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Abstract

The Generalized Assignment Problem is a well-known NP-hard combinatorial optimization

problem which consists of minimizing the assignment costs of a set of jobs to a set of machines

satisfying capacity constraints. Most of the existing algorithms are of a Branch-and-Price type,

with lower bounds computed through Dantzig-Wolfe reformulation and column generation.

In this paper we propose a cutting plane algorithm working in the space of the variables of

the basic formulation, whose core is an exact separation procedure for the knapsack polytopes

induced by the capacity constraints. We show that an efficient implementation of the exact

separation procedure allows to deal with large-scale instances and to solve to optimality several

previously unsolved instances.



1 Introduction

Let M = {1, . . . , m} be a set of machines and let N = {1, . . . , n} be a set of tasks to be assigned

to the machines M . Let cij be the cost of assigning the task j to the machine i. Let dij be

the amount of resource required by the machine i to perform the task j. Each machine has a

limited amount of resources available. Let ui be the capacity of the machine i ∈ M .

The Generalized Assignment Problem (GAP) is to find a minimum assignment cost of the

tasks N to the machines M satisfying the constraint that the total amount of resources required

by each machine i ∈ M does not exceed its capacity ui.

Because of its computational difficulty, GAP is a challenging integer programming problem,

which stimulated a wide interest among researchers [1, 9, 11, 14, 15, 18, 19, 16, 20, 21, 23, 24,

25, 26].

The basic GAP formulation includes m knapsack constraints. Tightening MIP formulations

by deriving Lifted Cover Inequalities from knapsack constraints is now a consolidate technique,

embedded into all the main MIP solvers. In this paper we go a step further in this direction

and report on a computational experience with an exact separation procedure for the polytopes

induced by each knapsack constraint, i.e. a separation procedure which either returns a separat-

ing hyperplane between a knapsack polytope and a given fractional solution or concludes that

the fractional solution is an internal point of the knapsack polytope.

The separation procedure was embedded into a Branch-and-Cut scheme. The cutting plane

algorithm yielded the optimal solution of all the OR-Library [2] instances with n ≤ 200, with

the only exception of d20200. Furthermore the algorithm yielded provably good solutions for

the larger - previously unsolved - OR-Library instances and solved several of them to exact

optimality.

The remainder of the paper is organized as follows. In section 2 GAP formulations are

discussed. Section 3 shows the details of the exact knapsack separation procedure. Section 4

provides a detailed report on the computational experience. Finally, section 5 highlights the

points of strength and weakness of the separation procedure.
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2 Problem formulation

Let xij be a binary variable expressing the assignment of the task j ∈ N to the machine i ∈ M .

The Generalized Assignment Problem can be formulated as:

min
x

∑

i∈M

∑

j∈N

cijxij

∑

i∈M

xij = 1, j ∈ N (1)

∑

j∈N

dijxij ≤ ui, i ∈ M (2)

xij ∈ {0, 1}, i ∈ M, j ∈ N (3)

Constraints (1) require that each task must be assigned to a machine. Capacity constraints (2)

enforce the condition that the amount of resources required by the tasks assigned to the machine

i does not exceed its capacity ui.

Let XGAP denote the set of solutions satisfying (1)-(3) and let PGAP = conv(XGAP ) denote

the GAP polytope. The polyhedral properties of the “submissive” of PGAP have been studied

in [11, 14, 15].

The lower bound returned by the LP relaxation of the formulation (1)-(3) is usually weak.

Formulation (1)-(3) can be tightened by considering the knapsack polytopes defined by the

capacity constraints (2):

max
x

∑

i∈M

∑

j∈N

cijxij

∑

i∈M

xij = 1, j ∈ N (4)

x ∈ PKN (i), i ∈ M (5)

xij ∈ {0, 1}, i ∈ M, j ∈ N (6)

where

PKN (i) = conv({x ∈ Bm×n :
∑

j∈N

dijxij ≤ ui})

is the knapsack polytope associated with the i-th capacity constraint.

