1, but here we take pr =  0.99 <  1 in which case the Bayesian 
integration is slower.

Hybrid Bayesian-Reinforcement learning modeling. �e ��h model, Bayesian Feature-Weighting 
Reinforcement Learning (FW RL) combines the Bayesian inference of the target f via p f( )t1: , with values for all 
feature value combinations. We introduce a new notation to properly specify the model: f normally takes 6 values, 
now we use fd, where d represents the dimension or feature (1: location; 2: direction of motion, 3: color) and for 
each d, fd, takes two values 1 and 2. For instance, f3 =  1 indicates the �rst color. We can then calculate the proba-
bility for the target to have feature d,  = = ∑ =p p d p f( ) ( )

d t f d t1: 1,2 1:
d

. �is de�nes a feature dimension weight 

φ =
∑

α

α
′ ′

d

p

p

d

d d

, with exponent α  and normalized to yield a sum across dimensions equal to one. �e predicted 

reward value of a feature value is then denoted by Wf
d
 and the value of stimulus i is given by the sum across all 

feature values that are part of the stimulus

∑φ=V W
(10)

i
d

d f
d

�e choice is then again given by a Boltzmann function

β
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In addition to the Bayesian update of the feature weights, the values of each Feature value of the chosen stimu-
lus is updated as well, with a prediction error that is the di�erence between the rewarded and the calculated value 
of the chosen object, rather than the value of the feature value:

ηφ= + −
+

W W R V( ) (12)f t f t d t i t, 1 , ,
d d

�e sixth model, Bayesian Feature Weighting plus Choice History Reinforcement Learning (FW+Choice 
History RL), extends the ��h model by an in�uence of choice history that is independent of reward history and 
was found in a previous experiment to be a superior model34. Choice history is included in a two-step selection 
process. First, it calculates the values Vi and choice probabilities Pj =  P(Ct+1 =  j). as before and makes a stochastic 
choice j. It then compares whether the so chosen stimulus has the same color as the previous choice. If this is the 
case the choice is accepted, otherwise it will be accepted with probability

γ
=

+ −
.p

P

P (exp( ) 1) (13)

j

j

If it is not accepted the other stimulus will be chosen instead, which is the one that matches the previously 
chosen color.

�e seventh model, Bayesian Feature Weighting +  2 Learning Rates Reinforcement Learning (FW+2 Eta RL), 
combine feature weighting (model 5) with the updating with two di�erent η -values (model 3). �e only change 
with respect to the procedure outlined for model 5 is the update of the values for each feature value:

η η φ= + − + −
+

W W R R R V( (1 ) ) ( ) (14)f t f t t t d t i t, 1 , 0 1 ,
d d

�e eight model, Bayesian Feature Weighting +  Decay Reinforcement Learning (FW+Decay RL) combines 
feature weighting (model 5) with the update with decay (model 2). �e feature value belonging to the chosen 
stimulus are updated according to ηφ= + −

+
W W R V( )f t f t d t i t, 1 , ,

d d
, whereas those belonging to the non-chosen 

object are updated according to ωφ= −
+

W W(1 )f t d f t, 1 ,
d d

.
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Model optimization, evaluation and comparison. �e RL models were optimized by minimizing the 
negative log likelihood over all trials using up to 20 iterations of the simplex optimization method (matlab func-
tion fminsearch) followed by fminunc which constructs derivative information. We used a 80%/20% (training 
dataset/test dataset) cross-validation procedure repeated for n =  100 times for each of the eight models. Each 
of the hundred cross-validations per model optimizes the model parameters on the training dataset. We then 
quanti�ed the log-likelihood of the independent test dataset given the training datasets optimal parameter values 
(see Fig. 4C). We used the variability of the training datasets’ optimal parameter values to evaluate their standard 
deviation (see Fig. 4B), and to evaluate how the values of di�erent model parameters co-vary (see Fig. 7).

To compare RL models with di�erent numbers of free parameters we calculated the Akaike Information 
Criterion (AIC) for each best-�t model as [2k −  2ln(L)] with k re�ecting the number of free parameters and L 
the maximum likelihood value of the model. Lower AIC values indicate a better model �t a�er penalizing for the 
number of free parameters used for �tting the respective model.
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