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Abstract. The single-row facility layout problem (SRFLP) is an NP-hard combinatorial optimization problem

that is concerned with the arrangement of n departments of given lengths on a line so as to minimize the weighted

sum of the distances between department pairs. (SRFLP) is the one-dimensional version of the facility layout

problem that seeks to arrange rectangular facilities so as to minimize the overall interaction cost. This paper com-

pares the different modelling approaches for (SRFLP) and applies a recent SDP approach for general quadratic

ordering problems from Hungerländer and Rendl to (SRFLP). In particular, we report optimal solutions for sev-

eral (SRFLP) instances from the literature with up to 42 departments that remained unsolved so far. Secondly we

significantly reduce the best known gaps and running times for large instances with up to 100 departments.

1 Introduction

An instance of the single-row facility layout problem (SRFLP) consists of n one-dimensional facilities, with given

positive lengths l1, . . . , ln, and pairwise connectivities cij . Now the task in (SRFLP) is to find a permutation π of the

facilities such that the total weighted sum of the center-to-center distances between all pairs of facilities is minimized

min
π∈Π

∑

i,j∈N ,i<j

cijz
π
ij , (1)

where N := {1, . . . , n}, Π denotes the set of all layouts and zπij is the center-to-center distance between facilities i

and j with respect to π.

Several practical applications of (SRFLP) have been identified in the literature, such as the arrangement of rooms

on a corridor in hospitals, supermarkets, or offices [36], the assignment of airplanes to gates in an airport terminal [39],

the arrangement of machines in flexible manufacturing systems [23], the arrangement of books on a shelf and the

assignment of disk cylinders to files [31].

On the one hand (SRFLP) (also known as one-dimensonal space allocation problem) is a special case of the

weighted betweenness problem which is again a special case of the quadratic ordering problem. On the other hand the

NP-hard [17] minimum linear arrangement problem is a special case of (SRFLP) where all facilities have the same

length and the connectivities are equal to 0 or 1. Hence (SRFLP) is also NP-hard.

Accordingly several heuristic algorithms have been suggested to tackle instances of interesting size of (SRFLP),

e.g. [14, 19, 20, 22, 24, 28, 33, 34]. However, these heuristic approaches do not provide any optimality certificate, like

an estimate of the distance from optimality, for the solution found.

Several exact approaches to (SRFLP) have also been proposed. Simmons [36] first studied (SRFLP) and

suggested a branch-and-bound algorithm. Later on Simmons [37] pointed out the possibility of extending the dy-

namic programming algorithm of Karp and Held [27] to (SRFLP). This was later on implemented by Picard and

Queyranne [31]. A nonlinear model was presented by Heragu and Kusiak [24]. Linear mixed integer programs using

distance variables were proposed by Love and Wong [30] and Amaral [1]. Amaral [2] achieved a more efficient linear

mixed integer program by linearizing a quadratic model based on ordering variables. However all these models suffer

from weak lower bounds and hence have high computation times and memory requirements. But just recently Ama-

ral and Letchford [4] achieved significant progress in that direction through the first polyhedral study of the distance



polytope for (SRFLP) and showed that their approach is quite effective for instances with challenging size (n ≥ 30).

Amaral [3] suggested an LP-based cutting plane algorithm using betweenness variables that proved to be highly com-

petitive and solved instances with up to 35 facilities to optimality. Recently Sanjeevi and Kianfar [35] studied the

polyhedral structure of Amaral’s betweenness model in more detail and identified several classes of facet defining

inequalities.

To obtain tight lower bounds for (SRFLP) without using branch-and-bound, semidefinite programming (SDP)

approaches are the best known methods to date. SDP is the extension of linear programming (LP) to linear optimization

over the cone of symmetric positive semidefinite matrices. This includes LP problems as a special case, namely when

all the matrices involved are diagonal. A (primal) SDP can be expressed as the following optimization problem

inf
X

{ 〈C,X〉 : X ∈ P},

P := { X | 〈Ai, X〉 = bi, i ∈ {1, . . . ,m}, X < 0 } ,
(SDP)

where the data matrices Ai, i ∈ {1, . . . ,m} and C are symmetric. We refer the reader to the handbooks [6, 40] for

a thorough coverage of the theory, algorithms and software in this area, as well as a discussion of many application

areas where semidefinite programming has had a major impact.

Anjos et al. [5] proposed the first SDP relaxation for (SRFLP) yielding bounds for instances with up to 80

facilities. Anjos and Vanelli [8] further tightened the SDP relaxation using triangle inequalities as cutting planes and

gave optimal solutions for instances with up to 30 facilities that remained unsolved since 1988. Anjos and Yen [9]

suggested an alternative SDP relaxation and achieved optimality gaps no greater than 5 % for large instances with up

to 100 facilities. Recently Hungerländer and Rendl [26] proposed a general approach for quadratic ordering problems,

where they further improved on the tightness of the above SDP relaxations. They used a suitable combination of

optimization methods to deal with the stronger but more expensive relaxations and applied their method among others

to some selected medium (SRFLP) instances. Thereby they solved instances with up to 40 facilities to optimality.

The main contributions of this paper are the following: First we describe and compare the most successful mod-

elling approaches to (SRFLP), pointing out their common connections to the maximum cut [10, 21, 38] and the

quadratic ordering problem [11, 12]. For further details on this subject see also the recent survey of (SRFLP) by

Anjos and Liers [7].

