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Abstract

Breadth First Search (BFS) traversal is an archetype
for many important graph problems. However, com-
puting a BFS level decomposition for massive graphs
was considered nonviable so far, because of the large
number of I/Os it incurs. This paper presents the
first experimental evaluation of recent external-memory
BFS algorithms for general graphs. With our STXXL
based implementations exploiting pipelining and disk-
parallelism, we were able to compute the BFS level de-
composition of a web-crawl based graph of around 130
million nodes and 1.4 billion edges in less than 4 hours
using single disk and 2.3 hours using 4 disks. We demon-
strate that some rather simple external-memory algo-
rithms perform significantly better (minutes as com-
pared to hours) than internal-memory BFS, even if more
than half of the input resides internally.

1 Introduction

Solving real world optimization problems often boils
down to traversing graphs in a structured way. Breadth
First Search (BFS) is among the most fundamental such
traversal strategies. It decomposes the input graph
G = (V,E) of n nodes and m edges into at most n levels
where level i comprises all nodes that can be reached
from a designated source s via a path of i edges, but
cannot be reached using less than i edges.

BFS is well-understood in the von Neumann model
which assumes uniform memory access costs. Ac-
tual machines, however, increasingly deviate from this
model. While waiting for a memory access, modern mi-
croprocessors can execute a number of register opera-
tions. Even worse, in an external-memory (EM) setting
where the input graph is too big to fully fit in inter-
nal memory certain accesses have to be served by hard
disks, thus incurring an I/O loss factor of up to seven
orders of magnitude.

Typical real-world applications of EM BFS (and
some of its generalizations like shortest paths or A∗)
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include crawling and analyzing the WWW [29, 32],
route planning using small navigation devices with flash
memory cards [20], state space exploration [18], etc.
In some of these cases the I/O-bottleneck is alleviated
by heuristics, precomputations, accepting approximate
solutions or profiting from special graph properties. In
contrast, despite major efforts, I/O-efficient exact BFS
for general sparse graphs was considered nonviable until
recently: the MM BFS approach in [26] is the first to
yield an o(n)-I/O bound for general undirected sparse
graphs. However, we are not aware of any empirical
study to evaluate the practical merits of either MM BFS
or its alternatives (most prominently MR BFS [28]).

In this paper, we attempt at narrowing the gap
between theory and practice by engineering and ex-
tensively testing implementations of MR BFS and
MM BFS on a low-cost machine. The code will become
publicly available to be used with the STXXL library
[15, 16]. Even though we use some special features of
STXXL, we conjecture that (modulo some constants)
our results transfer to other libraries that efficiently im-
plement scanning and sorting like, e.g., TPIE [4, 6].

In a nutshell, our findings for EM BFS on sparse
graphs are as follows: Most importantly, our study
demonstrates that I/O-efficient external-memory BFS is
feasible at all: for example, we computed the BFS level
decomposition of an external web-crawl based graph
of around 130 million nodes and 1.4 billion edges in
less than 4 hours using a single disk and 2.3 hours
using 4 disks. It turned out that both MR BFS and
MM BFS perform significantly better (minutes as com-
pared to hours) than internal-memory BFS, even if
less than half of the input resides externally. Further-
more, MR BFS exhibits some advantages over MM BFS
on low-diameter graphs (saving a few hours) whereas
MM BFS wins hands-down on most large-diameter
graphs (a few days versus a few months). Altogether,
in many situations, the moderate overhead of MM BFS
on ‘easy’ instances seems to be an acceptable investment
given its significant gains on really ‘tough’ inputs. We
expect our results to prove helpful in judging the poten-
tial gains and limitations of more complicated (future)
approaches, too.

The rest of the paper is organized as follows: In
Section 2, we give a short description of the external
memory model and the BFS algorithms considered in



this study. In Section 3, we deal with various imple-
mentation issues - STXXL, data-structures, pipelining.
We also describe our framework for generating graphs,
BFS traversal routines and BFS verifier. In Section 4
we discuss our results on various graph classes.

