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ABSTRACT

Despite significant progress, cell viability continues to be a central issue in droplet-based bioprinting applications. Common bioinks exhibit
viscoelastic behavior owing to the presence of long-chain molecules in their mixture. We computationally study effects of viscoelasticity of
bioinks on cell viability during deposition of cell-loaded droplets on a substrate using a compound droplet model. The inner droplet, which
represents the cell, and the encapsulating droplet are modeled as viscoelastic liquids with different material properties, while the ambient fluid
is Newtonian. The model proposed by Takamatsu and Rubinsky [“Viability of deformed cells,” Cryobiology 39(3), 243–251 (1999)] is used to
relate cell deformation to cell viability. We demonstrate that adding viscoelasticity to the encapsulating droplet fluid can significantly enhance
the cell viability, suggesting that viscoelastic properties of bioinks can be tailored to achieve high cell viability in droplet-based bioprinting
systems. The effects of the cell viscoelasticity are also examined, and it is shown that the Newtonian cell models may significantly overpredict
the cell viability.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5108824., s

I. INTRODUCTION

Bioprinting is defined as the application of printing technol-
ogy to deposit living cells onto a substrate.1–6 Recent developments
in additive manufacturing have enabled printing of biocompatible
materials, biochemicals, and living cells with precise spatial con-
trol over the placement of functional components on a substrate.1,3,5

Among the goals are to print tissues and organs suitable for trans-
plantation and to create physiologically relevant disease7,8 and tissue
models.9–11 However, bioprinting is still at an early stage in its devel-
opment, and there is a long way from printing functional organs.3,5

Thus, much research is currently focused on the postprinting cell
viability and functionality.12 In this respect, computational tools can
be harnessed to understand the underlying factors affecting the cell
viability and shape fidelity, and optimize the operating conditions.13

Of various approaches, droplet-based bioprinting has proven
to be a promising form of bioprinting due to its simplicity, high

spatial resolution, high throughput, noncontact printing, and abil-
ity to form concentration gradients of bioactive materials.6 There
are several droplet-based cell-printing modalities including inkjet
bioprinting,1,14,15 acoustic droplet ejection,16,17 and microvalve bio-
printing.18,19 Inkjet bioprinting, the most widely used technique
for biological applications, is based on conventional inkjet printing
technology.5 Inkjet bioprinters are generally classified as continuous
and drop-on-demand inkjet printers. Drop-on-demand inkjet print-
ing is particularly well-suited for deposition of living cells since it is
designed to generate picoliter-scale droplets from aqueous solutions
and precisely position them on a substrate; this approach can be
used directly for the deposition ofmost biological species.3 However,
inkjet bioprinting faces several challenges such as a narrow range of
available bioinks, significant bioprinting-induced cell damage, lim-
ited mechanical and structural integrity of the bioprinted constructs,
and restrictions on the size of the constructs due to a lack of vas-
cularization and scaffold porosity.6 The cell damage mainly occurs
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during ejection and impingement of a cell-loaded droplet onto the
substrate; the latter of these processes is the subject of the present
study. In the nozzlefree methods, such as the acoustic bioprinting,16

impingement is the main cause of the cell damage. In addition, in
the cell spray deposition method, the mechanical forces exerted on
the cells within the spray nozzle are much lower than the shear stress
that occurs during the impact on the substrate.20

Despite the cushioning provided by the encapsulating droplet,
the cell may undergo significant deformation with large and rapid
increases in the physical forces, such as shear stress and pressure,
during the impact of the droplet on the substrate. This signifi-
cantly influences not only the cell viability but also its ability to
perform its essential functions in the tissue construct in the long
term after printing. Therefore, these stresses can determine the suc-
cess of the entire cell-printing process. The biomaterial solutions
used to encapsulate living cells are called bioinks, and it is cru-
cial that the selected bioink provides sufficient protection for the
cells against stressors during the printing process. There are four
main types of bioink materials: hydrogels, microcarriers, cell aggre-
gates, and decellularized matrix components.21 All of these mate-
rials contain long-chain molecules (polymers) and hence exhibit
viscoelastic behavior. In addition, biological cells naturally con-
tain various long-chain molecules (proteins), making viscoelastic
liquids inherently a better model for the cells compared to the
Newtonian counterparts.22,23 Therefore, it is of fundamental impor-
tance to understand effects of viscoelasticity on the bioprinting
process.

Cell viability, defined as the number of healthy cells in a sam-
ple, determines the amount of alive cells, based on a total cell sample.
Viability assays are used to determine the ability of cells to main-
tain viability and it is quantified by an index between 0 and 1. The
value of 0 represents dead cells, while the value of 1 represents fully
alive cells. Given the fact that the cell viability and functionality are
closely related to the mechanical stresses exerted on the cell dur-
ing the printing process, computational modeling can be used to
gain deeper insight into impact dynamics of a cell-loaded droplet
and thereby optimize cell-printing parameters such as the impact
velocity, relative size of encapsulating droplet, and material prop-
erties of bioinks.13 Computational modeling of the droplet-based
bioprinting is a challenging task due to highly complicated interac-
tions between the cell, the encapsulating droplet, and the substrate.
Adding viscoelasticity to the encapsulating droplet and the cell flu-
ids makes the problem even more challenging for the numerical
simulations. Early computational modeling of the cell-encapsulating
droplet printing was performed by Wang et al.24 using a smoothed
particle hydrodynamics method; however, this model was created
under the assumption that the receiving substrate is coated with the
same liquid as that of the encapsulating droplet. Tasoglu et al.25 used
a compound-droplet model in which both the biological cell and the
bioink are modeled as Newtonian fluids. Based on the cell viability
model proposed by Takamatsu and Rubinsky,26 they hypothesized
that cell damage is related to the increase in area of cell mem-
brane. Therefore, they modeled the probability of cell survival as
a function of the relative change in the cell membrane area com-
pared to that of an undisturbed cell. They showed that high cell
viability can be achieved by decreasing Reynolds number and the
surface tension at the air-bioink interface. They also observed that
cell viability increases as the equilibrium contact angle, cell/droplet

viscosity ratio, and droplet/cell diameter ratio increase. Later,
Hendriks et al.20 developed an analytical model based partly on
the computational results of Tasoglu et al.25 and demonstrated that
the cell viability can be controlled and optimized by manipulat-
ing the properties of the droplet fluid and operating conditions.
He et al.27 modeled the droplet-based bioprinting as a compound
droplet deposited into a pool of a Newtonian viscous solution in
which the cell is assumed to be an elastic solid encapsulated by
a viscous Newtonian fluid. Using this model, they identified four
stages within the cell-printing process and provided an estima-
tion for the duration and magnitude of the mechanical stresses
exerted on the cell in each stage. In the present study, we use a
compound-droplet model similar to that of Tasoglu et al.25 but
we instead model the cell and the encapsulating droplet as vis-
coelastic liquids with different material properties. We thus focus
on the effects of viscoelasticity on cell viability in the droplet-based
bioprinting.

Compound droplets have generally been studied in the context
of Newtonian liquid systems28–35 and only a few studies have con-
sidered the effects of viscoelasticity on the deformation and dynam-
ics of compound droplets.36–38 Toose et al.36 developed a boundary
element method to model the dynamics of non-Newtonian com-
pound droplets under axisymmetric flow conditions. They iden-
tified the dominant breakup mechanism of compound drops in
relation to the specific non-Newtonian behavior of the membrane.
Zhou et al.37 computationally studied the formation of a viscoelas-
tic compound droplet in a flow-focusing geometry but did not
consider its dynamics afterward. More recently, Domejean et al.38

demonstrated the controlled production of submillimeter liquid
core hydrogel capsules for multiplexed three-dimensional (3D) cell
culture.

