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A bstract
Let G  =  (/V, E)  be an edge-weighted undirected graph. The graph partitioning 

problem is the problem of partitioning the node set N  into k disjoint subsets of 
specified sizes so as to minimize the to tal weight of the edges connecting nodes 
in distinct subsets of the partition. We present a numerical study on the use 
of eigenvalue-based techniques to find upper and lower bounds for this problem. 
Results for bisecting graphs with hundreds of nodes are given. We show th a t the 
techniques are very robust and consistently produce upper and lower bounds having 
a relative gap of typically a few percentage points.

1 Introduction
Let G =  ( /V, E) be an edge-weighted undirected graph with node set ;V =  {1, . . . ,  n }, 
edge set E  and weights wtJ, ij G E. We consider the problem of partitioning the 
node set N  into k disjoint subsets S i , . . . , S *  of specified sizes m x >  m 2 > . . .  >  
m it, 5Zj=i m j = T̂  ̂ so as t°  minimize the to tal weight of the edges connecting nodes 
in distinct subsets of the partition. Partitioning problems are im portant, for ex
ample, in the context of layout problems and VLSI design. Several researchers 
have developed m ethods for finding good partitions, and one of the most successful 
heuristics was proposed by Kernighan and Lin [5] in 1970. A recent survey by Jo h n 
son et al. [4] compares several heuristics for the  graph bisection problem, which is 
the problem of partitioning the nodes into ju st two sets of equal size.
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Less a tten tio n  seems to have been given to estim ating the quality of a partition 
in term s of upper and lower bounds on the optim al solution values. In the early 70s 
Donath and Hoffman [3] provided an eigenvalue-based upper bound on the weight of 
the edges not cut by any partition. They also proposed a param etric improvement 
stra tegy for their bound and provided numerical results on sparse random  graphs 
with up to 100 nodes. Their results indicate that the gap between lower and upper 
bounds is fairly large as the number of nodes increases. Recently Boppana [2] has 
proposed a bounding technique for the special case of graph bisection. He does not 
give any numerical results but shows th at on a certain class of random  graphs, his 
bound is asym ptotically tight.

In [6] several new eigenvalue-based bounds for the graph partitioning problem 
are presented; the purpose of the present paper is to study the performance of these 
bounds on various classes of graphs.

2 B asic notation  and problem  statem ent
Let G  =  ( i V , £ )  denote an undirected graph with edge weights w. We denote by 
.4 =  (atJ) the weighted adjacency m atrix of G, i.e.

_  j  w ij U € E
,J [ 0 otherwise.

Since G is undirected, .4 is symmetric. The j —largest eigenvalue of a symmetric 
m atrix  M  will be denoted by A; (A/). T he operator diag(.) is used in two ways. 
If v is a vector, diag(u) is the diagonal m atrix formed from v. If M  is a (square) 
m atrix , diag(M ) is the vector containing the main diagonal of A/. The trace of 
M  is denoted by tr(A /). The column vector consisting of all ones is denoted by 
u (or u; to indicate its size). T he (column) vector of row sums of a m atrix  A/  is 
denoted by r(A /), thus r (M )  — M u .  Similarly, s (M )  := ulM u  denotes the sum of 
all elements of M .  We will also make extensive use of the following / x (/ — l)-m atrix  
V/, representing ux :

y y

x  1 +  x

where x = j ^ , y  — and / >  2. It can easily be verified th a t V/u; =  0 and
VltVi = h-x.

An instance of a graph partitioning problem is described by a sym m etric m atrix  
/I of size n and an integer vector m =  (m h  . . . ,  m*.) such that m ‘u =  n, defining the 
specified sizes for the subsets of the partition. We assume without loss of generality 
th a t

m i >  . . .  >  rrik > 1 and th a t k < n.

Finally we denote by w(E)  the sum of all edge weights of G, i.e. w ( E ) = s (A ) /2 ,  
and by w (E cut) the total weight of the edges cut by an optimal partition. Moreover 
let w (E uncul) :=  w (E ) -  w (E cut).
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The following nonlinear optim ization problem solves the graph partitioning 
problem, see e.g. [6].