2 Models and Algorithms

In connection with graph algorithms, the commonly ac-
cepted external-memory model by Aggarwal and Vit-
ter [1] defines some parameters: M (< n + m) is the
number of vertices/edges that fit into internal memory,
and B is the number of vertices/edges that fit into a disk
block. In an I/O operation, one block of data is trans-
ferred between disk and internal memory. The measure
of performance of an algorithm is the number of I/Os it
performs. The number of I/Os needed to read N con-
tiguous items from disk is scan(N) = Θ(N/B). The
number of I/Os required to sort N items is sort(N) =
Θ((N/B) logM/B(N/B)). For all realistic values of N ,

B, and M , scan(N) < sort(N) ¿ N . Advanced mod-
els include parallel disks [35] or hide the parameters M
and B from the algorithms (cache-oblivious model [19]):
due to their generality, cache-oblivious algorithms are
efficient on each level of the memory hierarchy. A com-
prehensive list of results for the I/O-model and mem-
ory hierarchies have been obtained – for recent surveys
see [14, 27, 34] and the references therein.

EM-BFS Algorithms covered in this study. In
this paper we compare the performance of three BFS al-
gorithms on large inputs: the standard internal-memory
approach (refered as IM BFS) [12], an algorithm by Mu-
nagala and Ranade (hereafter refered as MR BFS) [28],
and an approach by Mehlhorn and Meyer (MM BFS)
[26]. MR BFS and MM BFS are restricted to undi-
rected graphs.

IM BFS visits the vertices in a one-by-one fashion;
appropriate candidate nodes for the next vertex to be
visited are kept in a FIFO queue Q. After a vertex v
is extracted from Q, the adjacency list of v is examined
in order to append unvisited nodes to Q. IM BFS in
external memory has two drawbacks: (1) remembering
visited nodes needs Θ(m) I/Os in the worst case; (2)
unstructured indexed access to adjacency lists may
result in Θ(n) I/Os. MR BFS neglects (2) but addresses
(1) by I/O-efficiently comparing the BFS level under
creation with the two most recently completed BFS-
levels. The resulting worst-case I/O-bound is O(n +
sort(n + m)).

MM BFS applies a preprocessing phase in which
it groups the vertices of the input graph into disjoint
clusters of small diameter and then runs an appropri-
ately modified version of MR BFS. It exploits the fact
that whenever the first node of a cluster is visited then
the remaining nodes of this cluster will be reached soon

after. By spending only one random access (and pos-
sibly, some sequential access depending on cluster size)
in order to load the whole cluster and then keeping the
cluster data in some efficiently accessible data structure
(pool) until it is all used up, on sparse graphs the to-
tal amount of I/O can be reduced by a factor of up

to
√

B: edges may be scanned more often in the pool
but unstructured I/O in order to fetch adjacency lists
is reduced. The preprocessing of MM BFS can be done
in several ways. We implemented a simple randomized
variant which yields an overall expected I/O-bound of

O(
√

n · (n + m) · log(n)/B + sort(n + m)).

EM-BFS Algorithms not (yet) covered in this
study – and why. An important goal of our study
was to prove that I/O-efficient external-memory BFS is
feasible at all. Therefore, we chose to implement those
approaches with presumably small constant factors first.
Also, due to the intrinsic time consumption for large-
scale series of tests in external-memory, a certain self-
restraint was unavoidable.

The next more complicated approaches are the
counterparts of MR BFS for directed graphs [10]. While
applying extra data structures to remember visited
nodes, these algorithms share the weakness of MR BFS
concerning unstructured access to adjacency lists, thus
incurring Ω(n) I/Os in the worst case. On non worst-
case instances we expect performance similar to that
of MR BFS. An equivalent to MM BFS featuring o(n)
I/Os on general directed sparse graphs is still to be
discovered (if it exists).