All the known exact algorithms devised for GAP are based on formulation (4)-(5). Nauss [19]

proposed a Branch-and-Bound based on the lagrangian relaxation of the equality constraints (4).

Savelsbergh proposed a Branch-and-Price algorithm [23] based on Dantzig-Wolfe decomposition

and column generation.

A main drawback of Dantzig-Wolfe decomposition is the convergence difficulty of column

generation. Recently Pigatti et al. [21] presented a Robust Branch-and-Price algorithm where a
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stabilization technique for the dual variables is introduced to improve the convergence of column

generation. They yielded remarkable results, reporting on the optimal solution (for some of them

for the first time) of all the OR-Library instances with n ≤ 200, with the only exceptions of

d10200 and d20200.

The algorithm presented in this paper runs in the space of original variables, using the facets

of PKN (i) as cutting planes, as detailed in the following section.

3 Exact knapsack separation

The exact separation of knapsack polytope was first suggested by Boyd [4, 5, 6, 7] as a tool

for Integer Programming. The recent papers by Fukasawa and Goycoolea [13], Kaparis and

Letchford [17] and the dissertations of P. Bonami [3] and D. Espinoza [12], show a renewed

interest in this topic.

Let XKN = {y ∈ {0, 1}n : aT y ≤ b} be the set of feasible solution of a knapsack problem.

Given a knapsack polytope PKN = conv(XKN ) and a point ȳ ∈ IRn, the separation problem

consists of finding a separating hyperplane between PKN and ȳ, or saying that ȳ ∈ PKN . The

separation problem amounts to solve the following LP:

θ = max
(α,β)

[

ȳT α − β
]

vT α ≤ β v ∈ XKN (7)

(α, β) ∈ S (8)

where S is a convex compact set under some conditions. Some possible choices for the set S are

discussed in subsection 3.1. Let (α∗, β∗) be an optimal solution of the problem. If θ ≤ 0, then

ȳ ∈ PKN , otherwise α∗T y ≤ β∗ is the desired separating hyperplane.

The separation LP contains a huge number of constraints (7) and is solved by the following

procedure:

i) The separation problem is solved over the polytope

PKN (ȳ) = {y ∈ PKN : yi = 0 if ȳi = 0, yi = 1 if ȳi = 1},

i.e. the polytope defined by the fractional support of ȳ, since it is known that a separating

hyperplane for PKN exists iff it exists for PKN (ȳ). This leads to a significant reduction of

the problem size.

ii) The reduced problem still contains an intractable number of constraints and requires row

generation for its solution, as described in subsection 3.2.
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iii) After a cutting plane has been generated, it is post-processed as described in subsection 3.3

to avoid numerical errors.

iv) Finally, standard sequential lifting is used to convert the facets of PKN (ȳ) into facets of

PKN .

3.1 Normalizations

Different choices for the “normalization set” S can affect the quality of the generated cuts and

the performances of exact knapsack separation, as already pointed out for other classes of general

cutting planes [10, 3]. Here we consider four different normalizations:

– β = 1

By letting β = 1, the ratio between the violation and the right hand side is maximized.

Moreover, every extreme solution of the LP (7)-(8) produces a facet of PKN .

– L1 norm

With this normalization we pose
∑

j∈N

αj = 1 and αj ≥ 0. The generated cut maximizes

the ratio between the violation and the size of the support, i.e. the distance between

ȳ and PKN computed according to the L1 norm. Cutting planes generated with this

normalization are not facet-inducing for PKN .

– Inverted L1 norm

With this separation problem, the objective function is to minimize the sum of the coeffi-

cients with the constraint that the cutting plane must be violated by a given amount, i.e.

the separation problem becomes:

θ = min
(α,β)

∑

j∈N

αj

vT α ≤ β v ∈ XKN

ȳT α − β = 1

α ≥ 0

Cutting planes generated with this normalization are not facet-inducing for PKN .