Viscoelastic compound droplets have often been used to
model biological cells, e.g., white blood cells.39–41 Khismatullin and
Truskey39 numerically studied the effects of cell deformability and
viscoelasticity on the adhesion of leukocytes to surfaces in a parallel-
plate flow chamber. They found that viscoelasticity has a signif-
icant effect on leukocyte adhesion. They demonstrated that cell
viscoelasticity triggers the cell to transition from a spherical to a
teardrop shape and thereby slowing down its rolling velocity signif-
icantly. Tatsumi et al.41 studied the dynamics of lymphocytes in a
microchannel both numerically and experimentally. Theymodeled a
lymphocyte using a non-Newtonian compound droplet with shear-
thinning effects in the cytoplasm and the nucleus. They found that
the conventional Newtonian simple-droplet model fails to predict
the deformation of a cell in the contraction region, where the non-
linear effects become significant. On the other hand, the compound-
drop model yielded the results that were consistent with the exper-
imental measurements of lymphocyte deformation. More recently,
Nooranidoost et al.42 developed a compound-droplet model to study
encapsulation of biological cells in a flow-focusing geometry. They
developed a phase diagram for a range of inner and outer cap-
illary numbers, identified four different cell encapsulation modes
and determined the conditions for the single cell encapsulation
as the favorable mode for bioprinting systems. They also exam-
ined the effect of viscoelasticity on formation of cell-encapsulating
droplets.43 They found that success rate for the single cell encap-
sulation may be improved by adjusting viscoelasticity of the shell
fluid.
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In the present study, for the first time, we computationally
investigate the effects of viscoelasticity on the dynamics of a com-
pound droplet impacting on a flat substrate as a model for the
droplet-based bioprinting. The compound droplet model consists
of the inner droplet (cell), the encapsulating droplet (bioink), and
the surrounding air. The cell and bioink are modeled as viscoelas-
tic fluids with different material properties while air is modeled as
a Newtonian fluid. The receiving substrate is modeled as a perfectly
smooth and rigid wall. The viscoelasticity is accounted for using the
FENE-CR model (Finite Extendable Nonlinear Elastic-Chilcott and
Rallison)44 and particle-resolved simulations are performed using a
front-tracking method for a wide range of viscoelastic parameters.
In particular, extensive computations are performed to investigate
the cell deformation (and, indirectly, the cell viability) as a function
of the Weissenberg number (Wid) and the polymeric viscosity ratio
(βd) based on the encapsulating droplet fluid properties in the ranges
of 0 ≤Wid ≤ 100 and 0 ≤ βd ≤ 0.9. Further simulations are also car-
ried out to demonstrate the importance of the cell viscoelasticity for
accurate predictions of the cell viability.

II. PROBLEM STATEMENT AND FORMULATION

The impingement of a compound droplet on a flat surface is
shown schematically in Fig. 1, where the cell, the bioink, the sur-
rounding air, and the solid substrate are shown in red, green, blue,
and yellow, respectively. The compound droplet is initially located
close to the flat surface and initiated with a uniform impact velocity
(Vcol) directed toward the substrate [Fig. 1(a)]. The ambient fluid is
initially quiescent. The compound droplet impinges and spreads on
the solid surface, which causes the cell to deform due to the stresses
built up in the bioink [Fig. 1(b)]. This deformation is the main cause
for the cell damage that may result in its death in extreme cases.
Both the cell and bioink fluids contain long-chain molecules and
thus exhibit viscoelastic behavior. The effects of viscoelasticity con-
tained in the cell and bioink on the mechanical deformation and
viability of the cell under different conditions of practical impor-
tance are our main focus in the present study. For this purpose,
the cell and the encapsulating droplet are modeled as viscoelas-
tic fluids using a FENE-CR model,44 while the ambient fluid (air)
is modeled as a Newtonian fluid. In a FENE-CR liquid, polymers
are modeled as finitely extensible mass-spring dumbbells in a solu-
tion, so it is deemed to be a more realistic than the Maxwell and
Oldroyd-B models where the polymers are assumed to be infinitely
extensible.36,37 The substrate is treated as a rigid solid with a smooth

flat surface. The flow is assumed to be axisymmetric. Therefore,
only one half is used as the computational domain that extends 3
and 1.5 encapsulating droplet diameters in the radial and the axial
directions, respectively. The computational domain and the sym-
metry axis are, respectively, shown by the white and gray dashed
lines in Fig. 1(b). Symmetry boundary conditions are applied at the
axis of symmetry while the gradient-free boundary conditions are
imposed at the top and lateral boundaries for all the flow quanti-
ties. The no-slip boundary conditions are used on the solid wall for
all the flow quantities except for the interface for which the no-slip
boundary conditions are known to yield a stress singularity near the
contact line. The boundary conditions are expressed mathematically
in Fig. 1(b), where u, v, A, and p are the velocity components in
the radial and axial directions, conformation tensor and pressure,
respectively.

Following Muradoglu and Tasoglu,57 a slip-contact line model
based on the dynamic contact angle is used to treat the moving
contact line. The treatment is briefly described here for complete-
ness and the readers are referred to Muradoglu and Tasoglu57 for
the details. The drop interface is monitored during the simulation
and the front-element crossing the threshold line (e.g., the hori-
zontal dashed magenta line in the sketch) is connected to the wall
such that the contact angle is equal to the dynamic contact angle
of θD. Kistler’s correlation58 is used to relate the dynamic con-
tact angle to the static contact angle (θe) and the capillary num-
ber Cacl = μd|Vcl|/σo, where μd, Vcl, and σo are viscosity of the
encapsulating droplet, velocity of the contact line and interfacial
tension of the outer interface, respectively. To do this, we first
compute

θDi ≙ fHoff(Cacl + f
−1
Hoff(θe)), (1)

where fHoff is the Hoffman function defined as

fHoff(ξ) ≙ arccos{1 − 2 tanh[5.16( ξ

1 + 1.31ξ0.99
)0.706]}. (2)

We finally compute the dynamic contact angle as

θD ≙ { θDi if Vcl ≥ 0 (advancing),
2θe − θDi if Vcl < 0 (receding). (3)

The implementation details of the slip-contact line model can be
found in Muradoglu and Tasoglu.57

The deformation and the rate of deformation of the inner
droplet (cell) are hypothesized to determine the viability of the cell.25

FIG. 1. Schematic illustration of the impingement and
spreading of a compound droplet on a solid substrate in a
bioprinting system. (a) The initial position and (b) after the
impingement.
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The deformation of the cell is quantified using the deformation
parameter defined as γ = A/A0, where A and A0 are the surface areas
of the deformed and the undeformed cells, respectively.20,26 We also
use a cell viability model proposed by Takamatsu and Rubinsky26

to compute the cell viability and to identify how much the cell is
damaged due tomechanical deformation. This model is based on the
experimental data obtained from compression of cells between two
parallel plates. They measured the percentage of destroyed cells by
calculating the ratio between the total number of cells and impaired
cells stained by trypan blue. Then, assuming the cells experience a
geometrically ideal deformation, they derived a correlation between
relative change in the cell membrane area and cell destruction.26 As
a cell deforms, its surface area increases proportionally. Takamatsu
and Rubinsky26 found that the cell membrane is stretched but the
cell remains intact until the cell membrane area increases up to 5%.
However, a further increase in the cell surface area can result in a
rupture and consequently death of the cell. Then, they modeled the
probability of cell survival (η) as a function of maximum instanta-
neous value of cell deformation (γmax) and proposed the following
relation for the viability of an individual cell:

η(γ) ≙
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1 for γmax < γcr − Δγ,
1
2
− γmax−γcr