There is also a bunch of EM-BFS algorithms fea-
turing O(sort(n)) I/Os on special graphs classes like
trees [10], grid graphs [5], planar graphs [25], outer-
planar graphs [23], and graphs of bounded tree width
[24]. One might be tempted to run the planar BFS
approach on general graphs - accepting to loose the
worst-case guarantee of small separators, thus causing
additional I/O. Leaving aside probably large constants
the approach of [3, 25] as it stands takes Ω(n · B) in-
ternal operations, which more or less translate in the
time needed to perform Ω(n) I/Os. On the other
hand, MR BFS and MM BFS take O(m · log n) and

O(m · log n + min{log n,
√

n·B·D·log n
n+m } · scan(n + m))

internal operations, respectively.
Another general technique to obtain I/O-efficient

algorithms applies some kind of simulation (e.g., [11,
13, 21]) of suitable parallel approaches. As for general
BFS this failed so far due to the lack of appropriate
parallel BFS algorithms (as a rule of thumb they need
to be fast and work-efficient at the same time).

Finally, there is a recent paper [8] transferring
MM BFS into a cache-oblivious algorithm of similar
theoretical performance. It would be interesting to
see how the performance of this approach executed



on virtual memory compares to our implementation of
MM BFS. It might even become interesting for internal-
memory graph traversal [22]. The algorithm is some-
what involved but with more and more cache-oblivious
basic routines like high-performance sorting becoming
available (e.g., [9]), a prototypical implementation of
cache-oblivious BFS is on our short-list for future work.

3 Implementation Design

STXXL. The key component of STXXL used by
us is the stream sorter, which runs in two phases
- Runs Creator (RC) Phase, in which the input
vector/stream is divided into chunks of M elements and
each chunk is sorted within itself, thereafter written to
the disk space and Runs Merger (M) Phase, in which
the first blocks of all the sorted chunks are brought
to internal memory and merged there to produce the
output stream which does not necessarily have to be
stored on the disk.

The STXXL stream sorter (from version 0.75 on-
wards) does not need any I/O if n < B. Also, for this
case, the internal work is proportional to n log n, inde-
pendent of B. Converting a vector into stream or initial-
ization of runs creator or runs merger do not cause any
I/O. Since for graphs with O(n) BFS levels, we don’t
want to spend one I/O per level and all these functions
are called in each level, these features are crucial for our
implementation.

Data Structures. In the STXXL design framework,
an adjacency array can be implemented using two
vectors N and E. N contains the iterators to locations
in E, marking the beginning of a new adjacency array.
Each edge is stored twice in E - once in the adjacency
array of each adjacent node. This representation allows
scanning the edge vector in scan(2m) I/Os. To ensure
that we do not spend one I/O per level, but rather incur
at most 2n

B I/Os in total, for writting the output, even
the output itself — the BFS level decomposition — is
stored in a similar format.

E

N

F

Figure 1: I/O-efficient data structure to represent a
partitioned graph

For the case of MM BFS, we also need another
vector to store iterators to different clusters in order to
access an arbitrary cluster in O(1) + cluster size

B I/Os.
Each cluster consists of an adjacency array containing

nodes and edges belonging to that cluster after the pre-
processing phase. A better way (from the I/O efficiency
perspective) to handle the graph-partitioning is to store
the partitioned input graph as three vectors F , N ,
and E (as shown in Figure 1), containing the cluster
iterators, nodes and adjacency arrays, respectively. N
and E are kept sorted according to cluster indices.

Although we reduced the amount of information
kept with node and edge elements in this data-structure,
our implementation is still generic: it can handle graphs
with arbitrary number of nodes and the graph template
is basic and can be used for other graph algorithms as
well.

Pipelining. Pipelining is a well known principle
used to design faster algorithms. The key idea behind
pipelining is to connect a given sequence of algorithms
with an interface so that the data can be passed-through
from one algorithm to another without needing any
external memory intermediate storage. This coalesced
algorithm is still manageable because none of these
algorithms needs to know about the inner structure of
the other algorithms. Though pipelining saves some
constant factors in the I/O complexity of an algorithm,
it usually increases the computational cost. Therefore,
the correct extent of pipelining needs to be carefully
determined. For more details on the usage of pipelining
as a tool to save I/Os, refer to [17].

MR BFS. Figure 2 displays the flowchart of the
pipelined and the non-pipelined versions of the main
loop of our implementation of MR BFS. Let L(t) denote
the set of nodes in BFS level t and N(S) denote the
set of neighbors of nodes in S. The complexity of the
pipelined MR BFS mainly lies in it’s scanner. The
scanner reads the nodes in L(t − 1), L(t − 2) and the
adjacency lists E(t) of nodes in L(t) from the disk and
scans through the stream of N(L(t−1)) and in just one
pass outputs the nodes in the current level L(t) and the
multi-set A(t) of neighbor nodes of L(t). The stream
A(t) is passed directly to runs creator and sorted runs
are written on the disk. These are later merged and
passed to the scanner as N(L(t)) for the next iteration.