– L∞ norm

This normalization imposes 0 ≤ αj ≤ 1 for each j ∈ N . Cutting planes generated with

this normalization are not facet-inducing for PKN .
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3.2 Row generation procedure

A row generation approach is an iterative approach where, at each iteration, a partial separation

problem (the problem which includes only a subset of the constraints (7)) is considered. Let

(ᾱ, β̄) be an optimal solution of the partial separation problem. If all the feasible solutions

of XKN satisfy the inequality hT ᾱ ≤ β̄, then (ᾱ, β̄) is the optimal solution of the complete

separation problem too. Otherwise a new inequality is added to the partial separation problem

and the procedure iterates. The main steps of the row generation procedure are summarized

below.

Row generation procedure

Step 1 Let U ⊂ XKN be a subset of the feasible solutions of the knapsack problem. To prevent

unboundedness of the separation problem, it can be initialized as U =
⋃

j∈N

{ej}, where ej

is the j-th unit vector.

Step 2 Solve the partial separation LP over U :

θ = max
(α,β)

[

ȳT α − β
]

vT α ≤ β, v ∈ U

α ∈ S

Let (ᾱ, β̄) be its optimal solution.

Step 3 Solve the knapsack problem:

v̄ = argmax
v∈XKN

ᾱT v

Step 4 If v̄T ᾱ > β̄ then set U := U ∪ {v̄} and goto Step 1.

Step 5 If v̄T ᾱ ≤ β̄ then (ᾱ, β̄) is the optimal solution of the separation LP and the inequality

ᾱT y ≤ β̄ is valid for PKN .

The row generation procedure requires to solve a large number of knapsack problems, so

using efficient knapsack algorithms is a key issue. In our computational experiments we used

the modification of Pisinger’s MINKAP algorithm [22] that combines dynamic programming

with bounding and reduction technique.

MINKNAP algorithm requires that all the coefficients of the knapsack problem are integer.

However, in our case the objective function coefficients of the problems in the row generation

routine can be fractional. Ceselli and Righini [8] modified the MINKNAP algorithm to deal

with real coefficients allowing us to solve the problem with the given accuracy.
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3.3 Numerical errors

It is well-known that the rounding errors can affect the solution of linear systems and hence of

linear programming solvers. Rounding errors can occur in the solution of LP problems on Step 2

in the row generation and in solution of knapsack problem with fractional objective coefficients

on Step 3. Such errors can lead to weak or even invalid cuts.

To generate safe cutting planes, the obtained inequalities are post-processed to get the equiv-

alent cuts with integer coefficients and verifying their validity. Let ᾱT x ≤ β̄ be a violated in-

equality generated by the row generation procedure. The solution (α̌, β̌) of the integer linear

problem:

min
(α,β,t)

t

α = tᾱ

β = tβ̄

α ∈ Zn

β ∈ Z

t ≥ 1

returns the inequality α̌T x ≤ β̌ which is equivalent to the original cut. The problem has n + 2

variables and n + 1 constraints and it can be easily handled by any MIP solver, if n is not too

large.

The validity of each inequality is then checked by solving the knapsack problem

ν = max
v∈XKN

α̌T v.

If ν − β̌ ≤ 0, the inequality is valid. Since all the cut coefficients are now integer, the checking

problem can be solved by the MINKNAP algorithm, which is free of the possibility of rounding

errors because it works on integers. In the subsequent sequential lifting procedure, only the

knapsack problems with integer coefficients are used, so they are immune from rounding errors

as well.

4 Computational experience

The algorithm was tested on the GAP instances included in the OR-Library [2]. The test-bed

consists of five types of instances (A, B, C, D, E) with size from 5 × 100 to 80 × 1600. They

are named according to their type and size, e.g. d05100 is an instance of type D with m = 5

machines and n = 100 tasks. As reported in [21], instances of types A and B can be easily

solved in a few seconds by MIP solvers, so we did not consider them in our experiments. All
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the instances of size up to 20 × 200 were solved to optimality by the Robust Branch-and-Price

algorithm of Pigatti et al. [21], with the only exceptions of d10200 and d20200. No optimal

solutions are known for the larger instances. Best known upper bounds yielded by heuristics are

reported in [1, 25].