2Δγ
for γcr − Δγ ≤ γmax ≤ γcr + Δγ,

0 for γmax > γcr + Δγ,

(4)

where the critical membrane expansion (critical cell deformation)
and the range of surface expansion in which the cells partly sur-
vive are specified as γcr = 1.5 and Δγ = 0.5, respectively. Hence,
the probability of cell survival (η) varies between 0 ≤ η ≤ 1, it is 0
when γmax > 2 (i.e., the cell is dead) and is 1 when γmax ≤ 1 (i.e.,
the cell is certainly alive). An important deficiency of this model
is that it does not say anything about the loss of cell functionality
caused by mechanical stress and deformation. This model assumes
an elastic cell membrane response to mechanical stresses and neg-
ligible lipid membrane replenishment during the deformation.20,26

We also note that this model assumes a perfectly rigid substrate and
thus underpredicts the cell viability for the case where the substrate
is soft.20

Assuming that the flow is incompressible in all phases, the mass
and momentum conservation equations can be written as46,47

∇ ⋅ u ≙ 0, (5)

∂ρu

∂t
+∇ ⋅ (ρuu) ≙ −∇p +∇ ⋅ μs(∇u +∇uT) +∇ ⋅ τ

+ ∫
A
σκnδ(x − xf)dA, (6)

where u is the velocity vector, ρ and μs are the discontinuous density
and solvent viscosity fields, respectively, p is the pressure, and τ is
the viscoelastic extra stress tensor. The last term in the momentum
equations represents the surface tension, where σ is the surface ten-
sion coefficient, κ is the mean curvature, n is the outward unit vector
normal to the interface, and δ is the three-dimensional delta func-
tion. The surface tension force acts only on the interface location
denoted by xf.

Both the cell and encapsulating fluids are modeled as viscoelas-
tic liquids using the FENE-CR model44 given by

∂A

∂t
+∇ ⋅ (uA) − (∇u)T ⋅A −A ⋅ ∇u ≙ − L2

L2 − trace(A) A − Iλ
,

(7)

τ ≙ μp( L2

L2 − trace(A))A − Iλ
, (8)

where A, λ, L, I, and μp are the conformation tensor, the relax-
ation time, the extensibility parameter (i.e., the ratio of the length
of a fully extended polymer dumbbell to its equilibrium length), the
identity tensor, and polymeric viscosity, respectively. Note that the
conformation tensor (A) is a symmetric positive definite tensor rep-
resenting the average conformation of coil structure of polymers
under different flow conditions.45 The conformation tensor may be
considered as the nondimensional viscoelastic stress tensor.

In the simulations, the diameters of the encapsulating droplet
and the cell are set to the experimental values of Demirci and
Montesano16 as do = 37 μm and di = 13 μm, respectively. The den-
sity and the total viscosity of the encapsulating droplet and the cell
are selected to be in the range of the values used by Tasoglu et al.25

and are summarized in Table I for all the three phases of the inner
droplet (cell), the encapsulating droplet (bioink), and the ambient
air. Note that the total viscosity is defined as the sum of the solvent
and polymeric viscosities, i.e., μ = μs + μp. These values are also in

the range of the parameters used by Hendriks et al.20 except for the
viscosity of the cell and the density of the ambient fluid. The vis-
cosity of the cell is taken here as an order of magnitude larger than
that of the encapsulating droplet mainly for the numerical purposes
although the actual apparent viscosity of the cell is much higher. For
the same reason, the density of the surrounding air is also set to
ρo = 51.5 kg/m3, which is about 40 times larger than its physi-
cal value. Although not shown here, it is found that the density of
ambient fluid does not have any significant influence on the impact
dynamics as long as it is 20 times or more smaller than that of
the encapsulating droplet liquid as also reported by Tasoglu et al.25

Surface tension at the air-bioink interface and the bioink-cell inter-
face is 0.076 22 and 0.000 03 N/m, respectively (σo/σi = 2541), as
also used by Tasoglu et al.25 Note that the same value for the sur-
face tension at the air-bioink was also used by Matubayasi and
Nishiyama.59 Unless specified otherwise, in all the results presented
in this paper, the relaxation time and the polymeric viscosity ratio
for the cell are specified as λc = 1.85 × 10−3 s and βc = 0.5, respec-
tively. We selected these values to get the Weissenberg number in
the range 0 ≤ Wi ≤ 100, which is in the range of previous numeri-
cal studies.37,60 The relaxation time and the polymeric viscosity ratio
for the encapsulating droplet are varied between zero (Newtonian)

TABLE I. The material properties of the ambient, the encapsulating droplet, and the
cell fluids.

Density Total viscosity Relaxation
Fluids (kg/m3)25 (Pa s)25 time (s)

Ambient fluid 51.5 6.35× 10−5 0
Encapsulating droplet 1030 2.54× 10−3 0–1.85 × 10−3

Cell 1030 1.27× 10−2 1.85 × 10−3
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and the respective value of the cell fluid. Following Izbassarov and
Muradoglu,51 the extensibility parameter for the cell and the encap-
sulating droplet fluids is assumed to be the same and specified as
L = 15. Although not shown here, we also performed simulations
for various values of the extensibility parameter and found that this
parameter does not affect the cell deformation and viability signifi-
cantly. The equilibrium contact angle is specified as θe = 60○, which
is much larger than the value in the experimental study, i.e., the
static contact angle in the experimental work is around 10○.16 We
choose a larger contact angle because it is computationally expen-
sive to resolve the thin liquid layer close to the solid surface for small
contact angles and, more importantly, a higher contact angle (or
hydrophobicity) is more desirable to prevent cell damage. In fact,
in many bioprinting systems, a thin layer of coating material such as
3-(Trimethoxysilyl)propyl methacrylate (TMSPMA) is usually used
to coat the substrate in order to enhance the hydrophobicity before
printing.61,62 This coating will increase the contact angle and the
ultimate contact angle is typically in the range of 45○ ≤ θe ≤ 135○.
Therefore, our equilibrium contact angle of 60○ is an accepted value.
The impact velocity is specified as Vcol = 2 m/s in all the results pre-
sented in this paper as a representative value of the experimental
conditions.16

The governing equations are solved in their dimensional forms
but the results are expressed in terms of the relevant nondimensional
parameters. The length and the velocity scales are selected as the
initial droplet diameter (do) and the impact velocity (Vcol), respec-
tively. Time scale is then computed as do/Vcol. The pressure and
stress components are normalized with ρV2

col. Based on these scales,
the relevant nondimensional parameters can be written as

Wic ≙ λcVcol

do
, Wid ≙ λdVcol

do
, We ≙ ρdV2

coldo

σo
,

Re ≙ ρdVcoldo

μd
,
ρd
ρo

,
ρc

ρd
,βd ≙ μp,d

μp,d + μs,d
, βc ≙ μp,c

μp,c + μs,c
,

μd
μo
≙ μp,d + μs,d

μo
,
μc

μd
≙ μp,c + μs,c

μp,d + μs,d
,

(9)

where Wic, Wid, We, Re, βd, and βc are the Weissenberg num-
ber of the cell, the Weissenberg number of the encapsulating
droplet, the Weber number, the Reynolds number, the poly-
meric viscosity ratios in the encapsulating droplet, and in the cell,
respectively.

III. NUMERICAL METHOD

A one-field formulation is used to solve the flow equations
for all phases in the entire computational domain. The flow equa-
tions [Eqs. (5) and (6)] are solved fully coupled with the viscoelastic
model equations [Eqs. (7) and (8)] in two steps using a projec-
tion method. In the first step the pressure gradient is ignored and
the unprojected velocity is computed. Then, using this unprojected
velocity the pressure is calculated by solving a nonseparable Poisson
equation.47

We use the front-tracking method developed for particle-
resolved simulations of viscoelastic multiphase flow systems by
Izbassarov and Muradoglu48 to treat the multiphase part of our
simulations. The front-tracking method was introduced by Unverdi

and Tryggvason46 and has been successfully applied to study a wide
range of interfacial flows as reviewed by Tryggvason et al.47,49 The
method has been extended to treat viscoelastic effects and applied to
study various multiphase flows.50–54 In a front-tracking method, the
field equations are solved on a regular structured staggered Eulerian
grid using a projection method and the interface between different
phase is tracked explicitly by a Lagrangian grid consisting of con-
nected marker points47 as shown in Fig. 2. The marker points are
advected with the local flow velocity interpolated from the Eulerian
grid and then the indicator function is computed based on the loca-
tion of the marker points using the standard procedure as described
by Tryggvason et al.47 The Lagrangian grid (marker points) are also
used to compute surface tension, which is then smoothed on to
the Eulerian grid and added to the discrete momentum equations
[Eq. (6)]. As the interface evolves with the flow, the marker points
are dynamically added or deleted to keep the point density nearly
uniform and comparable to the underlying Eulerian grid, which is
needed to fully resolve the interface.