In this case, pipelining reduces the worst case
number of I/Os from

∑

t(L(t − 1) + L(t − 2) + 2L(t) +
E(t) + 2A(t) + sorted runs of A(t) + 2N(L(t − 1))) =
n + scan(4n + 14m) to

∑

t(L(t− 1) + L(t− 2) + L(t) +
E(t) + sorted runs of A(t)) = n + scan(3n + 6m).

MM BFS. Figure 3 shows the flow-chart of the
pipelined version of both phases of MM BFS. The ran-
domized graph paritioning phase begins with randomly
selecting each node to be a master node with a prob-
ability µ. The main scanner of this phase takes the
sorted sequence of the nodes on the fringe of expand-
ing clusters, stores the cluster index (by including the
fringe nodes into their corresponding clusters) with



Flow-chart of MR BFS Flow-chart of pipelined version of MR BFS

Figure 2: Flow-chart of MR BFS implementation

Graph partitioning phase of MM BFS BFS phase of MM BFS

Figure 3: Flow-chart of MM BFS implementation



these nodes and reads their adjacency lists to compute
the new sequence of fringe nodes to be sent to the two-
phase sorter. After the partitioning of nodes into clus-
ters is complete, we store the cluster index of the inci-
dent nodes with each edge, sort N and E w.r.t. the clus-
ter index and then adjust the cluster and the node itera-
tors appropriately. Since the diameters of any cluster is
less than log n

µ w.h.p., the total number of I/Os for this

phase is bounded by scan(16m+6n+µn+ 2·(m+n)·log n
µ )

w.h.p.
In the pipelined BFS phase, the first scanner

receives the sorted sequence N(L(t − 1)) of neighbor
nodes of L(t − 1) from the merger pipe, reads L(t − 1),
L(t − 2) from the disk and the adjacency lists of nodes
in L(t − 1) from the hot pool H and computes F (t) -
the multi-set of cluster indices of nodes in L(t) - and
in the process, also writes L(t) to disk. The second
scanner takes the sorted F (t) and the hot pool H to
compute the multi-set of cluster indices that need to
be merged into H. The next scanner reads the sorted
sequence of F (t), eliminates duplicate cluster-indices,
computes A(t) - the neighbor multi-set of L(t) - and
updates H:

Hnew = Hold + H1(Merged clusters) − Adj(L(t))

where Adj(S) represents the adjacency arrays of nodes
in S. The total number of I/Os for this phase is bounded

by µn + scan(14m + 4n + 8m log m
µ ) w.h.p.

Graph generators. For the purpose of this study, we
designed and implemented a pipelined version of an I/O
efficient framework for generating large graphs. The key
steps of this framework are edge-sequence creation, sort-
ing the edge-sequence, duplicate removal and conversion
into requisite adjacency array representation. For an
I/O-efficient random permutation needed in the gener-
ation process of many graphs, we use [31]. More details
for this framework are available in [2].

BFS decomposition verifier. As another side tool,
we designed an I/O efficient verifier routine to determine
whether or not a BFS level decomposition is correct for
a given graph.

For an undirected graph, any BFS level labeling is
correct if it satisfies the following criterion:

• BFS level 0 contains the source node only.

• Every node has a unique BFS level.

• ∀(u, v) ∈ E, |bfs level(u) − bfs level(v)| ≤ 1.

• ∀u ∈ V in BFS level k (k 6= 0), ∃ edge(u, v) such
that v is in BFS level k − 1.

All these conditions can be checked in O(sort(n +
m)) I/Os.

4 Experiments

In this section, we consider the total running time
and the I/O wait time - the total time spent by an
implementation waiting for an I/O to complete, and not
I/O time - the total time spent by an implementation
on I/Os. This distinction is necessary as STXXL
maximizes the overlap of I/O with computation.