Computational experiments were carried out on a Pentium IV 3.2GHZ PC with 1Gb of RAM

and Windows XP operating system. ILOG CPLEX 10.1 is used both as a LP-solver and as a

Branch-and-Cut framework.

4.1 Fine-tuning of the exact separation procedure

A preliminary computational experience was devoted to find the right tunings for the exact

separation procedure. Table 1 reports on the results obtained by using different normalizations.

Instances of type D were used as preliminary benchmarks, since they are the most difficult. The

following notation is used in the table:

- Name is the instances name,

- b = 1 – results with b = 1 normalization,

- L1 – results with L1 norm,

- L1
in – results with inverted L1 norm,

- L∞ – results with L∞ norm,

- ♯cuts – number of generated cuts,

- ♯rows – total number of rows generated during the separation,

- Time – computation time in seconds.

The results reported in Table 1 show that the different normalizations did not cause great

variations in the number of generated cuts. Normalization β = 1 was adopted in our final

experimens, since the cutting planes produced with this normalization are facet-inducing for

PKN (i).

To validate the effectiveness of the algorithm, we compared the lower bound returned by

exact knapsack separation with that returned by Lifted Cover Inequalities. Columns C reports

on the the results yielded by Lifted Cover Ienqualities, columns C+E reports on results from the

combination of Lifted Cover and exact knapsack separation cuts, columns E report on results

of the exact knapsack separation standalone. Columns Closed gap report on the percentage of

7



♯cuts ♯rows

Name b = 1 L
1

L
1

in L
∞ b = 1 L

1
L

1

in L
∞

d05100 333 360 373 355 17973 19656 20902 20867

d10100 715 686 723 690 44521 35351 37289 38408

d20100 962 1027 1055 970 45176 48294 41089 52845

d05200 436 402 413 452 26180 20966 22846 22887

d10200 801 813 857 816 46362 47234 43647 49060

d20200 1407 1471 1453 1500 90712 94967 90578 91737

d10400 683 698 696 712 39875 35258 40671 35651

d20400 1718 1766 1812 1816 134620 140022 124073 145914

Time

Name b = 1 L
1

L
1

in L
∞

d05100 6.50 7.47 7.36 7.70

d10100 15.98 14.07 12.45 14.23

d20100 16.80 18.62 14.38 19.61

d05200 14.55 12.90 13.61 13.12

d10200 25.58 26.83 24.53 27.11

d20200 49.34 53.94 49.38 58.78

d10400 41.31 41.67 45.48 41.79

d20400 141.04 140.47 139.19 148.87

Table 1: Comparison among different normalizations

Closed gap ♯Cuts T ime

Name C C + E E C C + E E C C + E E

d05100 14.3 57.1 57.1 41 349 333 0.13 6.97 6.50

d10100 13.0 78.3 78.3 61 700 715 0.16 14.02 15.98

d20100 16.7 81.0 81.0 122 975 962 0.31 15.72 16.80

d05200 0.0 80.0 80.0 30 413 436 0.16 13.41 14.55

d10200 9.1 63.6 63.6 94 821 801 0.41 27.92 25.58

d20200 11.5 46.2 46.2 163 1431 1407 0.70 49.98 49.34

d10400 7.7 23.1 23.1 68 709 683 0.81 48.05 41.31

d20400 6.3 25.0 25.0 161 1763 1718 1.89 139.72 141.04

Table 2: Exact knapsack separation vs. separation of Lifted Cover Inequalities
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Figure 1: Size of fractional support vs a) number of runs of separation problem of a given size,