Secondly we apply the approach from [26] for the first time to a broad selection of small, medium and large in-

stances and compare it computationally to the leading algorithms for the different instance sizes. Thereby we demon-

strate that this approach clearly dominates all other methods, permitting significant progress for medium as well as

large instances. We can give optimal solutions for several medium instances from the literature with up to 42 facilities

that remained unsolved so far and reduce all the best known gaps for large scale instances by a factor varying from 2

to 100.

Finally we relate the two SDP heuristics from [5] and [26] concerning their computational costs and practical

performance.

The paper is structured as follows. In Section 2, we put the most competitive algorithms for (SRFLP) into per-

spective and compare them from a theoretical point of view. In Section 3, we conduct an extensive computational study

for the SDP approach of Hungerländer and Rendl [26], achieving significant progress for medium and large instances.

Finally some conclusions and current research are summarized in Section 4.

2 The Most Successful Modelling Approaches to (SRFLP)

The most intuitive modelling approach to (SRFLP) using
(

n
2

)

distance variables zπij , i, j ∈ N suffers from weak

lower bounds of the corresponding LP relaxation and thus large branch-and-bound trees, high computation times and

memory requirements. Recently Amaral and Letchford [4] achieved significant progress in that direction by identifying

several classes of valid inequalities and using them as cutting planes. Amaral [3] improved the LP relaxation by

modelling (SRFLP) via
(

n
3

)

binary betweenness variables. Anjos et. al [5] proposed to model (SRFLP) as a binary

quadratic program using
(

n
2

)

ordering variables. They deduced a semidefinite relaxation yielding tighter bounds but

being more expensive to compute than the relaxation of Amaral [3]. Later on further SDP approaches have been

suggested to improve on the relaxation strength and/or reduce the computational effort involved [8, 9, 26]. In the

following subsections we recall the approaches mentioned above and highlight their relations.



2.1 Distance-Based LP Formulation of Amaral and Letchford [4]

The polytope containing the feasible distance variables zij for n facilities with lengths l ∈ Zn is called distance

polytope and defined as

Pn
Dis := conv

{

z ∈ R
(n2) : ∃π ∈ Π : zij = zπij , i, j ∈ N , i < j

}

.

Amaral and Letchford [4] show that the equation

∑

i,j∈N ,i<j

liljzij =
1

6





(

∑

i∈N

li

)3

−
∑

i∈N

l3i



 ,

defines the smallest linear subspace that contains Pn
Dis. They prove that clique inequalities, strengthened pure negative

type inequalities and special types of hypermetric inequalities induce facets of Pn
Dis. They further show the validity of

rounded psd inequalities and star inequalities for Pn
Dis and use them together with the facet inducing inequalities as

cutting planes in a Branch-and-Cut approach.

2.2 Betweenness-Based LP Formulation of Amaral [3]

Amaral [3] introduced binary variables ζijk(i, j, k ∈ N , i < j, i 6= k 6= j)

ζijk =

{

1, if department k lies between departments i and j

0, otherwise.

Amaral [3] collected these betweenness variables in a vector ζ and defined the betweenness polytope

Pn
Btw := conv {ζ : ζ represents an ordering of the elements of N}.

In order to formulate (SRFLP) via ζ an appropriate objective function is needed. For that purpose Amaral [3]

used the relation

zπij =
1

2
(li + lj) +

∑

k∈N ,
i 6=k 6=j

lkζijk, i, j ∈ N , i < j,

to rewrite (1) in terms of ζ (for details see [3, Proposition 1 and 2])

min
ζ∈Pn

Btw

∑

i,j,k∈N ,
i<j,k<j

(cij lk − ciklj) ζijk +
∑

i,j∈N ,
i<j









cij

2
(li + lj) +

∑

k∈N ,
k>j

cij lk









. (2)

If department i comes before department j, department k has to be located mutually exclusive either left of depart-

ment i, or between departments i and j, or right of department j. Thus the following equations are valid for Pn
Btw

ζijk + ζikj + ζjki = 1, i, j, k ∈ N , i < j < k. (3)

In [35] it is shown that these equations describe the smallest linear subspace that contains Pn
Btw. To obtain an LP

relaxation of (SRFLP), the integrality conditions on ζ are replaced with 0-1 bounds:

0 ≤ ζijk ≤ 1, i, j, k ∈ N , i < j. (4)

To further strengthen the relaxation, Amaral [3] came up with additional valid inequalities. Let a subset {i, j, k, d} ⊂
N be given. On the one hand department d can not be located between the departments i and j, i and k and j and k at

the same time. On the other hand if department d is between departments i and k then it also lies between departments

i and j or j and k. Thus the inequalities



ζijd + ζjkd + ζikd ≤ 2, i, j, k, d ∈ N , i < j < k (5)

and

−ζijd + ζjkd + ζikd ≥ 0, ζijd − ζjkd + ζikd ≥ 0, ζijd + ζjkd − ζikd ≥ 0, i, j, k, d ∈ N , i < j < k, (6)

are valid for Pn
Btw. Sanjeevi and Kianfar [35] showed that (6) unlike (5) are facet defining for Pn

Btw.