The material properties vary discontinuously across phase
boundaries. An indicator function, ϕ, is used to distinguish different
phases and to set the material properties in the entire computational
domain. Referring to Fig. 2, the indicator function is defined for the
present three-phase flow as

ϕ ≙
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
2 in the cell,

1 in the encapsulating droplet,

0 in the ambient fluid.

(10)

The indicator function can be computed using the standard tech-
nique based on the location of the interfaces as described by Tryg-
gvason et al.47 Once it is computed, any generic material property,
ψ, can be set in all three phases as

ψ ≙ {ψdϕ + ψo(1 − ϕ) if ϕ ≤ 1,
ψc(ϕ − 1) + ψd(2 − ϕ) otherwise,

(11)

FIG. 2. Schematic illustration of the computational setup. The interfaces are rep-
resented by a Lagrangian grid consisting of marker points and the field equations

are solved on a stationary Eulerian grid.47,48
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where the subscripts c, d, and o denote the properties of the cell liq-
uid, the encapsulating droplet liquid, and the ambient fluid, respec-
tively. Equation (11) is used to compute density ρ, solvent viscos-
ity μs, polymeric viscosity μp, and relaxation time λ in the entire
computational domain.

The spatial derivatives are approximated using central differ-
ences on a staggered Eulerian grid except for the convective terms
in the viscoelastic model equations for which a fifth-order upwind
WENO-Z scheme55 is used to resolve a thin viscoelastic stress
boundary layer especially near the fluid-fluid interfaces. Time inte-
gration is performed using a first order explicit Euler method.
Although not shown here, it is generally found that the temporal
error is negligible and much smaller than the spatial error in all the
results presented in this paper. The time step is restricted to main-
tain numerical stability of the present explicit method. Considering
the viscous, convective, and capillary time scales, the time step is
determined based on the linear stability as

Δt ≙αsfmin( h2min

4smax
,
hmin

Umax
,

√((ρc + ρd)h3min)
4πσi

,

√((ρd + ρo)h3min)
4πσo

),
(12)

where smax is the largest among the kinematic viscosities of the flu-
ids μc/ρc, μd/ρd and μo/ρo, hmin is the smallest grid size and Umax

is the maximum magnitude of the velocity in the domain. Note
that the time step is multiplied by a safety factor, αsf , taken here as
αsf = 0.425 in order to avoid instabilities due to viscoelastic and
other nonlinear effects. We note that a second-order predictor-
corrector time integration scheme is readily available as an option

in the present numerical method but the first order scheme is used
to facilitate extensive simulations.

The log-conformationmethod developed by Fattal and Kupfer-
man56 is employed to circumvent the high Weissenberg number
problem (HWNP) in solving the viscoelastic model equations. As
discussed by Izbassarov andMuradoglu,48,50,51 the log-conformation
method preserves the positive-definiteness of the conformation ten-
sor at the numerical solution level and thus stabilizes the numerical
scheme even at very large values of the Weissenberg numbers.

Finally, for the contact line treatment, the drop interface is
assumed to connect the solid wall when the distance between the
drop and solid wall becomes smaller than a prespecified threshold
value hth (Fig. 2), taken in the present study as hth = 2Δz where Δz
is the Eulerian grid size. We note that Muradoglu and Tasoglu57

showed that the results are not very sensitive to the threshold dis-
tance in the range 1.5Δz ≤ hth ≤ 3Δz. The details of numerical meth-
ods for the front-tracking method, viscoelasticity, and treatment of
contact line can be found in Tryggvason et al.,47 Izbassarov and
Muradoglu,48 and Muradoglu and Tasoglu,57 respectively.

Simulations are performed by varying a single parameter at a
time while keeping all the other parameters constant in order to
demonstrate the sole effects of the given parameter on the flow. To
facilitate this, we define a baseline case as

Wic ≙ 100, Wid ≙ 1, We ≙ 2, Re ≙ 30, βd ≙ 0.5,
βc ≙ 0.5, L ≙ 15, σo/σi ≙ 2541, μc

μd
≙ 5, μd

μo
≙ 40,

ρd
ρo
≙ 20, ρc

ρd
≙ 1, do/di ≙ 2.85, θe ≙ 60○.

(13)

FIG. 3. Evolution of a compound droplet impacting on a flat surface. The left and right haves show the Newtonian (Wid = 0) and the viscoelastic (Wid = 10, βd = 0.9, L = 15)
encapsulating droplet cases, respectively. The extend of the encapsulating droplet is indicated by the thick horizontal black line together with the numerical value at each
instant just below the corresponding inset, where Ro is the radius of the initial encapsulating droplet. Time evolves from left to right and from top to bottom. (We = 2, Re = 30,
Wic = 100, βc = 0.5, do/di = 2.85, σo/σ i = 2541, μc /μd = 5, μd /μo = 40, ρc /ρd = 1, ρd /ρo = 20, θe = 60○.)
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Note that the baseline case is determined to be in the range of the
parameters used in Tasoglu et al.25 Since we mainly focus here on
the effects of the viscoelasticity contained in the bioinks, we present
extensive simulation results showing the effects of the Weissenberg
number and the polymeric viscosity ratio based on the encapsulating
droplet fluid properties. However, we also present further results to
demonstrate the importance of the cell viscoelasticity for accurate
predictions of the cell viability.

IV. RESULTS AND DISCUSSIONS

Extensive simulations are performed using the compound
droplet model to investigate the effects of viscoelasticity of the
encapsulating droplet on the cell viability during the impingement
on a flat substrate. The viscoelasticity is characterized by the Weis-
senberg number and the polymeric viscosity ratio. Since previ-
ous studies have shown that cell damage is largely caused by cell

FIG. 4. Evolution of a viscoelastic compound droplet impacting on a flat substrate for a moderate polymeric viscosity ratio of βd = 0.5 (left half) and a high poly-
meric viscosity ratio of βd = 0.9 (right half), and for Wid = 0.1, 1, and 100 from left to right, respectively. The extend of the encapsulating droplet is indicated by
the thick horizontal black line together with the numerical value at each instant just below the corresponding inset, where Ro is the radius of the initial encapsulat-
ing droplet. The time progress from top to bottom and the snapshots are taken at times t

∗ = 0, 0.32, 0.54, and 3.78. The constant contours denote the average

polymer extension ∥
√
trace(A)∥. (We = 2, Re = 30, Wic = 100, βc = 0.5, L = 15, do/di = 2.85, σo/σ i = 2541, μc /μd = 5, μd /μo = 40, ρc /ρd = 1, ρd /ρo = 20,

θe = 60○.)
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deformation rather than other stressors such as shear stress and
pressure,20,25,26 we investigate the effect of viscoelasticity on cell
deformation and relate it to cell viability.

A uniform grid is employed in all the computations. Although
not shown here due the space considerations, a comprehensive grid
convergence study is done to determine the minimum grid size
required to reduce the spatial discretization error below a thresh-
old value. It is found that a computational grid containing 512 × 256
cells in the radial and axial directions, respectively, is sufficient to
reduce the spatial error below 0.5% for all the flow quantities. There-
fore, this grid resolution is used in all the results presented in this
paper. Since the time step is restricted to maintain the numerical
stability in the present explicit numerical method, the time step-
ping error is found to be negligible compared to the spatial error

as also reported in the previous studies.25,51,53 We also note that
the code has been rigorously validated previously for the similar
problems25,51,57 so separate validation tests have not been repeated
here.