Configuration. We have implemented the algo-
rithms in C++ using the g++ 3.3.2 compiler (opti-
mization level -O3) on the GNU/Linux distribution De-
bian with a 2.4 kernel and the external memory library
STXXL version 0.77. Our experimental platform has
two 2.0 GHz Intel Xeon processors (we use only one),
one GByte of RAM, 512KB cache and 250 GByte Sea-
gate Barracude hard-disks [33]. These hard-disks have
8 MB buffer cache. The average seek time for read and
write is 8.0 and 9.0 msec, respectively, while the sus-
tained data transfer rate for outer zone (maximum) is
65 MByte/s. This means that 228 random read and
write I/Os will take 596.5 and 671.1 hours, respectively.

Graph classes considered. Random graph: On a n
node graph, we randomly select m edges with replace-
ment (i.e., m times selecting a source and target node
such that source 6= target) and remove the duplicate
edges to obtain random graphs.
B-level random graph: This graph consists of B lev-
els, each (except the level 0 containing only the source
node) having n

B nodes. The edges are randomly dis-
tributed between consecutive levels, such that these B
levels approximate the BFS levels. The initial layout of
the nodes on the disk is such that the n

B nodes in the
same level are all in different blocks. This graph causes
MR BFS to incur it’s worst case of Ω(n) I/Os.
B-level spider web graph: This graph class is a special-
ization of web graph defined in [37]. Again, it consists
of B levels, each having n

B nodes. All nodes in a level
are connected in a cyclic fashion and a node has an edge
to it’s corresponding node in the level before and after.
The initial layout of the nodes on the disk is random.
Grid graph: It consists of a bnc × dne grid.
MM BFS worst graph: This graph [7] causes the (ran-
domized pre-processing variant) MM BFS to incur it’s

worst case of Θ(n ·
√

log n
B + sort(n)) I/Os.

Line graphs: A line graph consists of n nodes and n− 1
edges such that there exists two nodes u and v, with
the path from u to v consisting of all the n − 1 edges.
We took three different initial layouts - simple, in which
all blocks consists of B consecutively lined nodes; B-
interleaved in which the consecutive nodes are all in
different but consecutive blocks; random in which the
arrangement of nodes on disk is given by a random per-
mutation.

Fine-tuning Parameters. Most practitioners of



Figure 4: Variation of running time of IM BFS,
MR BFS and MM BFS (in logarithmic scale) with
graph size (also in logarithmic scale)

external memory algorithms know that the block size
B is a parameter that needs to be finely tuned for op-
timal performance. This is all the more relevant in the
STXXL design framework, as the STXXL vector is or-
ganized as a collection of blocks (of size B) residing
on the external storage media (parallel disks). Access
to the external blocks is organized through the fully
associative cache which consists of Pg Nr in-memory
pages where a page is a collection of Blk Nr consec-
utive blocks. The internal memory consumption of a
vector is B · Blk Nr · Pg Nr. Another important pa-
rameter to be fine-tuned is M use - the internal mem-
ory reserved for a runs creator (or equivalanetly, runs
merger). While tuning these parameters, a key con-
straint is that the internal memory allocated for all
the vectors, runs creator and runs merger active simul-
taneouly, at any time, should be less than the inter-
nal memory available for the user. Typically, half of
the internal memory is kept for OS requirements. For
our implementations, we chose B = 512 KB (after ex-
perimenting between 1 KB and 8 MB), Pg Nr = 4,
Blk Nr = number of parallel disks in use, allocation
strategy = randomized striping and LRU page replace-
ment strategy.

Another important parameter to be optimized for
MM BFS is µ - the probability of choosing a node to
be a master node. For worst case optimality, we choose

µ =
√

(m+n)·log(n)
n·B·D . On the other hand, the number

of I/Os in the BFS phase for graphs with low (high)
diameter can be quite less (high) and therefore, the
optimal µ value for these graphs is much higher (lower).
However, in order to exploit this fact, we need to assume
some a priori knowledge of the graph structure. We
consider both the cases - one in which we choose our µ
value independent of the graph-structure (common µ)
and one in which we assume a priori knowledge of it

Figure 5: Variation of comparison factor
(MM BFS/MR BFS) of running time and I/O
wait time with random-graph size

(graph-structure dependent µ).