Amaral [3] further generalizes (6) to a more complicated set of inequalities: Let β ≤ n be an even integer and let

S ⊆ N . For each d ∈ S, and for any partition (S1, S2) of S \ {d} such that |S1| =
1

2
β, the inequality

∑

p,q∈S1,p<q

ζpqd +
∑

p,q∈S2,p<q

ζpqd ≤
∑

p∈S1,q∈S2,p<q

ζpqd (7)

is valid [3] and also facet-defining [35] for Pn
Btw. Note that (6) is a special case of (7) with β = 4.

Minimizing (2) over (3)–(6) gives the basic linear relaxation (LP). To construct stronger relaxations from (LP)

Amaral [3] proposes to use the inequalities (7)β=6 as cutting planes (for details see Subsection 3.1 below).

2.3 Matrix-Based Relaxations of Anjos et al. [5, 8, 9]

Another way to get good lower bounds for (SRFLP) is the usage of matrix-based relaxations. They can be deduced

from the betweenness-based approach above by introducing bivalent ordering variables yij(i, j ∈ N , i < j)

yij =

{

1, if department i lies before department j

−1, otherwise,
(8)

and using them to express the betweenness variables ζ via the transformations

ζijk =
1 + yikykj

2
, i < k < j, ζijk =

1− ykiykj

2
, k < i < j, ζijk =

1− yikyjk

2
, i < j < k, (9)

for i, j, k ∈ N . Using (9) we can easily rewrite the objective function (2) and equalities (3) in terms of ordering

variables

K −
∑

i,j∈N
i<j

cij

2







∑

k∈N
k<i

lkykiykj −
∑

k∈N
i<k<j

lkyikykj +
∑

k∈N
k>j

lkyikyjk






, (10)

yijyjk − yijyik − yikyjk = −1, i, j, k ∈ N , i < j < k, (11)

where K :=

(

∑

i,j∈N
i<j

cij
2

)

(
∑

k∈N lk
)

. In [12] it is shown that the equations (11) formulated in a {0, 1} model

describe the smallest linear subspace that contains the quadratic ordering polytope

Pn
QO := conv { yy⊤ : y ∈ {−1, 1}, |yij + yjk − yik| = 1 }.

To obtain matrix-based relaxations we collect the ordering variables in a vector y and consider the matrix Y = yy⊤.

The main diagonal entries of Y correspond to y2ij and hence diag(Y ) = e, the vector of all ones. Now we can formulate

(SRFLP) as the following optimization problem, first proposed in [5]

min { 〈C, Y 〉+K : Y satisfies (11), diag(Y ) = e, rank(Y ) = 1, Y < 0 }, (SRFLP)

where the cost matrix C is deduced from (10). Dropping the rank constraint yields the basic semidefinite relaxation of

(SRFLP)

min { 〈C, Y 〉+K : Y satisfies (11), diag(Y ) = e, Y < 0 }, (SDP1)



providing a lower bound on the optimal value of (SRFLP). To be able to tackle larger instances Anjos and Yen [9]

proposed to sum up the O(n3) constraints (11) over k yielding the O(n2) constraints

∑

k∈N
i 6=k 6=j

yijyjk −
∑

k∈N
i 6=k 6=j

yijyik −
∑

k∈N
i 6=k 6=j

yikyjk = −(n− 2), i, j ∈ N , i < j. (12)

They showed that the following optimization problem using (12) instead of (11)

min { 〈C, Y 〉+K : Y satisfies (12), diag(Y ) = e, rank(Y ) = 1, Y < 0 },

is again an exact formulation of (SRFLP). Dropping the rank-one constraint yields a weaker but also cheaper semidef-

inite relaxation than (SDP1)

min { 〈C, Y 〉+K : Y satisfies (12), diag(Y ) = e, Y < 0 }. (SDP0)

As Y is actually a matrix with {−1, 1} entries in the original (SRFLP) formulation, Anjos and Vanelli [8] proposed

to further tighten (SDP1) by adding the triangle inequalities, defining the metric polytope M and known to be facet-

defining for the cut polytope, see e.g. [15]

M =















Y :









−1 −1 −1
−1 1 1
1 −1 1
1 1 −1













Yi,j

Yj,k

Yi,k



 ≤ e, 1 ≤ i < j < k ≤

(

n

2

)















. (13)

Using the linear transformations (9) it is straightforward to show the equivalence of a subset of the triangle inequalities

with the betweenness constraints (5) and (6) from above. Along the same lines inequalities (7) can be connected to

general clique inequalities. Adding the triangle inequalities to (SDP1), Anjos and Vanelli [8] achieved the following

relaxation of (SRFLP)

min { 〈C, Y 〉+K : Y satisfies (11), Y ∈ M, diag(Y ) = e, Y < 0 }. (SDP2)

As solving (SDP2) directly with an interior-point solver like CSDP gets far too expensive, they suggest to use the

≈ 1

12
n6 triangle inequalities as cutting planes in their algorithmic framework (for details see Subsection 3.1 below).

Let us also mention that so far all SDP approaches to (SRFLP) refrained from using other clique inequalities to further

tighten the SDP relaxations because of their large number. We will argue in the conclusions that using well-designed

subsets of larger clique inequalities, like e.g. pentagonal inequalities, which can be connected to the betweenness

constraints (7)β=6, could be a promising direction to improve current SDP approaches.