b) average number of generated rows

Name LP RG INT LIFT SEP TOTAL

d05100 3.07 0.67 0.75 1.17 5.72 6.08

d10100 7.25 1.37 1.47 2.00 12.22 13.84

d20100 6.95 1.64 1.95 2.52 13.18 16.48

d05200 5.17 0.90 1.04 5.90 13.04 14.00

d10200 9.34 1.57 1.92 9.92 22.81 25.41

d20200 17.75 3.19 3.62 14.84 39.58 48.75

d10400 8.02 1.37 1.58 29.45 40.56 43.69

d20400 31.03 5.09 4.73 74.40 115.66 141.04

Table 3: Profiling of cutting plane procedure

closed gap, computed as LB−LBLP

UB−LBLP
· 100%, where LBLP is the value of LP relaxation, LB is the

obtained lower bound with cuts, UB is the optimal value (best known value for the unsolved

instances). It is evident that using Lifted Cover Inequalities does not give any advantage.

A main question is how the time spent by row generation grows with the size of the problems.

Fig. 1 shows two diagrams where the size of the fractional support is on the abscissa axis. On

the ordinate axis there are: a) the number of separation problems which occurred for a given

size for a given size of the fractional support and b) the average number of generated rows. It

is interesting to note that the number of generated rows does not grow exponentially and that

the number of problems with size more than 20 is small.

Table 3 reports on the profiling of the different modules of the exact knapsack separation

procedure. Column LP reports on the time spent to solve the separation LP. RG – time spent

to generate rows, i.e. to solve knapsack problems, INT – time spent to make coefficients integer,

LIFT – time spent in the sequential lifting, SEP – total time of separation procedure, TOTAL

9



– total time of cutting plane procedure, i.e. SEP plus time spent in solving the LP relaxations.

We can observe that row generation is not a bottleneck for our approach, since it does

not take a significant amount of time in the overall cutting plane algorithm. The most time-

consuming module is sequential lifting. Nevertheless, experiments also show that avoiding lifting

and considering all the variables in the row generation procedure is not practical even on small

instances.

4.2 Computational results for the easy instances

We term easy all the instances which can be solved within three hours of computation time

by a Cut-and-Branch algorithm, i.e. where the cutting planes are added only at the root node

of the search tree. The results are presented in Table 4. Column Best known reports on the

best known upper bounds collected from [1, 21, 25], column Opt reports on the optimal values

(in boldface the values which are better than the best known). Columns Cut&Branch reports

on the results yielded by our algorithm, where ♯Nodes is the size of the search tree, Time is

the computation time in seconds. By comparing with the results of Pigatti et al. [21] on the

instances with n ≤ 200 (columns Branch&Price) we can observe that the algorithm performs

comparably to Robust Branch-and-Price.

4.3 Computational results for the hard instances

The instances that cannot be solved in less than 3 hours by Cut-and-Branch, are termed hard.

For their solution we used a Branch-and-Cut algorithm, e.g. cutting planes were generated at

every node of the search tree. The node selection strategy was “best first” and the best known

upper bounds was used as a cutoff value to prune the nodes in the search tree (MIP heuristics

perform very poorly on GAP instances and this is worth of further investigation). We point out

that the instances d10100 and d20100 were previously solved in [21], while the optimal solutions

of the other instances were unknown. The best known solution for d10200 was obtained by

running Cplex 10.0 for several hours with an “aggressive” setting of the RINS heuristic.

Table 5 reports on the results on these instances obtained with a time-limit of 24 hours of

computation time or 1 Gb of memory limit. Column Gap reports on the remaining gap, i.e.