We first show the effects of viscoelasticity of the encapsulat-
ing droplet fluid qualitatively in Fig. 3 where the snapshots taken
at times t∗ = 0, 0.32, 0.54, 1.08, 1.62, and 3.78 are plotted for
the Newtonian (Wid = 0) and the viscoelastic (Wid = 10 and
βd = 0.9) encapsulating droplet cases on the left and the right sides,
respectively. In both cases, the cell is viscoelastic (Wic = 100 and
βc = 0.5) and the other parameters are the same as the base-
line case. The square root of the trace of the conformation tensor

∥
√
trace(A)∥ is also plotted in Fig. 3 as a measure of the aver-

age polymer extension. It is clearly seen in this figure that the cell

FIG. 5. Cell deformation (left) and rate of
cell deformation (right) for 0 ≤ βd ≤ 0.9
and Wid = 0.1, 1, 100. (We = 2, Re = 30,
Wic = 100, βc = 0.5, L = 15, do/di = 2.85,
σo/σ i = 2541, μc /μd = 5, μd /μo = 40,
ρc /ρd = 1, ρd /ρo = 20, θe = 60○.)
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deformation is significantly reduced in the viscoelastic case show-
ing the enhancement of the cell viability by the viscoelasticity of the
bioinks. The extend of the encapsulating droplet is indicated by the
thick horizontal black line together with the numerical value at each
instant just below the corresponding inset, where Ro is the radius
of the initial encapsulating droplet. As the initially spherical com-
pound droplet impacts and spreads on the substrate, the polymers in
the viscoelastic encapsulating droplet are extended rapidly creating a
thin viscoelastic boundary layer near the substrate. Although there is
a large viscoelastic stress built up in the viscoelastic boundary layer,
the cell is lubricated and kept sufficiently far from the wall as seen in
the figure. It is interesting to observe that the deformation patterns
are markedly different in the Newtonian and the viscoelastic cases.
Although the encapsulating droplet deforms more, the inner droplet
(cell) deforms significantly less in the viscoelastic case. A close exam-
ination reveals that the extended polymers in the boundary layer
induce large viscoelastic stresses that push the fluid outward near the
contact line to enhance the spreading rate. This is the main mecha-
nism that makes the viscoelastic droplet spread more rapidly than
that of the Newtonian counterpart as also reported by Izbassarov
and Muradoglu.51 As a result, the fluid between the inner droplet
and the wall drains more rapidly pulling the entire inner droplet
down nearly uniformly, which significantly reduces the cell defor-
mation and consequently improves its viability in the viscoelastic
case.

We next investigate the effects of the viscoelastic parameters
on the dynamics of the compound droplet and the cell viability. For
this purpose, simulations are performed to examine the effects of
the Weissenberg number of the encapsulating droplet by varying
Wid in the range of 0.1 ≤ Wid ≤ 100 at a moderate (βd = 0.5) and
a high (βd = 0.9) polymeric viscosity ratios, while the other param-
eters are fixed at the baseline values. The evolution of the droplet
and the cell shapes are shown in Fig. 4 for βd = 0.5 (left half) and
βd = 0.9 (right half), for Wid = 0.1, 1, 100, where the constant con-

tours of the average polymer extension ∥
√
trace(A)∥ are also plot-

ted to show the evolution of the viscoelastic stresses. This figure
qualitatively shows that the viscoelastic stresses increase with both
the Weissenberg number and the polymeric viscosity ratio but the
dependence on the Weissenberg number is more dramatic. As the
viscoelastic stresses increase, the cell deformation decreases resulting
in a significant enhancement of the cell viability.

In a typical experiment, the fluid viscoelasticity is usually
increased by adding more polymers into the solvent, increasing both
the polymeric viscosity and the relaxation time. To mimic this, fur-
ther simulations are performed to examine the combined effects of
the Weissenberg number and the polymeric viscosity ratio of the
encapsulating droplet in the range of 0.1 ≤ Wid ≤ 100 and 0 ≤ βd≤ 0.9, while keeping all other parameters fixed at the baseline values.
Note that we reduce the solvent viscosity while increasing the poly-
meric viscosity such that the total viscosity of the bioink remains
fixed. In fact, the polymeric viscosity ratio essentially modifies the
effective Weissenberg number defined as Wi′ = βWi.50 As more
polymers are added to the bioink fluid, the viscoelastic stresses are
expected to get enhanced akin to the high Weissenberg number
cases, thus the fluid between the inner droplet and the wall is drained
more rapidly pulling the entire inner droplet down nearly uniformly.
The deformation and the rate of deformation of the cell are plotted
as a function of the dimensionless time in Fig. 5 for Wid = 0.1, 1,

100 and 0.1 ≤ βd ≤ 0.9. This figure confirms the earlier qualitative
observation in Figs. 3 and 4 that the cell deformation decreases as
either or both of βd and Wid increase. In addition, the rate of the
cell deformation also decreases with these parameters but at a sig-
nificantly smaller rate. The cell deformation looks similar for all the
cases in the early time when the viscoelastic stresses are not suffi-
ciently developed but then the effects of viscoelasticity become more
pronounced in such a way that increasing Wid and βd decreases
the cell deformation. The deformation eventually reaches a nearly
steady state value for all the cases. Notice that the cell remains sig-
nificantly deformed even though the deformation parameter seems
to have reached a steady state. This is because the surface tension of
the cell interface is extremely small (e.g., σo/σi = 2541), so it takes a
very long time for the cell to return to its equilibrium spherical cap
shape. It is also interesting to observe that, for the all values of Wid,
the rate of the cell deformation (γ) exhibits a damped oscillatory
behavior.

Next, we examine and quantify the cell viability using themodel
proposed by Takamatsu and Rubinsky.26 The estimated cell viability
is plotted in Fig. 6 as a function of the polymeric viscosity ratio for
variousWeissenberg numbers in the rangeWid = 0 (Newtonian) and
Wid = 100 (highly viscoelastic). This figure shows that the viscoelas-
ticity generally enhances the cell viability. As the polymeric viscosity
ratio increases, the cell viability increases monotonically. However,
as theWeissenberg number increases, the cell viability first increases
monotonically and then saturates at aboutWid = 10, i.e., the cell via-
bility is not affected significantly when the Weissenberg number is
further increased beyond this value.

Different cells exhibit different viscoelastic behavior. We finally
investigate the effects of the cell viscoelasticity on the cell deforma-
tion and the cell viability. For this purpose, simulations are per-
formed for ranges of the cell Weissenberg number and the cell
polymeric viscosity ratio while the other parameters are fixed at the

FIG. 6. The estimated cell viability vs the polymeric viscosity ratio in the range
0 ≤ βd ≤ 0.9 for the Weissenber numbers Wid = 0, 0.1, 1, 10, and 100. (We = 2,
Re = 30, L = 15, Wic = 100, βc = 0.5, do/di = 2.85, σo/σ i = 2541, μc /μd = 5,
μd /μo = 40, ρc /ρd = 1, ρd /ρo = 20, θe = 60○.)
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FIG. 7. Effects of viscoelasticity contained in the inner droplet (cell) on evolution of a viscoelastic compound droplet impacting on a flat substrate. The left and right halves
of the inner droplet show the Newtonian (Wic = 0) and the viscoelastic (Wic = 1, 10 and 100 from left to right, respectively, βc = 0.5) cases. The time progresses from top to

bottom and the snapshots are taken at times t
∗ = 0, 0.32, 0.54 and 3.78. The constant contours denote the average polymer extension ∥

√
trace(A)∥. The encapsulating

droplet is viscoelastic (We = 2, Re = 30, Wid = 1, L = 15, do/di = 2.85, σo/σ i = 2541, μc /μd = 5, μd /μo = 40, ρc /ρd = 1, ρd /ρo = 20, θe = 60○).

