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A computational study of diffusion 
in a glass-forming metallic liquid
T. Wang1, F. Zhang1, L. Yang1, X.W. Fang4, S.H. Zhou1, M.J. Kramer1,2, C.Z. Wang1, 

K.M. Ho1,3 & R.E. Napolitano1,2

Liquid phase diffusion plays a critical role in phase transformations (e.g. glass transformation and 
devitrification) observed in marginal glass forming systems such as Al-Sm. Controlling transformation 
pathways in such cases requires a comprehensive description of diffusivity, including the associated 
composition and temperature dependencies. In the computational study reported here, we examine 

atomic diffusion in Al-Sm liquids using ab initio molecular dynamics (AIMD) and determine the 
diffusivities of Al and Sm for selected alloy compositions. Non-Arrhenius diffusion behavior is 
observed in the undercooled liquids with an enhanced local structural ordering. Through assessment 
of our AIMD result, we construct a general formulation for Al-Sm liquid, involving a diffusion mobility 
database that includes composition and temperature dependence. A Volmer-Fulcher-Tammann 
(VFT) equation is adopted for describing the non-Arrhenius behavior observed in the undercooled 
liquid. The composition dependence of diffusivity is found quite strong, even for the Al-rich region 
contrary to the sole previous report on this binary system. The model is used in combination with the 
available thermodynamic database to predict specific diffusivities and compares well with reported 
experimental data for 0.6 at.% and 5.6 at.% Sm in Al-Sm alloys.

�e glass forming aluminum-rare-earth (Al-RE) alloys, usually containing more than 85 at.% Al, have 
attracted considerable interest because of the wide variety of accessible microstructures and the associ-
ated range of mechanical properties. For example, Al-RE nanocrystalline composite materials, character-
ized by �ne crystalline phases dispersed in an amorphous or glassy matrix have been shown to exhibit 
high tensile strength and large strength-to-weight ratio1–5. �ese and other novel structures comprised 
of various stable and metastable phases can be realized through controlled composition and carefully 
designed rapid solidi�cation and devitri�cation processes. �e Al-Sm binary alloy is of particular interest 
because of it o�ers a wide glass forming composition range in the Al-RE series and an array of stable 
and metastable crystalline phases that are attainable from the liquid or the glass, including fcc, Al5Sm 
(P6/mmm), Al4Sm (I4/mmm and Imma) and Al11Sm3 (Immm), which have all been observed experi-
mentally1,6,7. Navigation of this complex landscape to realize speci�c phases, structures, and behaviors 
requires detailed models for the thermodynamic and kinetic properties that govern the material response. 
�e di�usivity of the alloy liquid, particularly in the highly undercooled state, is one such property that 
is fundamental to understanding phase competition, the glass transition, and microstructural response 
to various processing conditions8 and vitri�cation9.

Experimental values of di�usivity for liquid aluminum and its alloys are scarce10. Most direct measure-
ments reported for liquid alloys have used the long-capillary technique and its variations. In this method, 
convective �ow can have a substantial in�uence on the di�usion pro�le, and it has been shown that these 
measurements can overestimate the di�usivity by a factor of 211. A recently developed quasi-elastic neu-
tron scattering (QNS) method12 can detect the microscopic dynamics at the atomic length scale and with 
picosecond resolution. At this time scale, convective �ow can be neglected, and accurate self-di�usivity 
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can be deduced11,13. �is method was employed by Demmel et al.14 and by Kargl et al.15 to measure 
the temperature-dependent self-di�usivity of liquid Al, and the two set of data are in good agreement. 
Speci�cally, an activation energy of Q =  27.0 ±  6.8 kJ/mole was determined from the experimental data15, 
associated with the Arrhenius behavior,
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where R is the gas constant, T the absolute temperature, and D0 is a pre-exponential factor.
Self-di�usivity D in the liquid may also be determined indirectly from the shear viscosity η  with the 

use of Stokes-Einstein relation,

η
= ,
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where k is the Boltzmann constant, and rp the radius of a particle moving in the �uid. �e constant C 
is determined by the hydrodynamic boundary condition for the �uid on the particle surface, varying 
from 6π  for the sticking boundary condition to 4π  for the slipping boundary condition. �e available 
experimental viscosity data of liquid aluminum have been reviewed by Assael et al.16. Using their rec-
ommended values16, the QNS results14,15 of liquid Al can be well-reproduced by Eq. 2 with the slipping 
boundary condition.