(G P )  w (E unc»t ) = max ^ t r X ' A X

such that
X ' X  =  diag(m ) (2 .2 )

X u k  = un; X tun =  m  (2.3)

X  >  0 . (2.4)

The constraints guarantee th at all entries of the n x k m atrix X  are either 0 or 1. 
The nonzero entries of column j  of X  represent the nodes contained in Sj .

3 E igenvalue-B ased B ounds
We can use the model (G P) to obtain tractable  relaxations for graph partitioning 
and hence upper bounds on w (E uncu(). Dropping the  constraints (2.3) and (2.4) 
leads to one of the first relaxations for graph partitioning. It was proposed by 
Donath and Hoffman in the 1970s [3].

1 1 k
w{EunCrit) <  m ax{ - tr,Y fA X  : X  satisfies (2.2)} =  -  m 7A,(/4). (3.1) 

2 -  j=i

The Donath-Hoffman bound can be further strengthened by dropping only the 
nonnegativity conditions from (G P), see [6]. In the case where the are all equal 
(to n /k ) , the linear term  in the bound becomes a constant. From now on we will 
focus on this special case. A s su m p tio n :  m 1 =  . . .  =  m* =  n /k .

w {E uncut) <  m ax{^tr.Y 'A .Y  : X  satisfies (2.2), (2.3)} =  ~  £  M K M K O  +  ̂ s M ) -

(3.2)
This upper bound is a tta ined for

'Y = +  (3 3 ) 

where Z  contains a set of k — 1 orthonorm al eigenvectors corresponding to the 
largest AJ( l /rl'/lV/n). By construction, this X  satisfies the orthogonality constraint 
(2.2) and the row and column sum constraint (2.3), but it need not be integer, since 
nonnegativity is dropped.

A further improvement can be achieved along the following lines [3,6]. Let 
d 6 cR" and X  be an arb itrary  feasible partition , i.e. X  satisfies (2 .2),(2 .3),(2 .4). 
Then it can readily be seen that

tr  Y '(d iag (d) -  — I ) X  =  0 .
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iy(Euncut) =  m a x l^ tr  X ‘(A +  diag(cf) -  — I ) X  : X  . . .  feasible partition  }
'2 n

<  max{ - t r  +  diag(d) -  — I ) X  : -V satisfies (2.2), (2.3)}
2 n

=  ± S (A )  +  % ' £  ,\j(v ;( .4  +  diag(«() -  ~ / ) K l

=: +

thereby defining f (d ) .
In [6] it was observed th a t inf{/(cf) : d £ .5?"} is attained and therefore the best 

choice for d to produce an upper bound on w ( E uncut) is to find

min{/(<i) : d £ 3?'*}.

This leads to the following upper bound for partitioning the nodes into subsets of 
equal size:

w { E Uncut) < + m i n : d S (3-4 )

X  can also be used to obtain lower bounds on w (E unCut)i see [6,1]- The problem

m ax jtr  X 1 A Y  : Y  satisfies (2.3)(2.4)} (3-5)

am ounts to a linearization of the graph partitioning cost function a t X .  T he optim al
Y  from this problem is a best partition corresponding to this linearized model. 
This problem can be solved efficiently as a transportation  problem. Note th a t 
for linear objective functions the constraint (2.2 ) can be dropped because the set 
characterized by (2.3), (2.4) has only integer extreme points.

We will take a closer look at the transporta tion  problem in the case of the 
bisection problem. We use

V2 = ^ ( - 1  1)’ Y  = ( 'Juun ~  Vi)

where y x is a zero-one column having n /2  entries equal to one. Thus

tr X ' A Y  =  ^ u ‘nA u n + ^ ( AVnZ ) 'u n -  y/K{AVnZ y y i .