2.4 Strengthened Matrix-Based Relaxation

Recently Hungerländer and Rendl [26] suggested a further strengthening of (SDP2) and an alternative algorithmic

approach to solve such large SDP relaxations. To this end we introduce the matrix

Z = Z(y, Y ) :=

(

1 yT

y Y

)

, (14)

and relax the equation Y − yy⊤ = 0 to

Y − yyT < 0 ⇔ Z < 0,

which is convex due to the Schur-complement lemma. Note that Z < 0 is in general a stronger constraint than Y < 0.

Additionally we use an approach suggested by Lovász and Schrijver in [29] to further improve on the relaxation

strength. This yields the following inequalities

−1− ylm ≤ yij + yjk − yik + yij,lm + yjk,lm − yik,lm ≤ 1 + ylm, ∀ i, j, k, l,m ∈ N , i < j < k, l < m,

−1 + ylm ≤ yij + yjk − yik − yij,lm − yjk,lm + yik,lm ≤ 1− ylm, ∀ i, j, k, l,m ∈ N , i < j < k, l < m,
(15)

that are generated by multiplying the 3-cycle inequalities valid for the ordering problem

1− yij − yjk + yik ≥ 0, 1 + yij + yjk − yik ≥ 0,



by the nonnegative expressions (1− ylm) and (1 + ylm). These constraints define the polytope LS

LS := { Z : Z satisfies (15) }, (16)

consisting of ≈ 1

3
n5 constraints. In summary, we come up with the following relaxation of (SRFLP)

min { 〈C, Y 〉+K : Y satisfies (11), Z ∈ (M∩LS), diag(Z) = e, Z < 0 }. (SDP3)

A similar relaxation (without the LS-cuts (15)) was used in [12] for bipartite crossing minimization. In [26] (SDP3)

is applied to different special cases of the quadratic ordering problem like the linear ordering problem, the linear

arrangement problem, multi-level crossing minimization and of course (SRFLP). It is also demonstrated there that

adding the LS-cuts to the relaxation pays off in practice.

To make (SDP3) computationally tractable Hungerländer and Rendl [26] suggest to deal with the triangle in-

equalities (13) and LS-cuts (15) through Lagrangian duality (for details see Subsection 3.1 below and [26, Section

6]).

3 Computational Comparison

In this section we give a computational comparison of all state-of-the-art approaches to (SRFLP) on a broad selection

of small, medium and large instances from the literature. Using the approach from [26] we solve several instances to

optimality for the first time and improve on the gaps of all currently unsolved instances.

3.1 Comparison of Globally Optimal Methods for Small and Medium Instances

In Table 1 we computationally compare the four most competitive approaches to (SRFLP) for small and medium

instances. These are the integer linear programming (ILP) approaches of Amaral and Letchford [4] and Amaral [3],

the SDP approach of Anjos and Vanelli [8] building on relaxation (SDP2) and the SDP approach from [26] building

on relaxation (SDP3).

Anjos and Vanelli [8] start with the basic relaxation (SDP1) and then enhance it with violated triangle inequalities

(13) in every iteration (using the interior-point solver CSDP version 5.0) until no more triangle inequalities are violated.

Amaral and Letchford [4] suggest an ILP Branch-and-Cut algorithm based on the distance variables zij . They use

a cheap initial LP relaxation with only O(n2) non-zero coefficients and apply exact separation routines for triangle and

special strengthened pure negative type inequalities and heuristic ones for clique, rounded psd and star inequalities.

They suggest a specialised branching rule to avoid the use of additional binary variables and use a primal heuristic

based on multi-dimensional scaling to obtain feasible layouts.

Amaral [3] proposes an ILP cutting plane algorithm based on the betweenness variables ζijk that improves on the

results in [8] and [4]. For computational usage of the betweenness model Amaral [3] suggests to alternate between

solving (LP) and strengthening (LP) (by searching for cutting planes (7)β=6 violated at the optimal solution of

the current (LP) and adding them to (LP)). Amaral [3] also introduces new instances with 33 and 35 facilities,

solves them to optimality and points out that he cannot solve larger instances with his approach as the involved linear

programs become too large and too difficult to solve with the currently available LP solvers.

Recently Hungerländer and Rendl [26] proposed an algorithm to provide lower bounds to (SDP3). Their method

is building on subgradient optimization techniques, such as the bundle method [16, 25] and deals with the inequality

constraints (13) and (15) through Lagrangian duality. A similar algorithmic approach was successfully applied to

the maximum cut problem [32]. In [26] they already demonstrated that their algorithm clearly outperforms the SDP

approach suggested in [8] on some selected (SRFLP) instances.

In Table 1 we give a full computational comparison of the four most successful exact approaches to (SRFLP)

on all available instances from the literature, including well-known benchmark instances [1–3, 24, 36], instances with

clearance requirement [23] and random-generated instances [8]. 1 The table identifies the instance by its name, source

and size n and gives the times required by the four approaches to find a layout and prove its optimality.

The computations in [8] were carried out on a 2.0GHz Dual Opteron with 16 GB RAM, Amaral [3] used an Intel

Core Duo, 1.73 GHz PC with 1 GB RAM, in [4] a 2.5 GHz Pentium Dual Core PC with 2 GB RAM was employed,

whereas for applying the approach from [26] we use an Intel Xeon 5160 processor with 3 GHz and 2 GB RAM.