�e only experimental investigation of di�usivity in Al-Sm liquids have been reported by Wang and 
his colleagues17, however their original data18 remain unpublished. Wang et al.17 proposed a non-Arrhenius 
description for di�usion coe�cient of Al-Sm liquids: = . × − . /( − . )−D T T2 021 10 exp[ 1148 81 413 54 ]

11 , 
and the composition dependence is assumed negligible. �eir results will be discussed in the following 
section.

A complimentary approach is to determine di�usivities by molecular dynamics (MD) simulations, 
which is a widely used for investigating the structural and dynamic properties in the liquid state19,20. With 
a potential accurately describing the atomic interactions, MD can provide a comprehensive description of 
the single-atom as well as the collective behavior. �e Einstein relation is widely used in analysis of MD 
results, relating the self-di�usion coe�cient to the mean square displacement (MSD) as
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where r indicates the atom position, which is a function of observation time t. �is approach has been 
applied to Al10,21, Ni22, Al-20 at.% Ni23 and Ni-5.4 at.% W24 melts using ab initio potentials, and the 
results are always in good agreement with the experimental data.

�e literature results of self-di�usion coe�cients in liquid Al are summarized in Fig. 1. Self-di�usion 
coe�cients in liquid Al have been studied extensively by classical MD using the semiempirical 
embedded-atom method (EAM) formalism, and the results are strongly dependent on the di�erent 
implementations of the EAM potential25. Alfe and Gillan21 reported a self-di�usion coe�cient in liq-
uid Al of 6.8 ×  10−9 m2/s at 1000 K by using ab initio molecular dynamics (AIMD), which agrees with 

Figure 1. Self-di�usion coe�cients in liquid Al and liquid Sm. �e solid symbols are experimental 

data14,15 for Al and the open symbols are classical MD results for Al with di�erent EAM potentials25. �e 

half-solid diamonds and triangles indicate AIMD results from this work and the literature10,21, respectively.
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the experimental data14,15. Jakse and Pasturel10 studied dynamic properties of liquid aluminum using 
AIMD within the local-density (LDA) and generalized gradient (GGA) approximations, and they found 
the GGA approximation enhances the icosahedral short range order (ISRO) and then provides slightly 
higher activation energy and lower di�usivity.

In previous work by several of the current authors26, AIMD simulations were performed at 1500, 
1300, 1100 and 900 K to investigate the structural evolution in Al90Sm10 liquid, and di�usivities of Al and 
Sm were derived from the mean square displacements for the above temperatures. �e obtained di�usiv-
ity data can be approximated by the Arrhenius relationship within the simulation uncertainties. A more 
comprehensive AIMD study is performed in this work by including several di�erent alloy compositions 
with multiple temperatures selecting from both the above-melting and the undercooling regions.

In the present work we seek a comprehensive model to describe the di�usivities in Al-Sm liquids over 
a range of compositions and temperatures. We start from the general approach suggested by Andersson27, 
building a phenomenological di�usion model on the basis of atomic mobility Mi of di�usional elements i:
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For di�usion in a disordered solution phase, the composition and temperature dependence of the gen-
eralized activation energy ∆ Φ i can be expressed by Redlich-Kister polynomials28
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where x indicates the mole fraction of elements. ∆Φi
l and ∆Φ ,r

i
j k are model parameters. �is treatment 

o�ers particular utility in enabling the use of kinetic databases for the modeling of di�usion in multi-
component systems, where standard parameterization permits calculation of self/tracer di�usivity, intrin-
sic chemical di�usivity, and interdi�usion coe�cients for alloys. �e self/tracer di�usion coe�cient Di 
obtained from MD simulations can be connected with Mi by

= . ( )D RT M 6i i

Furthermore, the mobility database can formulated to be used in conjunction with a standard CALPHAD 
database, o�ering a comprehensive picture of the thermodynamic and kinetic landscape29.