UB−BLB
UB

· 100%, where UB is the best known upper bound (in boldface the values which are

better than the best known values), BLB is the best lower bound yielded by enumeration. The

instances solved to optimality are marked with opt. In addition to d10100 and d20100 we were

able to solve to optimality other 4 instances and significantly reduce the integrality gap for the

10



Best Cut&Branch Branch&Price

Name known Opt ♯Nodes T ime ♯Nodes T ime

c05100 1931 1931 250 2.39 5 1.17

c10100 1402 1402 325 2.67 47 422.98

c20100 1243 1243 10 1.83 17 1.84

c05200 3456 3456 847 9.03 35 266.17

c10200 2806 2806 1866 17.13 29 2.12

c20200 2391 2391 399 13.98 23 55.38

c10400 5597 5597 729 38.61

c20400 4782 4782 1139 91.52

c40400 4244 4244 200 52.38

c30900 9984 9982 42577 3997.56

c60900 9328 9326 35400 8369.69

d05100 6353 6353 1247 17.08 171 96.30

d05200 12742 12742 624 17.83 57 583.68

e05100 12681 12681 1309 5.33 63 30.09

e10100 11577 11577 624 8.94 31 1305.62

e20100 8436 8436 3406 51.14 87 22.85

e05200 24930 24930 1293 5.69 155 670.62

e10200 23307 23307 11569 39.41 37 6.81

e20200 22379 22379 2040 42.89 21 40.74

e10400 45746 45746 15304 98.91

e20400 44877 44877 977 79.89

e40400 44574 44561 39068 2875.01

e15900 102422 102421 1800 203.45

e30900 100434 100427 2202 671.51

e201600 180646 180645 4124 1003.47

e401600 178302 178293 9194 4123.61

Table 4: Computational results on easy instances
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Best Branch&Cut

Name known BLB UB Gap ♯nodes T ime

c15900 11341 11340 11340 opt 4278 2257.37

c201600 18803 18802 18803 0.01 3857 10265.86

c401600 17145 17145 17145 opt 1853 3231.14

c801600 16289 16284 16289 0.03 953 86400.00

d10100 6347 6347 6347 opt 992 385.29

d20100 6185 6185 6185 opt 42623 27783.04

d10200 12430 12430 12430 opt 16222 8921.75

d20200 12244 12233 12244 0.09 5365 18372.98

d10400 24969 24960 24969 0.04 7516 14093.31

d20400 24585 24562 24585 0.09 2493 22258.50

d40400 24417 24350 24417 0.27 1401 86400.00

d15900 55414 55403 55414 0.02 2117 18193.56

d30900 54868 54833 54868 0.06 712 19739.46

d60900 54606 54551 54606 0.10 453 8272.59

d201600 97837 97823 97837 0.01 640 16051.54

d401600 97113 97105 97113 0.01 830 8463.08

d801600 97052 97034 97052 0.02 181 10940.26

e60900 100169 100149 100149 opt 307 6341.15

e801600 176857 176820 176857 0.02 510 23708.65

It is not complete. Computations are in progress.

Table 5: Computational results on hard instances

others.

By analyzing the results of Table 6, where the closed gap of exact separation is presented

for the all instances, we can observe that exact separation does not significantly improve the

lower bound at the root node for the unsolved instances and this calls for further polyhedral

investigation of the GAP polytope.

5 Conclusions

This paper reports on the computational experience with an exact knapsack separation procedure

for the Generalized Assignment Problem. The cutting plane algorithm based on this procedure

turned out to be quite effective since it could solve to optimality many previously unsolved test

instances, dealing with large-scale problems, up to 80 × 1600.

A main advantage of the proposed approach is that it works with the “natural” formulation

of the problem, containing only the original variables. This facilitates the implementation of a
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Easy (I) Easy (II) Hard