Note th a t the first two sum m ands on the right hand side are constant and therefore 
maximizing tr.V!/lK  with respect to Y  is equivalent to minimizing

(A VnZ Y y i ,  where ?/, 6 {0, l } n,y[u n =

It is easy to see th at the optim al solution to this problem is obtained simply by 
setting the elements of corresponding to the n /2  largest elements of AVnZ  to 
zero and setting the remaining term s to one. Therefore the problem simply requires 
finding the median of a real vector of n components to get a bisection.

T h erefo re , see [6], we conclude th a t
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4 N u m e r ic a l  R esu lts

4.1 Introduction
In this section we discuss implementation details and present com putational expe
rience tor the bound (3.4) for the bisection problem. Since we need to minimize 
a convex, but possibly nonsmooth function, it seems natural to apply an iterative 
procedure. Several software packages designed for this type of problem exist, and 
we have chosen to use the Bundle Trust (BT) m ethod proposed in [7]. In each 
iteration we have to calculate

A M ( A  + diag(d))Vn).

We use a block Lanczos Algorithm from [8] for this purpose.
At the end of the sequence of B T-iterations, the algebraic multiplicity of the 

largest eigenvalue is normally greater than one. Thus we have an infinite variety 
of eigenvectors available for use in the generation of lower bounds. The eigenvec
tors found by the Lanczos algorithm  form an orthonorm al basis of the eigenspace. 
We approxim ate the search of the entire eigenspace by considering linear combina
tions of pairs of eigenvectors from the basis. Then we apply the Kernighan-Lin [5] 
heuristic to the best solution found. Given any feasible bisection, the Kernighan- 
Lin heuristic a ttem pts to improve it by performing a series of interchanges between 
the two sets of the partition.

The numerical results concentrate in particular on the relative gap between the 
upper and lower bounds, which gives an estim ate of the distance of the feasible 
solution from optim ality. We define the gap as

upper bound - lower bound 
^ ^ lower bound

4.2 R andom  graphs w ith  uniform  edge probabilities

Firstly 27 random  graphs with edge weights in the range 1 to 10 were generated. 
Each edge was generated independent of other edges according to the edge proba
bility p controlling the density of the graph. T he graphs had between 50 and 500 
nodes and densities ranging from 10% to 100%. Table 4.1 contains the results for 
21 of these problems. The mean percentage difference between lower and upper 
bounds was 3.8, with standard  deviation 1.45.

Secondly, 22 further random  graphs were generated; these were as above except 
th at the edge weights were now in the range 1 to 100. Similar results were obtained 
for these problems: the mean percentage difference was 3.6, with standard  devia
tion 1.42. Thirdly, 19 unweighted random  graphs were generated. These also had 
between 50 and 500 nodes, and the densities ranged from 10% to 75%. The mean 
percentage difference was 3.8, with standard  deviation 1.69.

These results are encouraging. The techniques outlined in this paper can obtain , 
for random  graphs, feasible solutions which are within a few percentage points of 
optimality.

Experim ents were also performed with random  graphs provided by David Jo h n 
son; Johnson et al. [ 1] use these graphs to test their simulated annealing algorithm ,
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n \E 1 Density (%) Upper bd Lower bd % gap
50 136 10 542 516 5.0
50 301 25 1057 1000 5.7
50 630 50 1902 1857 2.4
50 925 75 2486 2418 2.8
50 1225 100 3265 3219 1.4

100 511 10 1881 1792 5.0
100 1249 25 3741 3582 4.4
100 2465 50 6882 6659 3.4
100 3691 75 9716 9481 2.5
100 4950 100 12503 12260 2.0
150 1105 10 3703 3517 5.3
150 2775 25 8215 7930 3.6
150 5603 50 15130 14754 2.6
150 8426 75 21698 21238 2.2
150 11175 100 27784 27389 1.4
200 2015 10 6626 6229 6.4
200 4975 25 14327 13692 4.6
200 9942 50 26455 25698 3.0
300 4489 10 14049 13257 6.0
300 11126 25 31807 30274 5.1
300 22672 50 58876 57306 2.7