IM BFS looses fast. Figure 4 shows the total
running time of IM BFS, MR BFS, and MM BFS on
random graphs of varying sizes (keeping m = 4n). An
important point to note here is that even when half
of the graph fits in internal memory, the performance
of IM BFS is much worse than that of external BFS
algorithms. For this case (222 nodes and 224 edges), the
I/O wait time of IM BFS (8.09 hours) dominates the
total running time (8.11 hours), thereby explaining the
worse behavior of IM BFS. On the other hand, MR BFS
and MM BFS have much less I/O wait time (1.55 and
4.93 minutes) and consequently, the total runnning time
(2.57 and 10.6 minutes) is also small. This clearly
establishes the need for efficient implementations of
external memory BFS algorithms.

Note that some of the results in Table 1- 9 have been
interpolated using the symmetry in the graph structure.

Single disk - common µ. Table 1 and 2 show the
I/O wait time and running time for different graphs in
the single disk common µ case. Note that for these large
graphs, even the efficient implementations of external
memory algorithms are I/O dominant.

Let’s first consider the case of random graphs. The
total time for BFS traversal on random graphs is much
less than that for most other graph classes. This is
explained by the fact that MR BFS incurs O(sort(n +
m)) I/Os per level, and the number of BFS levels in
random graphs (typically 10-15 for the graph sizes we
studied) are very few. Infact, it’s known [30] that
a random graph G(n, c/n) has an expected diameter
O(log n). On the other hand, since µ for MM BFS is

∼
√

log n
B for the asymptotic worst case I/O complexity,

the edges remain in hot pool for quite long and MM BFS



MR BFS MM BFS
Graph class n m I/O wait time Total time I/O wait time Total time
Random 228 230 2.4 3.4 7.3 9.6
Grid 228 ∼ 229 4733.0 4736.0 52.1 53.9
B-level random 228 230 3989.8 3994.8 42.2 49.7
B-level spider web 228 ∼ 229 3364.2 3366.5 36.5 39.8
MM Worst 225 ∼ 225 25.2 25.4 19.5 32.4
Simple line 228 228 0.6 10.2 84.8 275.9
Rand line 228 228 4156.2 4167.7 100.2 283.3
B-interleaved line 228 228 4210.3 4222.6 97.5 280.8

Table 1: Single Disk Common µ - I/O wait time and running time (in hours) of MR BFS and MM BFS

MM BFS Phase 1 MM BFS Phase 2
Graph class n m I/O wait time Total time I/O wait time Total time
Random 228 230 3.7 5.1 3.6 4.5
Grid 228 ∼ 229 6.6 7.3 45.5 46.6
B-level random 228 230 3.6 5.1 38.6 44.6
B-level Spider Web 228 ∼ 229 6.6 7.3 29.9 32.5
MM Worst 225 ∼ 225 6.5 6.7 13.0 25.7
Simple line 228 228 84.3 85.1 0.5 190.8
Rand line 228 228 79.4 80.6 20.8 202.7
B-interleaved line 228 228 79.3 80.4 18.1 200.4

Table 2: Single Disk Common µ - I/O wait time and running time (in hours) of different phases of MM BFS

MR BFS MM BFS
Graph class n m I/O wait time Total time I/O wait time Total time
Random 228 230 0.9 1.3 1.9 4.4
B-level Random 228 230 2094.3 2105.1 18.3 26.0
B-level Spider Web 228 ∼ 229 1492.0 1497.9 13.5 17.1
MM Worst 225 ∼ 225 13.4 13.7 6.5 10.5
Rand line 228 228 4702.8 4730.5 56.4 239.9
B-interleaved line 228 228 1243.0 1258.7 56.4 239.9

Table 3: Multi disk common µ - I/O wait time and running time (in hours) of MR BFS and MM BFS

MM BFS Phase 1 MM BFS Phase 2
Graph class n m I/O wait time Total time I/O wait time Total time
Random 228 230 0.9 2.5 1.0 1.9
B-level random 228 230 0.9 2.5 17.4 23.5
B-level Spider Web 228 ∼ 229 2.4 3.2 11.1 13.9
MM Worst 225 ∼ 225 5.3 5.6 1.2 4.9
Rand line 228 228 49.0 50.5 7.5 189.4
B-interleaved line 228 228 48.4 49.0 6.1 28.1

Table 4: Multi disk common µ - I/O wait time and running time (in hours) of the two phases of MM BFS

can still take O(n·
√

log n
B ) I/Os. Consequently, as shown

in Figure 5, MR BFS not only outperforms MM BFS in
terms of total running time by a factor of ∼ 3.8, but also
in terms of I/O wait time by a factor of ∼ 2.5.