Results and Discussion
Self and tracer-diffusivity in liquid Al and Sm. �e self-di�usivity of Al in liquid Al obtained 
from this work has been presented in Fig. 1, comparing with data from experiments14,15 and MD sim-
ulations10,21,25. As shown in Fig. 1, the results from di�erent sources are in general agreement with each 
others. �e overall temperature dependence from experiments (Q =  27.0 ±  6.8 kJ/mole14,15) has been 
well-captured by both classical MD (Q =  24.9 ~ 29.9 kJ/mole25) and AIMD (Q =  24.2 kJ/mole, this work), 
and the absolute values of the di�usion coe�cient have been slightly underestimated by MD simulations 
with a factor of 1.2 ~ 1.7 (1.35 for the present AIMD results), which demonstrates the capability of MD 
simulations in describing the structural and mass transport properties of liquid Al. �e self-di�usion 
coe�cients of Sm in liquid Sm from AIMD are also plotted in Fig.  1, which can be approximated by 
the Arrhenius equation with an activation energy of 35.0 kJ/mole. We note here that our results for Al 
and Sm are consistent with the widely observed correlation between melting temperature and activation 
energy for self-di�usion, as summarized empirically by Iida’s relation30:

= . . ( ).
Q T16 0 7m

1 07

According to this relation, the activation energy for self-di�usion in liquid-Al and liquid-Sm are 24.1 
and 35.6 kJ/mole, respectively, which are in good agreement with our values (i.e. 24.2 and 35.0 kJ/mole, 
respectively).

�e impurity di�usion coe�cient of Sm in liquid Al is plotted in Fig.  2a. From a statistical point 
of view, the impurity di�usion coe�cient from AIMD simulations is not accurate and then the associ-
ated uncertainty is very large as shown in Fig. 2a, which makes it di�cult to derive a reliable mobility 
description for tracer di�usion from AIMD results unless additional restrictions can be introduced. 
Gorecki31,32 connected the activation energy for di�usion in the liquid state with that in the solid state by 
considering the liquid phase as a strongly defected crystal. He studied the changes of activation energy 
of impurity di�usion in Ag, Cu31 and Fe32 when the system passes the melting point, and found that the 
ratio of activation energy between the solid and liquid states is around 5 (speci�cally, 5.35 for Ag, 5.12 
for Cu and 4.63 for Fe). Here we tested this correlation for Al in Fig. 2b. �e activation energy values of 
di�usion were taken from Du et al.33, who reviewed the experimental data for di�usion of some solutes 
in fcc and liquid Al. According to their paper33, only the impurity di�usivities of Cu, Ni, Fe, Co and Ga 
in liquid Al have been subjected to systematic measurements and then been used by the present work. 
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An inspection of those elements con�rmed the simple relation suggested by Gorecki31,32 and the average 
ratio is 5.92 for these solutes in Al.

Returning now to the issue of Sm di�usion in the Al liquid, we use the correlations discussed above 
to reexamine the AIMD data for the dilute alloys. Here we use the term “dilute” to indicate two speci�c 
cases employed using a 100-atom AIMD simulation scheme: (i) 1 at % solution (one Sm atom with 99 
Al atoms), and (ii) the pure Al limit computed by extrapolation. By including this ratio into assessment, 
the �t for ( )D TSm

Al  shown by the solid line in Fig. 2a is determined by a least-squares method, and the 
optimized parameters are listed in Table 1.

As an alternative to the correlation employed in the treatment described above, we o�er here another 
approach that can be achieved by using the Stokes-Einstein relation, which asserts that the ratio of solute 
di�usivity in the dilute alloy to that of the pure solvent scales with the ratio of their respective atomic 
radii. If the tracer di�usivity of Sm in the Al liquid follows the Stokes-Einstein relation and the sticking 
boundary condition is applied due to the large solute atom, we have
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Al Al
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which gives the dotted line in Fig. 2a with a higher activation energy than the prvious approach (24.2 
vs. 16.1 kJ/mole). To test this observation, we analyze here the experimental results of U di�usion in the 
Al liquid due to the similar sizes between Sm and U atoms. Mitamura et al.34 measured the impurity 
di�usivity of U in liquid Al from 1073 K to 1283 K and derived an activation energy of 19.7 kJ/mole from 
their data, and the extrapolation yields a value in agreement with the result from cathodic deposition 
in liquid metal/electrolyte systems at 973 K35. Similar to what we discussed above for Sm, the di�usivity 
data of U in the Al liquid can also been reasonably reproduced by the Stokes-Einstein relation with the 
sticking boundary condition, and the activation energy (24.2 kJ/mole) is higher than the one from the 
numerical �tting (19.7 kJ/mole).