1 Most of the instances can be downloaded from http://flplib.uwaterloo.ca/.



For small instances with up to 20 facilities the ILPs are preferable to the SDP approaches whereas the SDP ap-

proach from [26] outperforms the other approaches on the larger instances. The difference between the approaches

strongly grows with the problem size. Note that we do not take into account the speed of the machines, as it does not

differ too much and thus does not affect the conclusions drawn above. Our machine is the quickest and about 2.5 times

faster than the one in [3], which is the slowest. 2

This motivates us to tackle larger instances with the approach from [26]. We summarize the results for the five

instances with 40 facilities, a density of 50 % and random lengths and connectivities between 1 and 10 in Table 2.3

We succeed in providing optimal solutions within reasonable time for all these instances that can hardly be solved

to optimality with one of the other three approaches.

Instance Source n Anjos/Vanelli [8] Amaral/Letchford [4] Amaral [3] Hungerländer/Rendl [26]

S5 [36] 5 0.1 0.1 0.1

S8 [36] 8 0.5 0.1 0.6

S8H [36] 8 0.2 0.1 0.1 2.3

S9 [36] 9 0.1 0.1 0.7

S9H [36] 9 2.4 0.1 9.2

S10 [36] 10 3.4 0.4 0.2 0.6

S11 [36] 11 32.6 0.7 0.3 1.3

P15 [1] 15 2.8 19.7

P17 [2] 17 8.4 34.9

P18 [2] 18 13.3 32.5

H_20 [24] 20 26:54 2:22 30.8 54.3

H_30 [24] 30 15:50:57 28:07:49 27:35 9:07

Cl_5 [24] 5 0.1 0.1 0.2 0.1

Cl_6 [24] 6 0.4 0.1 0.1 0.1

Cl_7 [24] 7 1.2 0.3 0.1 0.6

Cl_8 [24] 8 1.8 0.1 0.1 0.4

Cl_12 [24] 12 32.8 4.0 0.6 7.9

Cl_15 [24] 15 5:53 9.6 3.2 19.6

Cl_20 [24] 20 41:32 5:12 40.1 1:16

Cl_30 [24] 30 51:06:53 17:49:43 1:12:19 14:17

N25_01 [8] 25 3:44:38 7:19:44 3:46 2:48

N25_02 [8] 25 4:50:27 38:35 9:59 5:46

N25_03 [8] 25 5:48:21 1:25:41 4:49 4:11

N25_04 [8] 25 4:04:51 39:34 10:19 5:33

N25_05 [8] 25 8:22:22 1:18:10 3:47 3:31

N30_01 [8] 30 7:41:06 34:00:51 25:41 4:42

N30_02 [8] 30 10:41:53 3:56:53 22:43 6:08

N30_03 [8] 30 19:32:01 13:08:12 23:14 10:12

N30_04 [8] 30 31:03:11 58:20 2:19:22 11:44

N30_05 [8] 30 19:54:07 13:03:51 1:05:36 18:30

Am33_01 [3] 33 1:15:57 19:28

Am33_02 [3] 33 2:35:22 48:07

Am33_03 [3] 33 2:22:32 36:33

Am35_01 [3] 35 1:35:04 17:30

Am35_02 [3] 35 5:27:34 41:01

Am35_03 [3] 35 2:17:52 53:14

Table 1. Results for (SRFLP) instances with up to 35 facilities. The running times are given in sec, in min:sec or in h:min:sec

respectively.

2 For exact numbers of the speed differences see http://www.cpubenchmark.net/.
3 These instances and the corresponding optimal orderings are available from http://flplib.uwaterloo.ca/.



Instance n Optimal cost Time SDP Hungerländer/Rendl [26]

N40_1 40 107348.5 1:01:36

N40_2 40 97693 52:52

N40_3 40 78589.5 1:21:40

N40_4 40 76669 1:15:58

N40_5 40 103009 2:20:09

Table 2. Results for 5 new (SRFLP) instances with 40 facilities. The running times are given in min:sec or in h:min:sec.

3.2 Comparison of Gaps Achieved by SDP-Based Approaches on Large Instances

In this subsection we compare the most competitive approaches to (SRFLP) for obtaining tight bounds of large

instances. These are the algorithms of Anjos and Yen [9] building on relaxations (SDP0) and (SDP1) respectively

and again the approach of Hungerländer and Rendl [26] building on relaxation (SDP3). For solving relaxations

(SDP0) and (SDP1), Anjos and Yen [9] use the interior-point solver CSDP (version 5.0). In Tables 3 and 4 we

compare the three SDP approaches on instances with 36 – 100 facilities taken from [5] and [9].4

In [26] the constraints Z < 0 and diag(Z) = e are maintained explicitly. The evaluations of an appropriate

function over this set constitute the computational bottleneck and are responsible for more than 99% of the overall

running time for large instances. To control the computational effort we restrict the number of function evaluations to

500 for instances with up to 64 departments and to 250 for larger instances. This limitation of the number of function

evaluations leaves some room for further incremental improvement.