FIG. 8. Effects of cell viscoelasticity on
cell deformation. The time evolution of
the cell deformation is plotted for the cell
Weissenberg numbers Wic = 1, 10, 50
and 100 (left) and the cell polymeric vis-
cosity ratios βc = 0, 0.2, 0.5 and 0.8
(right). The polymeric viscosity ratio is
βc = 0.5 in the left plot and the Weis-
senberg number is Wic = 100 in the right
plot (We = 2, Re = 30, Wid = 1, βd = 0.5,
L = 15, do/di = 2.85, σo/σ i = 2541, μc /μd

= 5, μd /μo = 40, ρc /ρd = 1, ρd /ρo = 20,
θe = 60○).

Phys. Fluids 31, 081901 (2019); doi: 10.1063/1.5108824 31, 081901-10

Published under license by AIP Publishing

https://scitation.org/journal/phf


Physics of Fluids ARTICLE scitation.org/journal/phf

FIG. 9. The estimated cell viability vs the cell polymeric viscosity ratio in the range
of 0 ≤ βc ≤ 0.8 for the cell Weissenberg numbers Wic = 0, 1, 10, 50 and 100
(We = 2, Re = 30, Wid = 1, βd = 0.5, L = 15, do/di = 2.85, σo/σ i = 2541, μc /μd = 5,
μd /μo = 40, ρc /ρd = 1, ρd /ρo = 20, θe = 60○).

baseline values. The effects of viscoelasticity contained in the inner
droplet (cell) on the evaluation of a viscoelastic compound droplet
impacting on a flat substrate are shown in Fig. 7 for βc = 0.5, and
Wic = 0 (Newtonian), 1, 10, and 100. The encapsulating droplet
is also viscoelastic with Wid = 1, βd = 0.5 and L = 15. This figure
shows that the evolution of the inner droplet as well as the entire
compound droplet system is very similar in the early stages for all
Wic values but the inner droplet deforms more as Wic increases in
the final stage mainly due to a nonuniform viscoelastic stress dis-
tribution in the vertical direction in the inner droplet that pulls the
upper surface of the inner droplet downward causing more defor-
mation. It is interesting to see that the viscoelasticity contained in
the inner droplet enhances/reduces the cell deformation/the cell via-
bility, which is in contrast with the viscoelasticity contained in the
encapsulating droplet (bioink) that reduces/enhances the cell defor-
mation/the cell viability. This observation is quantified in Fig. 8. As
seen, the cell deformation monotonically increases as either or both
of the cellWeissenberg number and the cell polymeric viscosity ratio
increase. As Wic increases, the cell deformation increases signifi-
cantly but eventually saturates at aboutWic = 50. A further increase
in Wic beyond this value results in a negligible increase in the cell
deformation. On the other hand, the cell deformationmonotonically
increases with the cell polymeric viscosity ratio. The estimated cell
viability is plotted against the cell polymeric viscosity ratio in Fig. 9
forWic = 0, 1, 10, 50, and 100. As seen, the cell viability decreases sig-
nificantly as the viscoelasticity of the cell increases, suggesting that
the Newtonian cell models overpredict the cell viability and should
be used cautiously.

V. CONCLUSIONS

A compound droplet model is used to examine the effects of
viscoelasticity on the cell viability during the impact of a cell-loaded
droplet on a flat substrate in droplet-based bioprinting. The vis-
coelasticity is contained both in the biological cell and the encapsu-
lating droplet but the focus is placed on the effects of the viscoelastic-
ity in the encapsulating droplet fluid. Viscoelasticity is characterized

by theWeissenberg number and polymeric viscosity ratio, and com-
prehensive simulations are performed to investigate their influence
on the cell deformation and the deformation-induced cell damage.
Takamatsu and Rubinsky’s model26 is used to quantify the cell via-
bility. Further simulations are performed to show the importance
of the cell viscoelasticity in modeling the droplet-based bioprinting.
The main findings can be summarized as follows:

1. The viscoelasticity of the encapsulating droplet fluid (bioink)
generally enhances the cell viability.

2. The cell viability increases monotonically as polymeric viscos-
ity ratio of bioink increases.

3. The cell viability first increases monotonically as the Weis-
senberg number increases but then saturates at aboutWid = 10.
The cell viability becomes insensitive to a further increase in
the Weissenberg number beyond this limit.

4. The viscoelasticity of the cell generally reduces the cell via-
bility. Therefore, the Newtonian cell models may significantly
overpredict the cell viability.

In a typical bioprinting experiment, surface coatings such as
3-(Trimethoxysilyl)propyl methacrylate (TMSPMA) are used to
covalently link bioprinted constructs upon deposition to glass plates
in order to prevent them from lifting off the glass plate and
ensure successful long-term culture. In future research, the effects
of dynamic contact angle variations due to the interaction between
varying polymer amounts in the solvent (i.e., modeled here with
increasing polymeric viscosity and relaxation time) and various
surface coating materials of the receiving surfaces can be studied.

ACKNOWLEDGMENTS

We thank the Scientific and Technical Research Council of
Turkey (TUBITAK), Grant No. 112M181, and the COST Action
Grant No. MP1106 for partial support of this research. The
third author (S.T.) acknowledges the Connecticut Innovations
Biopipeline Award entitled “A Versatile and Low-Cost Bioprinter
for Personalized Medicine” for financial support of this research.

REFERENCES

1T. Boland, T. Xu, B. Damon, and X. Cui, “Application of inkjet printing to tissue
engineering,” Biotechnol. J. 1, 910–917 (2006).
2P. Calvert, “Printing cells,” Science 318(5848), 208–209 (2007).
3B. Derby, “Printing and prototyping of tissues and scaffolds,” Science 338(6109),
921–926 (2012).
4S. Tasoglu and U. Demirci, “Bioprinting for stem cell research,” Trends Biotech-
nol. 31(1), 10–19 (2013).
5S. V. Murphy and A. Atala, “3D bioprinting of tissues and organs,” Nat.
Biotechnol. 32(8), 773–785 (2014).
6H. Gudapati, M. Dey, and I. Ozbolat, “A comprehensive review on droplet-based
bioprinting: Past, present and future,” Biomaterials 102, 20–42 (2016).
7S. Knowlton, S. Onal, C. H. Yu, J. J. Zhao, and S. Tasoglu, “Bioprinting for cancer
research,” Trends Biotechnol. 33(9), 504–513 (2015).
8S. Knowlton, A. Joshi, B. Yenilmez, I. T. Ozbolat, C. K. Chua, A. Khademhosseini,
and S. Tasoglu, “Advancing cancer research using bioprinting for tumor-on-a-
chip platforms,” Int. J. Bioprint. 2(2), 3–8 (2016).
9S. Knowlton, S. Anand, T. Shah, and S. Tasoglu, “Bioprinting for neural tissue
engineering,” Trends Neurosci. 41(1), 31–46 (2018).
10S. Knowlton, B. Yenilmez, and S. Tasoglu, “Towards single-step biofabrication
of organs on a chip via 3D printing,” Trends Biotechnol. 34(9), 685–688 (2016).