Figure 2. Tracer di�usivity of Sm in liquid Al (a) by considering an empirical correlation between the 

activation energy for di�usion of impurities in solid and liquid Al (b). �e half-solid symbols in (a) indicate 

AIMD data for the dilute alloys from this work of two speci�c cases: (i) 1 at% solution (one Sm atom with 99 

Al atoms) by square symbols and (ii) the pure Al limit computed by extrapolation by diamond symbols.

∆ΦAl
Al 24206 +  133.731 × T

∆ΦSm
Al 16058 + 147.224 × T

∆ΦSm
Sm 35005 + 146.434 × T

∆ΦAl
Sm 35005 + 139.879 × T

∆Φ ,
Al
Al Sm 99039 − 14.933 × T

∆Φ ,
Sm
Al Sm 218087 − 93.193 × T

Table 1.  Assessed mobility parameters for liquid Al-Sm alloys, (J/mole).
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No AIMD simulation has been performed for the impurity di�usion of Al in liquid Sm because the 
interest of this work is focused on Al-rich part and AIMD is not well suited to provide accurate impurity 
di�usivity as mentioned above. �e tracer di�usivity of Al in the Sm liquid has been estimated from the 
self-di�usivity in the Sm liquid in this work. Tracer di�usion of solute particles in a simple solvent has 
been studied by Ould-Kaddour and his coworkers36,37 with solvent and tracer molecules interacting 
through Lennard-Jones potentials. �e di�usivity ratio between solute and solvent were reported to be 
dependent on their size ratio and their mass ratio. A microscopic calculation of the tracer di�usion 
coe�cient of a small tagged particle in a dense liquid of much larger particles were performed by 
Bhattacharyya and Bagchi38, and the solute motion was coupled to both the collective density �uctuation 
and the transverse current mode of the liquid. �eir results for a wide range of solute–solvent size ratio 
are in good agreement with Ould-Kaddour’s work36. Based on their results, we assumed ≈ .D D2 2Al

Sm
Sm
Sm 

in this work.

Diffusion modeling for liquid Al-Sm alloys. To derive the associated composition and temperature 
dependencies, the AIMD data were assessed in the terms of a di�usion model suggested by Andersson27. 
�e assessed mobility parameters for liquid Al-Sm alloys are listed in Table  1 and the calculated self/
tracer di�usion coe�cients of Al and Sm in selected Al-Sm alloys are plotted by dotted lines in Fig. 3a,b, 
respectively. By comparing with AIMD results in Fig. 3, we found that most high-temperature (T >  TL, 
where TL is the liquidus temperature) data can be well reproduced by the calculation and negative devi-
ations from the calculated values are observed for the low-temperature (T <  TL) region. By inserting Eq. 
4 into Eq. 6, Eq. 1 is reproduced for ∆Φ = −Q RT Dlni i i

0. In another word, the di�usion model from 
Andersson27 is based on an Arrhenius behavior. However, as shown in the present work, the di�usion 
coe�cient can be generally approximated by the Arrhenius equation only at high temperatures while 
o�-Arrhenius behavior of di�usivity was observed in the undercooled state, which is also reported in 
previous MD investigations39–42. In order to understand the o�-Arrhenius slowdown in the undercooled 
liquid, we investigated the local structure development in the liquid and observed a rapid growth of local 
clusters (short-range ordering) in the undercooled state. Similar observation has been reported43 for 
Al450Sm50 alloy with a large simulation cell of 500 atoms. Since those local clusters are energetic favora-
ble43, one can expect atoms in those clusters are less mobile, and then the rapid enhancement of 
short-range order in the undercooled liquid will slow down the dynamics, making the deviation of dif-
fusivity from the Arrhenius equation.