The SDP relaxations (SDP0), (SDP1), (SDP2) and (SDP3) are closely related to the standard SDP relaxation

for the max-cut problem used in the seminal paper of Goemans and Williamson [18] to obtain high quality feasible

solutions providing upper bounds. However the hyperplane rounding idea suggested in [18] cannot be applied directly

to (SRFLP) to get a good layout because it yields a {−1, 1} vector ỹ, which need not be feasible with respect to

the three cycle equations (11). That is why Anjos et al. [5] propose a different procedure to obtain a good feasible

layout from the optimal solution of the SDP relaxation whereas Hungerländer and Rendl [26] suggest to apply a repair

strategy to the infeasible ỹ.

Anjos et al. [5] propose to use the entries y∗ij,kl of the optimal matrix Y ∗ of the SDP relaxation in the following

way to obtain a good feasible layout: Fix a row ij and compute the values

ω
ij
k =

1

2



n+ 1 +
∑

l∈N ,k 6=l

y∗ij,kl



 , k ∈ N .

These values are motivated by the fact that if Y ∗ is rank-one, then the values ω
ij
k , k ∈ N are all distinct and belong

to N and thus give a permutation of N . In general, rank(Y ∗) > 1 and thus a permutation can be obtained by sorting

w
ij
k , k ∈ N in either decreasing or increasing order (since the objective value is the same). The output of the SDP-

based heuristic is the best layout found by considering every row ij of Y ∗ with i, j ∈ N , i < j.

In [26] it is suggested to take the {−1, 1} vector ỹ obtained from hyperplane rounding and make it feasible with

respect to the 3-cycle inequalities by flipping the signs of some of its entries appropriately. Computational experiments

demonstrated that the repair strategy is not as critical as one might assume [13,26]. For example we know from multi-

level crossing minimization that the heuristic clearly dominates traditional heuristic approaches.

The heuristic of Anjos et. al [5] is much cheaper than the one in [26] as they have to factorize Y ∗ to carry out

the rounding procedure. Nonetheless the computation times of both heuristics are negligible compared to the compu-

tational effort for the lower bound computation. We compared both heuristics concerning the quality of the produced

layouts on many test instances and found out that the heuristic from [26] is clearly superior. This is also supported

by a comparison of the upper bounds achieved by both approaches in Tables 3 and 4, where the heuristic from [26]

improves on the one of Anjos et. al [5] on all instances considered.

4 Most of the instances can be downloaded from http://flplib.uwaterloo.ca/. Our improved gaps and the correspond-

ing orderings are also available there.



When comparing the running times of the three approaches we do not take into account that Anjos and Yen [9] use

a machine (2.4GHz Quad Opteron with 16 Gb of RAM) that is more than 1.5 times faster and has 8 times the memory

of our machine. 5

In Table 3 we compare the three approaches for problems with 36 to 56 facilities for which no optimal solution

was known before. The table identifies the instance by its name and size n. We then provide the lower bound “lb”

and the best layout found “blf” as well as the associated running times for the different approaches. Finally we give

the running times that the approach of Hungerländer and Rendl [26] needs to improve on the gaps of the two other

approaches “improve gap (SDP0)” and “improve gap (SDP1)”.

The results show that the SDP approaches of Anjos and Yen [9] allow for substantial improvement. On the one

hand the approach from [26] reduces the difference between best layout and lower bound for all instances by factors

that are, except once, > 10 (both lower and upper bounds are improved for all instances). On the other hand it reaches

the gaps achieved by the other two approaches considerably faster. Further it is worthwhile to note that all instances

with 36 facilities and even one instance with 42 facilities can be solved to optimality for the first time.

In Table 4 we compare the cheaper approach from [9] using relaxation (SDP0) (the other one gets too expensive

for these instances) to the approach from [26] for problems with 60 to 100 facilities.

The results show that the SDP approach of Anjos and Yen [9] again allows for some improvement. On the one

hand the SDP approach from [26] reduces the difference between best layout and lower bound for all instances by

factors going from clearly above 10 to 2 as the instance sizes grow (again both lower and upper bounds are improved

for all instances). On the other hand the gaps achieved by the approach of Anjos and Yen [9] are reached in average in

about half the time by the approach from [26].

Let us finally compare the SDP-based heuristic from [26] with the recent tabu search based heuristic of Samarghandi

and Eshghi [34] and the recent permutation-based genetic algorithm of Datta et al. [14] on the 20 “AKV”-instances [5].

On five instances all three heuristics yield the same upper bound, on 5 instances the heuristics from [34] and [14] yield

the same best value, on 5 instances the algorithm of Datta et al. [14] generates the best feasible layouts and on 5

instances the approach from [26] produces the best upper bounds. In general the SDP-based heuristic seems to be

preferable when n ≤ 70 and computation time is not a critical factor as its performance depends on the quality of the

lower bounds from the SDP relaxation. The “sko”-instances [9] were not considered in [34] and [14], hence for these

instances the lower and upper bounds presented in Tables 3 and 4 are the best known ones to date.

4 Conclusions and Current Research

This paper improves on the practical results for (SRFLP). The SDP approach of Hungerländer and Rendl [26] pro-

vides optimal solutions for several instances with up 42 facilities for the first time. Additionally it significantly reduces

the duality gap and running times for large instances with up to 100 facilities. These achievements are the consequence

of the interaction of the following three advancements:

– the usage of a stronger SDP relaxation,

– the appropriate algorithmic approach to this relaxation,

– a stronger upper bound heuristic.