Phys. Fluids 31, 081901 (2019); doi: 10.1063/1.5108824 31, 081901-11

Published under license by AIP Publishing

https://scitation.org/journal/phf
https://doi.org/10.1002/biot.200600081
https://doi.org/10.1126/science.1144212
https://doi.org/10.1126/science.1226340
https://doi.org/10.1016/j.tibtech.2012.10.005
https://doi.org/10.1016/j.tibtech.2012.10.005
https://doi.org/10.1038/nbt.2958
https://doi.org/10.1038/nbt.2958
https://doi.org/10.1016/j.biomaterials.2016.06.012
https://doi.org/10.1016/j.tibtech.2015.06.007
https://doi.org/10.18063/ijb.2016.02.003
https://doi.org/10.1016/j.tins.2017.11.001
https://doi.org/10.1016/j.tibtech.2016.06.005


Physics of Fluids ARTICLE scitation.org/journal/phf

11S. Knowlton and S. Tasoglu, “A bioprinted liver-on-a-chip for drug screening
applications,” Trends Biotechnol. 34(9), 681–682 (2016).
12S. Jana and A. Lerman, “Bioprinting a cardiac valve,” Biotechnol. Adv. 33(8),
1503–1521 (2015).
13E. Lepowsky, M.Muradoglu, and S. Tasoglu, “Towards preserving post-printing
cell viability and improving the resolution: Past, present, and future of 3D
bioprinting theory,” Bioprinting 11, e00034 (2018).
14M. Nakamura, A. Kobayashi, F. Takagi, A. Watanabe, Y. Hiruma, K. Ohuchi,
Y. Iwasaki, M. Horie, I. Morita, and S. Takatani, Biocompatible Inkjet Printing
Technique for Designed Seeding of Individual Living Cells (Sage, 2005), Vol. 11,
pp. 1658–1666.
15B. Derby, “Inkjet printing of functional and structural materials: Fluid property
requirements, feature stability, and resolution,” Annu. Rev. Mater. Res. 40, 395–
414 (2010).
16U. Demirci and G. Montesano, “Single cell epitaxy by acoustic picolitre
droplets,” Lab Chip 7(9), 1139–1145 (2007).
17Y. Fang, J. P. Frampton, S. Raghavan, R. Sabahi-Kaviani, G. Luker, C. X. Deng,
and S. Takayama, “Rapid generation of multiplexed cell cocultures using acous-
tic droplet ejection followed by aqueous two-phase exclusion patterning,” Tissue
Eng., Part C 18(9), 647–657 (2012).
18A. Faulkner-Jones, S. Greenhough, J. A. King, J. Gardner, A. Courtney, and
W.M. Shu, “Development of a valve-based cell printer for the formation of human
embryonic stem cell spheroid aggregates,” Biofabrication 5(1), 015013 (2013).
19W. Lee, J. C. Debasitis, V. K. Lee, J. H. Lee, K. Fischer, K. Edminster, J. K. Park,
and S. S. Yoo, “Multi-layered culture of human skin fibroblasts and keratinocytes
through three-dimensional freeform fabrications,” Biomaterials 30(8), 1587–1595
(2009).
20J. Hendriks, C. W. Visser, S. Henke, J. Leijten, D. B. F. Saris, C. Sun, D. Lohse,
and M. Karperien, “Optimizing cell viability in droplet-based cell deposition,” Sci.
Rep. 5, 11304 (2015).
21I. Donderwinkel, J. C. M. van Hestb, and N. R. Cameron, “Bioinks for 3D bio-
printing: Recent advances and future prospects,” Polym. Chem. 8(8), 4451–4471
(2017).
22H. Lu and Z. Peng, “Boundary integral simulations of a red blood cell squeezing
through a submicron slit under prescribed inlet and outlet pressures,” Phys. Fluids
31(3), 031902 (2019).
23T. Ye and L. Peng, “Motion, deformation, and aggregation of multiple red blood
cells in three-dimensional microvessel bifurcations,” Phys. Fluids 31(2), 021903
(2019).
24W. Wang, Y. Huang, M. Grujicic, and D. B. Chrisey, “Study of impact induced
mechanical effects in cell direct writing using smooth particle hydrodynamic
method,” J. Manuf. Sci. Eng. 130, 021012 (2008).
25S. Tasoglu, G. Kaynak, A. J. Szeri, U. Demirci, and M. Muradoglu, “Impact of a
compound droplet on a flat surface: A model for single cell epitaxy,” Phys. Fluids
22(8), 082103 (2010).
26H. Takamatsu and B. Rubinsky, “Viability of deformed cells,” Cryobiology
39(3), 243–251 (1999).
27P. He, Y. Liu, and R. Qiao, “Fluid dynamics of the droplet impact processes in
cell printing,” Microfluid. Nanofluid. 18, 569–585 (2016).
28C. Zhou, P. Yue, and J. J. Feng, “Deformation of a compound drop through a
contraction in a pressure-driven pipe flow,” Int. J. Multiphase Flow 34(1), 102–109
(2008).
29J. Wang, J. Liu, J. Han, and J. Guan, “Rheology investigation of the globule of
multiple emulsions with complex internal structures through a boundary element
method,” Chem. Eng. Sci. 96, 87–97 (2013).
30Y. Chen, X. Liu, and M. Shi, “Hydrodynamics of double emulsion droplet in
shear flow,” Appl. Phys. Lett. 102(5), 051609 (2013).
31Y. Chen, X. Liu, C. Zhang, and Y. Zhao, “Enhancing and suppressing effects of
an inner droplet on deformation of a double emulsion droplet under shear,” Lab
Chip 15(5), 1255–1261 (2015).
32Y. Chen, X. Liu, and Y. Zhao, “Deformation dynamics of double emulsion
droplet under shear,” Appl. Phys. Lett. 106(14), 141601 (2015).
33D. Lee, S. N. Beesabathuni, and A. Q. Shen, “Shape-tunable wax microparti-
cle synthesis via microfluidics and droplet impact,” Biomicrofluidics 9(6), 064114
(2015).