To extend the mobility database (Table 1) into the low-temperature range, a Volmer-Fulcher-Tammann 
(VFT) equation44,45 is adopted in this work:
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where Dv,
0

i, Bi and Ti
0 are parameters evaluated from the �tting process. Here we developed a connection 

between the mobility database with the VFT description to reduce the number of �tting parameters in 
Eq. 9, and then to avoid over�tting caused by the lack of accurate low-temperature data. By assuming 

Figure 3. Calculated self-di�usion coe�cients of Al (a) and Sm (b) in �ve liquid Al-Sm alloys. �e solid 

and dotted lines indicated calculations with and without VFT corrections for the undercooling temperature 

range, respectively. Symbols show AIMD results from the present work.



www.nature.com/scientificreports/

6Scientific RepoRts | 5:10956 | DOi: 10.1038/srep10956

the di�usion behavior switching from Arrhenius type to VFT type at TL, due to the continuity of D and 
its �rst derivative, we get

=
( − )
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Once Di
0 and Q are determined from the mobility database, the number of �tting parameters of the VFT 

equation can be reduced to one by considering Eqs. 10 and 11.
With low-temperature (T <  TL) region described by VFT formula, the complete description of self/

tracer di�usivity in liquid Al-Sm alloys is presented by solid lines in Fig. 3a,b. Almost all AIMD results 
are reproduced within the simulation uncertainties. �e model parameters for VFT description of dif-
ferent Al-Sm alloys are given in Table 2.

Interdiffusivity in liquid Al-Sm alloys. Using the complete di�usion description developed in this 
work, the interdi�usion coe�cients for liquid Al-Sm alloys of di�erent compositions have been calcu-
lated and are plotted by the solid lines in Fig.  4. As shown in Fig.  4, the composition dependence of 
di�usivity is quite strong, even for the Al-rich region, which is contrary to Wang’s assumption that com-
position dependence is small17. �e dotted line represents the �tting of experimental data suggested by 
Wang et al.17, which shows an obvious deviation from our calculations. We think the deviation is mainly 
caused by the composition dependence ignored by Wang’s �tting17. To test this hypothesis, we contacted 
the authors of Ref.17 for their original data and experimental details. Wang et al.18 used a capillary res-
ervoir technique, measuring composition pro�les to determine the interdi�usion coe�cient for selected 
temperatures in the range from 948 K to 1116 K, which provides high-temperature data for their �tting. 
We note here, for clarity, that the measured composition pro�les suggest an average composition of 0.6 
at.% Sm. �ey also studied the eutectic spacing variation in Al-5.6 at.% Sm17 using laser scanning tech-
nique. According to TMK model46, for eutectic growth at high velocities, the eutectic spacing variation 

x(Sm) TL, K TAl
0, K BAl Dv,

0
Al, m

2/s TSm
0, K BSm Dv,

0
Sm, m2/s

0.05 1067 146 2640 6.889 × 10−8 384 1346 1.148 × 10−8

0.10 1227 260 2554 5.542 × 10−8 470 1720 1.377 × 10−8

0.15 1443 375 2535 5.059 × 10−8 556 2124 1.928 × 10−8

0.20 1655 489 2520 4.801 × 10−8 641 2471 2.675 × 10−8

0.24 1624 580 2228 3.663 × 10−8 710 2303 2.284 × 10−8

Table 2.  VFT Model parameters for liquid Al-Sm of di�erent compositions.

Figure 4. Calculated chemical di�usion coe�cients for Al-0.6 at.% Sm and Al-5.6 at.% Sm alloys in 

comparison with the experimental estimation17,18.
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is strongly in�uenced by the temperature-dependent di�usion coe�cient. �erefore, the di�usion coe�-
cients in undercooled Al-Sm melt were estimated17,18 from the connection between eutectic spacing and 
velocity, which gives the low-temperature data for their �tting. In general, as shown in Fig. 4, both set 
of experimental data can be well reproduced by the present calculation when the corresponding compo-
sitions are taken into account. Based on their high-temperature data obtained by the capillary reservoir 
technique, Wang et al.18 reported a stronger temperature dependent (Q =  32.4 kJ/mole) than the present 
assessment (Q =  17.4 kJ/mole). It should be mentioned here that the long-capillary measurements are 
easily a�ected by convective �ow11,12. As Meyer and Kargl indicated in their paper11,47, the self-di�usivity 
in liquid Cu from long-capillary measurements48 shows a stronger temperature-dependence than the 
results from QNS13. It is also mentioned by Wang et al.18 that the activation energy derived from their 
capillary reservoir measurements contains a large deviation, which may not provide a proper description 
of the temperature dependence of the di�usion coe�cient. As shown in Fig.  4, the di�usivity data for 
undercooled Al-5.6 at.% Sm liquid are slightly higher than the present calculated values. On one hand, 
those data were estimated from the eutectic spacing variation measurement with many assumptions46, 
and then a large uncertainty is expected. On the other hand, as we mentioned before, the self-di�usion 
coe�cient of Al in liquid Al have been slightly underestimated by AIMD simulations with a factor of 
1.35. By correcting the di�usivity of Al with a factor of 1.35, a better reproduction of those experimental 
data can be achieved as shown by the dashed line in Fig. 4.