There are two (combinable) directions to further improve current SDP approaches. On the one hand we could

include well-designed subsets of order ≤ O(n6) of larger clique inequalities, like e.g. the ≈ 1

240
n10 pentagonal

inequalities, in the presented relaxations. On the other hand, we could incorporate the achieved bounds in a branch-

and-bound framework.

Acknowledgements: We thank three anonymous referees for their constructive comments and suggestions for im-

provement leading to the present version of the paper.

5 For details see http://www.cpubenchmark.net/.



Instance n
SDP Anjos/Yen using (SDP0) [9] SDP Anjos/Yen using (SDP1) [9] SDP Hungerländer/Rendl [26] - restricted to 500 function evaluations

lb blf time lb blf time lb blf time gap in % improve gap (SDP0) improve gap (SDP1)

ste36-1 36 9851 10328 7:15 10087.5 10301 14:57 10287 10287 14:50 0 % 2:23 2:55

ste36-2 36 170759.5 182649 7:12 175387 181910 14:17 181508 181508 25:25 0 % 2:05 2:39

ste36-3 36 96090 104041.5 7:13 98739 102179.5 13:42 101643.5 101643.5 24:01 0 % 2:35 3:09

ste36-4 36 91103 96854.5 7:16 94650.5 96080.5 14:23 95805.5 95805.5 16:15 0 % 2:01 3:49

ste36-5 36 87688 92563.5 7:19 89533 91893.5 14:25 91651.5 91651.5 17:58 0 % 2:00 3:09

sko42-1 42 24517 25779 20:07 24807 25724 45:21 25521 25525 2:23:09 0.02 % 5:20 7:34

sko42-2 42 207357 218117.5 20:21 210785 217296.5 45:14 216099.5 216120.5 2:43:34 0.01 % 5:57 9:38

sko42-3 42 167783.5 174694.5 20:10 169944.5 173854.5 47:32 173245.5 173267.5 2:47:18 0.01 % 8:01 17:51

sko42-4 42 131536 139630 19:21 133429.5 138829 48:18 137379 137615 2:53:05 0.17 % 4:55 7:24

sko42-5 42 238669.5 250501.5 20:18 242925.5 249327.5 45:41 248238.5 248238.5 1:08:42 0 % 6:37 11:13

sko49-1 49 39333.5 41379 59:55 39794.5 41308 2:48:57 40895 41012 4:36:21 0.29 % 33:33 57:43

sko49-2 49 403024.5 418370 1:03:30 407741.5 418288 2:50:32 416142 416178 8:27:34 0.01 % 19:11 31:43

sko49-3 49 313923.5 326004 1:02:13 317628.0 325747 2:51:45 324464 324512 8:03:03 0.02 % 19:15 26:20

sko49-4 49 229809.5 238380.5 1:05:34 232368 237894.5 2:50:40 236718.5 236755 9:15:14 0.02 % 21:59 32:01

sko49-5 49 645406.5 673303 1:04:13 652638 671508 2:51:45 666130 666143 9:30:22 0.002 % 35:04 35:04

sko56-1 56 61789.5 64454 3:05:19 62496.5 64396 8:40:40 63971 64027 12:36:33 0.09 % 41:55 1:03:12

sko56-2 56 480473.5 499700 3:09:35 486426.5 498836 9:07:10 496482 496561 15:59:27 0.02 % 41:05 1:11:58

sko56-3 56 164609.5 171963 3:08:16 166441.5 171860 8:57:50 169644 171032 16:22:56 0.82 % 1:00:39 1:53:27

sko56-4 56 302572.5 325803 2:55:51 306550.5 315175 9:00:52 312656 313497 15:17:25 0.27 % 52:24 1:26:44

sko56-5 56 575501.5 595593.5 2:56:20 582117.5 594477.5 8:57:53 591915.5 592335.5 17:46:46 0.07 % 1:08:30 1:34:20

Table 3. Results for well-known (SRFLP) instances with 36–56 facilities. n gives the number of facilities, “lb” denotes the lower bound, “blf” gives the objective value of the best

layout found and “improve gap (SDP0)” and “improve gap (SDP1)” denote the running times that our algorithm based on relaxation (SDP4) needs to improve on the gaps of the

other two approaches. The running times are given in min:sec or in h:min:sec respectively.



Instance n
SDP Anjos/Yen using (SDP0) [9] SDP Hungerländer/Rendl [26] - restricted to 250 function evaluations

lb blf time gap in % lb blf time gap in % improve gap (SDP0)

AKV-60-01 60 1473338.5 1478464.0 5:39:13 0.35 % 1477134 1477834 12:38:16 0.05 % 4:42:33

AKV-60-02 60 829956.5 844695.0 5:08:10 1.78 % 841472 841776 11:08:16 0.04 % 2:01:14

AKV-60-03 60 641723 650533.5 4:50:48 1.38 % 647031.5 648337.5 9:51:06 0.20 % 2:58:00

AKV-60-04 60 389733 400669.0 4:55:19 2.81 % 397951 398406 10:49:59 0.11 % 1:57:18

AKV-60-05 60 316284.5 319103.0 5:05:28 0.89 % 318792 318805 12:39:37 0.004 % 2:54:16

sko64-1 64 93388 97842 8:16:08 4.77 % 96569 97194 13:08:05 0.65 % 2:15:21

sko64-2 64 619258 636602.5 8:36:06 2.80 % 633420.5 634332.5 14:28:38 0.14 % 2:44:31

sko64-3 64 402165.5 418083.5 8:47:21 3.96 % 412820.5 414384.5 14:04:55 0.38 % 4:54:09

sko64-4 64 285762.5 300469 8:38:01 5.15 % 295145 298155 13:55:45 1.02 % 2:48:40

sko64-5 64 488035 505185.5 8:47:49 3.51 % 501059.5 502063.5 13:53:04 0.20 % 2:30:01