As noted in Section 2, MR BFS takes O(n +
sort(n + m)) I/Os while MM BFS takes O(sort(n +

m) +
√

n · scan(n + m) · log(n)) I/Os w.h.p.. So, if the

two implementations are I/O bound and m·log(n)
n <

B, MM BFS provides better running-time guarantees
w.h.p.. In other words, we should be able to find some
sparse graphs for which MM BFS performs significantly
better than MR BFS. Our search for such a graph led



MR BFS MM BFS
Graph class n m I/O wait time Total time I/O wait time Total time
Random 228 230 2.4 3.4 5.5 7.9
B-level Random 228 230 3989.8 3994.8 10.0 16.6
B-level Spider Web 228 ∼ 229 3364.2 3366.5 25.1 29.3

Table 5: Single Disk, Graph structure dependent µ - I/O wait time and running time (in hours) of MR BFS and
MM BFS

MM BFS Phase 1 MM BFS Phase 2
Graph class n m I/O wait time Total time I/O wait time Total time
Random 228 230 3.3 4.9 2.2 3.0
B-level Random 228 230 4.0 5.5 6.0 11.1
B-level Spider Web 228 ∼ 229 12.9 13.7 12.2 15.6

Table 6: Single Disk, Graph structure dependent µ - I/O wait time and running time (in hours) of the two phases
of MM BFS

MR BFS MM BFS
Graph class n m I/O wait time Total time I/O wait time Total time
Random 228 230 0.9 1.3 1.5 3.9
B-level Random 228 230 2094.3 2105.1 3.1 9.7
B-level Spider Web 228 ∼ 229 1492.0 1497.9 9.7 13.9

Table 7: Multi disk graph structure dependent µ - I/O wait time and running time (in hours) of MR BFS and
MM BFS

MM BFS Phase 1 MM BFS Phase 2
Graph class n m I/O wait time Total time I/O wait time Total time
Random 228 230 0.7 2.3 0.8 1.6
B-level random 228 230 1.1 2.6 2.0 7.1
B-level Spider Web 228 ∼ 229 4.3 5.1 5.4 8.8

Table 8: Multi disk graph structure dependent µ - I/O wait time and running time (in hours) of the two phases
of MM BFS

MR BFS MM BFS - common µ MM BFS - Graph dep µ
I/O wait time Total time I/O wait time Total time I/O wait time Total time

Single disk 3.7 4.0 7.4 9.4 6.3 8.4
Multiple disk 2.0 2.3 2.7 4.8 2.3 4.5

Table 9: I/O wait time and running time (in hours) of the two algorithms on web graph

us to B-level random graphs and B-level spider web
graphs — high diameter sparse graphs, where MR BFS
takes Θ(n) I/Os. For these graphs, MR BFS takes 90-
95 times more I/O wait time than MM BFS and as a
result, while MM BFS takes a total running time of 49.7
and 39.8 hours respectively, MR BFS takes 166.5 and
140.3 days. A d√ne×b√nc grid is yet another instance
of a high diameter d√ne + b√nc sparse graph. Once
again, MM BFS outperforms MR BFS by a factor of
90.8 in I/O wait time and 87.9 in total running time.

Apart from diameter, another important considera-
tion affecting the relative performance of the two algo-

rithms is the initial graph layout on the disk. The pre-
processing phase of MM BFS neutralizes the impact of
an adverse layout. So, while we observe that the I/O
wait time of MR BFS (0.6 hours) is much less than 84.8
hours of MM BFS (dominated by the 84.3 hours in the
pre-processing phase) on a simple line graph, the I/O
wait time of MR BFS (167.6 and 177.7 days) is much
more than that of MM BFS (4.2 and 4.1 days) on a ran-
dom and B-interleaved layouts. Thus, pre-processing
makes MM BFS provide better worst case guarantees
(saving months) at the cost of loosing out on simple
layouts (loosing days).