34J. Wang, X. Wang, M. Tai, and J. Guan, “Oriented shift and inverse of the
daughter droplet due to the asymmetry of grand-daughter droplets of multiple
emulsions in a symmetric flow field,” Appl. Phys. Lett. 108(2), 021603 (2016).
35A. Rahmat, M. Barigou, and A. Alexiadis, “Deformation and rupture of com-
pound cells under shear: A discrete multiphysics study,” Phys. Fluids 31(5),
051903 (2019).
36E.M. Toose, B. J. Geurts, and J. G.M. Kuerten, “A 2D boundary elementmethod
for simulating the deformation of axisymmetric compound non-Newtonian
drops,” Int. J. Numer. Methods Fluids 30(6), 653–674 (1999).
37C. Zhou, P. Yue, and J. J. Feng, “Simulation of neutrophil deformation and
transport in capillaries using Newtonian and viscoelastic drop models,” Ann.
Biomed. Eng. 35(5), 766–780 (2007).
38H. Domejean, M. D. Saint Pierre, A. Funfak, N. Atrux-Tallau, K. Alessandri,
P. Nassoy, J. Bibette, and N. Bremond, “Controlled production of sub-millimeter
liquid core hydrogel capsules for parallelized 3D cell culture,” Lab Chip 17(1),
110–119 (2017).
39D. B. Khismatullin and G. A. Truskey, “Three-dimensional numerical simula-
tion of receptor-mediated leukocyte adhesion to surfaces: Effects of cell deforma-
bility and viscoelasticity,” Phys. Fluids 17(3), 031505 (2005).
40Z. Y. Luo, L. He, S. Q. Wang, S. Tasoglu, F. Xu, U. Demirci, and B. F. Bai, “Two-
dimensional numerical study of flow dynamics of a nucleated cell tethered under
shear flow,” Chem. Eng. Sci. 119, 236–244 (2014).
41K. Tatsumi, K. Haizumi, K. Sugimoto, and K. Nakabe, “Measurement and
analysis of lymphocyte deformation in microchannel contraction flows using a
compound drop model,” Flow, Turbul. Combust. 96(1), 245–260 (2016).
42M. Nooranidoost, M. Haghshenas, M. Muradoglu, and R. Kumar, “Cell encap-
sulation modes in a flow focusing microchannel: Effects of shell fluid viscosity,”
Microfluid. Nanofluid. 23(3), 31 (2019).
43M. Nooranidoost, D. Izbassarov, and R. Kumar, “Cell encapsulation in a flow
focusing microchannel: Effects of viscoelasticity,” Bull. Am. Phys. Soc. 63, 271
(2018).
44M. D. Chilcott and J. M. Rallison, “Creeping flow of dilute polymer solutions
past cylinders and spheres,” J. Non-Newtonian Fluid Mech. 29, 381–432 (1988).
45P. Carreau and M. Grmela, “Conformation tensor rheological models,” in Rhe-
ological Modelling: Thermodynamical and Statistical Approaches (Springer, 1991),
pp. 126–157.
46S. O. Unverdi and G. Tryggvason, “A front-tracking method for viscous,
incompressible, multi-fluid flows,” J. Comput. Phys. 100(1), 25–37 (1992).
47G. Tryggvason, B. Bunner, A. Esmaeeli, D. Juric, N. Al-Rawahi, W. Tauber,
J. Han, S. Nas, and Y.-J. Jan, “A front-tracking method for the computations of
multiphase flow,” J. Comput. Phys. 169(2), 708–759 (2001).
48D. Izbassarov and M. Muradoglu, “A front-tracking method for computational
modeling of viscoelastic two-phase flow systems,” J. Non-Newtonian Fluid Mech.
223, 122–140 (2015).
49G. Tryggvason, R. Scardovelli, and S. Zaleski, Direct Numerical Simulations
of Gas-Liquid Multiphase Flows (Cambridge University Press, Cambridge, UK,
2011).
50D. Izbassarov and M. Muradoglu, “A computational study of two-phase vis-
coelastic systems in a capillary tube with a sudden contraction/expansion,” Phys.
Fluids 28(1), 012110 (2016).
51D. Izbassarov and M. Muradoglu, “Effects of viscoelasticity on drop impact and
spreading on a solid surface,” Phys. Rev. Fluids 1(2), 023302 (2016).
52M. Nooranidoost, D. Izbassarov, and M. Muradoglu, “Droplet formation in a
flow focusing configuration: Effects of viscoelasticity,” Phys. Fluids 28(12), 123102
(2016).
53H. Zolfaghari, D. Izbassarov, and M. Muradoglu, “Simulations of viscoelastic
two-phase flows in complex geometries,” Comput. Fluid 156, 548–561 (2017).
54X. Chen, J. Lu, andG. Tryggvason, “Numerical simulation of self-propelled non-
equal sized droplets,” Phys. Fluids 31, 052107 (2019).
55R. Borges,M. Carmona, B. Costa, andW. S. Don, “An improved weighted essen-
tially non-oscillatory scheme for hyperbolic conservation laws,” J. Comput. Phys.
227, 3191–3211 (2008).
56R. Fattal and R. Kupferman, “Time-dependent simulation of viscoelastic flows
at high Weissenberg number using the log-conformation representation,” J. Non-
Newtonian Fluid Mech. 126, 23–37 (2005).

Phys. Fluids 31, 081901 (2019); doi: 10.1063/1.5108824 31, 081901-12

Published under license by AIP Publishing

https://scitation.org/journal/phf
https://doi.org/10.1016/j.tibtech.2016.05.014
https://doi.org/10.1016/j.biotechadv.2015.07.006
https://doi.org/10.1016/j.bprint.2018.e00034
https://doi.org/10.1146/annurev-matsci-070909-104502
https://doi.org/10.1039/b704965j
https://doi.org/10.1089/ten.tec.2011.0709
https://doi.org/10.1089/ten.tec.2011.0709
https://doi.org/10.1088/1758-5082/5/1/015013
https://doi.org/10.1016/j.biomaterials.2008.12.009
https://doi.org/10.1038/srep11304
https://doi.org/10.1038/srep11304
https://doi.org/10.1039/c7py00826k
https://doi.org/10.1063/1.5081057
https://doi.org/10.1063/1.5079836
https://doi.org/10.1115/1.2896118
https://doi.org/10.1063/1.3475527
https://doi.org/10.1006/cryo.1999.2207
https://doi.org/10.1007/s10404-014-1470-3
https://doi.org/10.1016/j.ijmultiphaseflow.2007.09.002
https://doi.org/10.1016/j.ces.2013.02.065
https://doi.org/10.1063/1.4789865
https://doi.org/10.1039/c4lc01231c
https://doi.org/10.1039/c4lc01231c
https://doi.org/10.1063/1.4916623
https://doi.org/10.1063/1.4937897
https://doi.org/10.1063/1.4939858
https://doi.org/10.1063/1.5091999
https://doi.org/10.1002/(sici)1097-0363(19990730)30:6<653::aid-fld852>3.3.co;2-8
https://doi.org/10.1007/s10439-007-9286-x
https://doi.org/10.1007/s10439-007-9286-x
https://doi.org/10.1039/c6lc00848h
https://doi.org/10.1063/1.1862635
https://doi.org/10.1016/j.ces.2014.07.048
https://doi.org/10.1007/s10494-015-9633-1
https://doi.org/10.1007/s10404-019-2196-z
https://doi.org/10.1016/0377-0257(88)85062-6
https://doi.org/10.1016/0021-9991(92)90307-k
https://doi.org/10.1006/jcph.2001.6726
https://doi.org/10.1016/j.jnnfm.2015.05.012
https://doi.org/10.1063/1.4939940
https://doi.org/10.1063/1.4939940
https://doi.org/10.1103/physrevfluids.1.023302
https://doi.org/10.1063/1.4971841
https://doi.org/10.1016/j.compfluid.2017.05.026
https://doi.org/10.1063/1.5094757
https://doi.org/10.1016/j.jcp.2007.11.038
https://doi.org/10.1016/j.jnnfm.2004.12.003
https://doi.org/10.1016/j.jnnfm.2004.12.003


Physics of Fluids ARTICLE scitation.org/journal/phf

57M. Muradoglu and S. Tasoglu, “A front-tracking method for computational
modeling of impact and spreading of viscous droplets on solid walls,” Comput.
Fluids 39(4), 615–625 (2010).
58S. F. Kistler, “Hydrodynamics of wetting,” in Wettability, edited by J. C. Berg
(Dekker, New York, 1993), pp. 311–429.
59N. Matubayasi and A. Nishiyama, “Thermodynamic quantities of surface for-
mation of aqueous electrolyte solutions VI. Comparison with typical nonelec-
trolytes, sucrose and glucose,” J. Colloid Interface Sci. 298(2), 910–913 (2006).

60H. Lan and D. B. Khismatullin, “A numerical study of the lateral migration
and deformation of drops and leukocytes in a rectangular microchannel,” Int. J.
Multiphase Flow 47, 73–84 (2012).
61A. Miri, P. Frommhold, I. Mirzaee, S. Hassan, S. Oskui, D. Nieto, A.
Khademhosseini, and Y. Zhang, “Effective bioprinting resolution in tissue model
fabrication,” Lab Chip 19(11), 2019 (2019).
62C. Mandrycky, Z. Wang, K. Kim, and D. Kim, “3D bioprinting for engineering
complex tissues,” Biotechnol. Adv. 34(4), 422–434 (2016).

Phys. Fluids 31, 081901 (2019); doi: 10.1063/1.5108824 31, 081901-13

Published under license by AIP Publishing

https://scitation.org/journal/phf
https://doi.org/10.1016/j.compfluid.2009.10.009
https://doi.org/10.1016/j.compfluid.2009.10.009
https://doi.org/10.1016/j.jcis.2006.01.008
https://doi.org/10.1016/j.ijmultiphaseflow.2012.07.004
https://doi.org/10.1016/j.ijmultiphaseflow.2012.07.004
https://doi.org/10.1039/c8lc01037d
https://doi.org/10.1016/j.biotechadv.2015.12.011