Table 4.1: Weighted Random  Graphs (Weights in range 0 to 10)

n \E\ Density (%) Upper bd Lower bd % gap Johnson
124 149 2 141 136 3.7 136
124 318 4 271 254 6.7 255
124 620 8 467 442 5.6 442
124 1271 17 853 822 3.8 822
250 331 1 316 301 5.0 302
250 612 2 531 495 7.3 498
250 1283 4 981 925 6.1 926
250 2421 8 1675 1588 5.5 1593
500 625 0.5 600 573 4.7 573
500 1223 1 1071 1001 7.0 1004
500 2355 2 1844 1713 7.6 1727
500 5120 4 3564 3358 6.1 3376

1000 1272 0.25 1228 1172 4.8 1170
1000 2496 0.5 2193 2030 8.0 2045
1000 5064 1 3958 3676 7.7 3697

Table 4.2: Johnson et al. Random Graphs



n \E\ Upper bd Lower bd % gap Johnson
500 1282 1281 1280 0.1 1278
•500 2355 2347 2329 0.8 2329
500 4549 4493 4370 2.8 4371
500 8793 8629 8381 3.0 8381

1000 2394 2394 2393 0.0 2391

Table 4.3: Johnson et al. Geometric Graphs

which provides good partitions but not upper bounds. The results of our exper
iments are presented in Table 4.2, together with the cost of the best partitions 
provided in [4]. For these graphs the mean percentage gap was 6.0 with standard  
deviation 1.40.

It can be seen th a t, with one exception, the Johnson partitions are a t least 
as good as the best partitions obtained by our m ethod: on average they are 0 .6% 
better. It is however im portant to note th at Johnson et al. report the best solutions 
ever found after performing, for each graph, 20 runs of simulated annealing, 2000 
runs of Kernighan-Lin, and 2000 runs of a local optim ization algorithm. In contrast, 
we performed just one run of our algorithm  on each graph, and each run required 
only a few calls to the Kernighan-Lin algorithm.

4.3 G eom etric Graphs
Geometric graphs come closer to those arising in real-world applications of graph 
partitioning. These graphs are generated as follows. We use a square grid of given 
size and select each gridpoint with a predefined probability to represent a vertex 
of the graph. Then we introduce edges (of weight 1) between selected gridpoints 
whenever their (Euclidean) distance is below a predefined threshold value.

T hirty  geometric graphs were considered, and all of these were either connected, 
or had at most one isolated node. For these graphs, which had up to 1936 nodes, 
the mean percentage difference was only 1.3, with standard  deviation 0.44. It is 
encouraging to see th a t such good feasible solutions can be obtained for graphs 
which resemble real-world graphs.

We were also able to obtain da ta  for five of the eight geometric graphs which 
Johnson et al. experimented with. They again performed 20 runs of annealing 
and thousands of runs of Kernighan-Lin and local optim ization, and also found it 
necessary to develop a special hybrid algorithm  to take the geometry of the graphs 
into account. Our results on these problems are presented in Table 4.3. It can be 
seen th a t the percentage gaps are small and th a t, with one exception, the feasible 
solutions obtained are as good as or better than the Johnson partitions.

4.4 Sum m ary

The upper bound can be computed efficiently. The bounding technique relies es
sentially on the ability to calculate the largest eigenvalue of the sym m etric m atrix
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Vn‘.4Vn. We use a representation of Vn th a t takes full advantage of the possible 
sparsity  of the adjacency m atrix  A,  w ithout ever multiplying out the triple m atrix 
product.

T he upper bound leads to good partitions. An additional advantage of our 
approach is th a t we are able to generate, at low com putational cost, partitions that 
are often only a few percentage points from optimality.

The approach is robust and efficient. We tested our bounding procedure on a 
variety of graphs and consistently obtained lower and upper bounds having a rela
tive gap of less than  10%. It is particularly interesting to see the good performance 
on graphs having some underlying geometric structure.
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