Except for the line graphs, the pre-processing phase
dominates the run-time of MM BFS for low diameter
graphs while the BFS phase dominates it for large
diameter graphs. For the line graphs, the hot pool
is rarely bigger than B and therefore, always stays in
internal memory.

Multi disk - common µ. We ran the same ex-
periments with vectors striped over 4 disks. Although
the usage of multiple disks allows us to handle larger
volumes of data, herein we restrict ourselves to smaller
sizes for better comparison with the single disk case.
Table 3 and 4 show the running time of the two algo-
rithms on different graphs. For most graphs, the usage
of parallel I/O channels alleviates the I/O problem fur-
ther and computation starts becoming the bottleneck,
in particular for MM BFS, which seems to gain more
from the parallel I/O channels. However, with some
new features of STXXL like a SMP multi-processor ver-
sion of sorting routines, we hope to bring down the total
running time fairly close to the I/O wait time. Besides,
the computation speed increases at a much faster rate
than the external memory bandwidth, thereby reducing
the computation time relative to the I/O wait time.

While MR BFS on random line hardly seems to
have any benefit from the multiplicity of disks, it is
almost four times better with four disks on B-interleaved
line. This is because a random access to a block brings
the neighoring blocks on other disks automatically to
the internal memory and therefore, the access to the
adjacency lists of next three nodes comes without any
external I/O.

Single disk - graph structure dependent µ. Ta-
ble 5 and 6 show the I/O wait time and running time
for the two algorithms in the single disk case, where µ
could be optimized based on the graph structure. Since
for random graphs, there are very few BFS levels, it is
better to choose a very high µ value (µ = 0.7) so that
a cluster stays in the hot pool for a short duration and
therefore, an edge is considered in the hot pool for only
one or two levels. With this µ, the I/O wait time of
the BFS phase of MM BFS is less than MR BFS. So,
in the case when we need to compute BFS from dif-
ferent source nodes knowing the graph-structure, the
time for graph-partitioning can be amortized on multi-
ple BFS runs, thereby making MM BFS the preferable
algorithm, even for random graphs. Since for B-level
random and spider web graph, the hot pool almost al-
ways stays in the internal memory, the larger diameter
of the cluster is no longer a problem. Consequently, we
choose small µ value (µ = 0.00025 ' 1

B and µ = 0.001)
in order to have fewer clusters and therefore, less time
in loading them. In general, the µ value should be cho-
sen so as to balance the I/O time of the two phases of
MM BFS.

Multi disk - graph structure dependent µ. Next,
we experimented with running MM BFS on multiple-
disk with graph-structure dependent µ to measure the
extent to which we can alleviate the I/O bottleneck of
BFS. Table 7 and 8 show the results for this setup.

Web graph - A real world graph. As an instance
of a real world graph, we consider an actual crawl of
the world wide web [36], where an edge represents a
hyperlink between two sites. This graph has around 130
million nodes and 1.4 billion edges. For this graph, the
total input and output volume of the BFS algorithm
(with the data-structure described earlier) is around
23.5GB and 1.5GB, respectively. The bulk of the nodes
are contained in the core of this web graph spread
across 10-12 BFS levels (similar to random graphs). The
remaining nodes are spread out over thousands of levels
with 2-3 nodes per level (which behaves more like a line
graph). However, the I/O wait time as well as the total
running time for BFS traversal is dominated by the core
of this graph and hence, the results are similar to the
ones for random graphs. As Table 9 shows, both the
algorithms can compute the BFS decomposition of this
graph in a matter of few hours.

5 Conclusion

Empirical evidence suggests that MR BFS performs
better on small-diameter random graphs. However,
the better asymptotic worst-case I/O complexity of
MM BFS helps it to outperform MR BFS for large
diameter sparse graphs, where MR BFS incurs close to
its worst case of Ω(n) I/Os.
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