AKV-70-01 70 1513741.5 1533075 24:25:30 1.28 % 1526359 1528560 26:41:34 0.14 % 10:36:44

AKV-70-02 70 1424673.5 1444720 24:20:39 1.41 % 1439122 1441028 26:11:27 0.13 % 7:56:27

AKV-70-03 70 1503311.5 1526830.5 23:11:47 1.56 % 1517803.5 1518993.5 26:15:14 0.08 % 6:59:29

AKV-70-04 70 951725 972389 22:56:51 2.17 % 967316 969150 27:28:48 0.19 % 6:22:30

AKV-70-05 70 4207969.5 4218730.5 23:42:47 0.26 % 4213774.5 4218002.5 28:16:05 0.10 % 9:38:10

sko72-1 72 135280.5 140209 20:26:35 3.64 % 138885 139231 29:33:19 0.25 % 5:22:09

sko72-2 72 690377 716873 19:58:29 3.84 % 707643 715611 29:40:41 0.11 % 11:06:29

sko72-3 72 1026164 1063314.5 22:19:25 3.62 % 1048930.5 1061762.5 32:38:47 0.12 % 11:57:10

sko72-4 72 898586.5 924542.5 20:20:37 2.89 % 916229.5 924019.5 33:58:28 0.85 % 8:26:20

sko72-5 72 415320.5 432062.5 20:21:15 4.03 % 426224.5 430288.5 31:39:43 0.95 % 6:23:57

AKV-75-01 75 2377176 2394812.5 40:15:12 0.74 % 2387590.5 2393600.5 37:57:53 0.25 % 22:19:37

AKV-75-02 75 4294138 4322967 42:23:20 0.67 % 4309185 4322492 39:28:38 0.31 % 21:08:44

AKV-75-03 75 1230123.5 1255634 38:27:39 2.07 % 1243136 1249251 38:21:06 0.49 % 11:48:54

AKV-75-04 75 3911919 3950444.5 41:27:49 0.99 % 3936460.5 3941845.5 38:42:58 0.14 % 17:57:02

AKV-75-05 75 1763890.5 1797676 43:09:58 1.92 % 1786154 1791469 41:10:37 0.30 % 10:43:21

AKV-80-01 80 2045170.5 2073453.5 49:07:29 1.38 % 2063346.5 2070391.5 58:24:49 0.34 % 21:03:27

AKV-80-02 80 1903788 1923506 48:31:48 1.04 % 1918945 1921202 58:47:15 0.12 % 18:42:50

AKV-80-03 80 3237288.5 3256577 49:22:31 0.60 % 3245254 3251413 58:17:19 0.19 % 26:04:02

AKV-80-04 80 3730569 3747950 52:16:43 0.47 % 3739657 3747829 58:50:47 0.22 % 35:17:04

AKV-80-05 80 1555271.5 1594228 47:03:04 2.51 % 1585491 1590847 58:30:30 0.34 % 13:12:47

sko81-1 81 197416.5 207229 47:42:37 4.97 % 203424 207063 52:44:10 1.79 % 18:28:22

sko81-2 81 507726 527239.5 49:02:44 3.84 % 518711.5 526157.5 59:58:08 1.44 % 22:45:43

sko81-3 81 942850.5 979816 47:45:13 3.92 % 962886 979281 58:17:40 1.70 % 17:27:37

sko81-4 81 1971210.5 2042462 46:48:01 3.62 % 2019058 2035569 57:21:49 0.82 % 17:33:03

sko81-5 81 1267977 1311605 50:42:29 3.44 % 1293905 1311166 58:59:28 1.33 % 22:49:57

sko100-1 100 367048.5 380981 214:49:05 3.80 % 375999 380562 191:47:21 1.21 % 108:20:47

sko100-2 100 2024668 2089757.5 240:13:08 3.21 % 2056997.5 2084924.5 201:46:52 1.36 % 116:16:55

sko100-3 100 15750362 16251391.5 236:03:51 3.18 % 15987840.5 16216076.5 212:38:54 1.43 % 109:48:22

sko100-4 100 3148661 3266569 255:53:11 3.74 % 3200643 3263493 204:14:39 1.96 % 133:18:35

sko100-5 100 1002763.5 1040987.5 219:33:25 3.81 % 1021584.5 1040929.5 201:29:27 1.89 % 111:11:49

Table 4. Results for well-known (SRFLP) instances with 60–100 facilities. n gives the number of facilities, “lb” denotes the lower

bound, “blf” gives the objective value of the best layout found and “improve gap (SDP0)” denotes the running times that our

algorithm based on relaxation (SDP4) needs to improve on the gaps of the approach by Anjos and Yen. The running times are

given in h:min:sec.
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