Summary
In this work, we studied di�usion in liquid Al-Sm alloys by combining AIMD simulations and di�u-
sion modeling. First, we computed di�usion coe�cients for Al and Sm in liquid Al95Sm5, Al90Sm10, 
Al85Sm15, Al80Sm20 and Al76Sm24 alloys by means of AIMD simulations from the above-melting 
temperature range to the undercooling temperature range. Non-Arrhenius behavior of di�usivity was 
observed for all �ve alloys as they are cooled below their melting temperatures, which is likely caused by 
the local structural ordering. By using those di�usivity data, we constructed a di�usion mobility data-
base for liquid Al-Sm alloys that includes composition and temperature dependence. �e non-Arrhenius 
di�usion behavior observed in the undercooled liquid was described by a VFT equation and a connec-
tion between the mobility database with the VFT description was made to reduce the number of �tting 
parameters. Using the model, which is based on AIMD simulation results, we computed di�usivities for 
selected compositions and compared directly to independent experimental reports. �is comparison 
(for 0.6 at% Sm and 5.6 at% Sm) shows that the model predicts reasonably well the observed behavior.

Methods
Initially, six model alloys containing 100 atoms (i.e. Al99Sm1, Al95Sm5, Al90Sm10, Al85Sm55, Al80Sm20 
and Al76Sm24) were chosen for the AIMD simulations for deriving self/tracer di�usion coe�cients for 
di�erent alloy compositions. �e general investigation interest is focused on Al-rich part, where a com-
plex competition between various crystalline phases and the amorphous phase in the quenching process 
has been suggested by experimental observations1,49,50. �e AIMD simulations for this system were per-
formed using the Vienna ab initio simulation package (VASP)51. �e generalized gradient approxima-
tion51,52 for the exchange-correlation energy was used and the interaction between ions and valence 
electrons was described by the projected augmented-wave method (PAW)53. A cubic unit cell containing 
100 atoms was used with periodic boundary conditions. �e simulations were performed in the NVT 
ensemble (constant number of atoms, constant volume and constant temperature) with Nose thermo-
stats. �e MD time step was set to 3 fs and the Verlet algorithm was employed to integrate Newton’s 
equations of motion. Only the Γ -point was used to sample the Brillouin zone. �e samples were �rst 
prepared at 2100 K to reach thermal equilibrium (well above the liquidus temperature TL,), followed by 
cooling with a rate of 100 K per 1000 MD steps to 4-5 selected temperatures including both above-TL 
temperatures and below-TL temperatures. �e pressure of the system at each temperature was tuned to 
zero by adjusting the size of the cubic simulation cell. A�er the system was thermally equilibrated at each 
temperature, an additional 12000 MD steps (36 ps) are followed to collect the atomic trajectories for the 
analysis. �e mean square displacements as a function of time ( ( )r t2 ) were calculated at di�erent 
temperatures, and the self/tracer di�usion coe�cients were derived using the Einstein relation (Eq. 4). 
Additional AIMD simulations were performed for liquid Sm to determine the generalized activation 
energy ∆ΦSm

Sm.
Secondly, the high-temperature (T >  TL) di�usivities were collected from AIMD simulations, from 

which a di�usion mobility database were constructed based on the modeling provided by Andersson and 
Agren27 and Engstrom et al.29. A�er that, the low-temperature (T <  TL) di�usivity data were included to 
determine the parameters T0i in the VFT equation. Eqs. 10 and 11 have been considered into the �tting 
process and T0i was assumed to be a linear function of composition in the Al-rich region. And then, the 
di�usion database for liquid Al-Sm has been developed.

At last, the chemical di�usivities were calculated from our di�usion database for selected Al-Sm 
alloys for a comparison with results from Wang et al.17,18. A recent thermodynamic database for Al-Sm 
system54 was selected to provide thermodynamic quantities, e.g. derivatives of the chemical potential, 
for this work.
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