Closed Closed Closed

Name gap Name gap Name gap

c05100 85.7 e05100 82.1 c15900 66.7

c10100 85.7 e10100 75.8 c201600 100.0

c20100 95.8 e20100 94.7 c401600 80.0

c05200 80.0 e05200 62.5 c801600 0.0

c10200 80.0 e10200 69.2 d10100 78.3

c20200 100.0 e20200 91.3 d20100 81.0

c10400 80.0 e10400 83.3 d10200 63.6

c20400 85.7 e20400 93.3 d20200 46.2

c40400 100.0 e40400 89.2 d10400 23.1

c30900 100.0 e15900 75.0 d20400 25.0

c60900 90.0 e30900 100.0 d40400 1.4

d05100 57.1 e201600 50.0 d15900 15.4

d05200 80.0 e401600 60.0 d30900 7.7

d60900 0.0

d201600 6.7

d401600 0.0

d801600 0.0

e60900 66.2

e801600 31.6

Table 6: Closed gap (%)
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cutting plane algorithm and allows us to use standard Branch-and-Cut frameworks.

Nevertheless there are some points which still have to be addressed to make the approach

truly effective.

There are instances where knapsack inequalities derived from a single capacity constraint

close only a small percentage of the integrality gap. Such instances point out the need for further

investigation of the GAP polytope, aimed at identifying new families of “joint inequalities”

involving two or more capacity constraints.

Finally, even if upper bound heuristics are beyond the scope of this paper, we observe that

more effective heuristics, and particularly MIP heuristics, could significantly reduce computation

time for the hard instances or even lead to solve to optimality some of the remaining unsolved

instances.
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[13] R. Fukasawa and M. Goycoolea. On the exact separation of mixed integer knapsack cuts.

In Springer, editor, Proceedings of the 2007 Integer Programming and Combinatorial Opti-

mization conference, To appear.

[14] E.S. Gottlieb and M. R. Rao. (1, k)-configuration facets for the generalized assignment

problem. Mathematical Programming, 46:53–60, 1990.

[15] E.S. Gottlieb and M. R. Rao. The generalized assignment problem: Valid inequalities and

facets. Mathematical Programming, 46:31–52, 1990.

[16] J. J. Nowakovski, W. Schwrzler, and E. Triesch. Using the generalized assignment problem

in scheduling the rosat space telescope. European Journal of Operations Research, 112:531–

541, 1999.

[17] K. Kaparis and A.N Letchford. Separation algorithms for 0-1 knapsack polytopes. In prepa-

ration. Available at http : //www.lancs.ac.uk/staff/letchfoa/publications.htm, 2007.

[18] M. Laguna, J.P. Kelly, J.L. Conzlez-Velarde, and F. F. Glover. Tabu search for the gener-

alized assignment problem. European Journal of Operations Research, 82:176–189, 1995.

15



[19] R.M. Nauss. Solving the generalized assignment problem: An optimizing and heuristic

approach. INFORMS Journal on Computing, 15(3):249–266, 2003.

[20] I.H. Osman. Heuristics for the generalized assignment problem: Simulated annealing and

tabu search approaches. OR Spektrum, 17:211–225, 1995.

[21] A. Pigatti, M. Poggi de Aragao, and E. Uchoa. Stabilized branch-and-cut-and-price for the

generalized assignment problem. In 2nd Brazilian Symposium on Graphs, Algorithms and

Combinatorics, Electronic Notes in Discrete Mathematics, Vol. 19, pages 385–395, 2005.

[22] D. Pisinger. A minimal algorithm for the 0-1 knapsack problem. Operations Research,

46(0):758–767, 1995.

[23] M. Savelsbergh. A branch-and-price algorithm for the generalized assignment problem.

Operations research, 45(6):831–841, 1997.

[24] M. Yagiura, T. Ibaraki, and F. Glover. An ejection chain approach for the generalized

assignment problem. INFORMS Journal on Computing, 16:133–151, 2004.

[25] M. Yagiura, T. Ibaraki, and F. Glover. A path relinking approach with ejection chains for

the generalized assignment problem. European Journal of Operational Research, 169:548–

569, 2006.

[26] M. Yagiura, T. Yamaguchi, and T. Ibaraki. A variable depth search algorithm with branch-

ing search for the generalized assignment problem. Optimization Methods and Software,

10:419–441, 1998.

16




