
 Open access Journal Article DOI:10.1109/TEVC.2012.2227326

A Computational Study of Representations in Genetic Programming to Evolve
Dispatching Rules for the Job Shop Scheduling Problem — Source link

Su Nguyen, Mengjie Zhang, Mark Johnston, Kay Chen Tan

Institutions: Victoria University of Wellington, National University of Singapore

Published on: 01 Oct 2013 - IEEE Transactions on Evolutionary Computation (IEEE)

Topics: Flow shop scheduling, Job shop scheduling, Genetic programming and Hyper-heuristic

Related papers:

 Towards improved dispatching rules for complex shop floor scenarios: a genetic programming approach

 Automated Design of Production Scheduling Heuristics: A Review

 Evolutionary generation of dispatching rule sets for complex dynamic scheduling problems

Automatic Design of Scheduling Policies for Dynamic Multi-objective Job Shop Scheduling via Cooperative
Coevolution Genetic Programming

 Evolving dispatching rules using genetic programming for solving multi-objective flexible job-shop problems

Share this paper:

View more about this paper here: https://typeset.io/papers/a-computational-study-of-representations-in-genetic-
axsrnet6jn

https://typeset.io/
https://www.doi.org/10.1109/TEVC.2012.2227326
https://typeset.io/papers/a-computational-study-of-representations-in-genetic-axsrnet6jn
https://typeset.io/authors/su-nguyen-ex8fwjq5cw
https://typeset.io/authors/mengjie-zhang-2e6k0i36ub
https://typeset.io/authors/mark-johnston-dx1qni8iww
https://typeset.io/authors/kay-chen-tan-h4ml1oij1t
https://typeset.io/institutions/victoria-university-of-wellington-87lkr9ts
https://typeset.io/institutions/national-university-of-singapore-24b050gz
https://typeset.io/journals/ieee-transactions-on-evolutionary-computation-1irf0lyu
https://typeset.io/topics/flow-shop-scheduling-1kbmtydh
https://typeset.io/topics/job-shop-scheduling-14p5wd9o
https://typeset.io/topics/genetic-programming-1pdte4vc
https://typeset.io/topics/hyper-heuristic-1z6jto56
https://typeset.io/papers/towards-improved-dispatching-rules-for-complex-shop-floor-2z71rzzzxp
https://typeset.io/papers/automated-design-of-production-scheduling-heuristics-a-1kp2vs0pt7
https://typeset.io/papers/evolutionary-generation-of-dispatching-rule-sets-for-complex-r1osjgchav
https://typeset.io/papers/automatic-design-of-scheduling-policies-for-dynamic-multi-n0igdxevk1
https://typeset.io/papers/evolving-dispatching-rules-using-genetic-programming-for-2aa9ewmy2k
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/a-computational-study-of-representations-in-genetic-axsrnet6jn
https://twitter.com/intent/tweet?text=A%20Computational%20Study%20of%20Representations%20in%20Genetic%20Programming%20to%20Evolve%20Dispatching%20Rules%20for%20the%20Job%20Shop%20Scheduling%20Problem&url=https://typeset.io/papers/a-computational-study-of-representations-in-genetic-axsrnet6jn
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/a-computational-study-of-representations-in-genetic-axsrnet6jn
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/a-computational-study-of-representations-in-genetic-axsrnet6jn
https://typeset.io/papers/a-computational-study-of-representations-in-genetic-axsrnet6jn

See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/255485424

A Computational Study of Representations in Genetic Programming to Evolve
Dispatching Rules for the Job Shop Scheduling Problem

Article in IEEE Transactions on Evolutionary Computation · January 2012

DOI: 10.1109/TEVC.2012.2227326

CITATIONS

109
READS

343

4 authors, including:

Some of the authors of this publication are also working on these related projects:

GP for Transfer learning View project

Genetic Programming for Manifold Learning View project

Su Nguyen

La Trobe University

73 PUBLICATIONS 1,076 CITATIONS

SEE PROFILE

Mengjie Zhang

Victoria University of Wellington

678 PUBLICATIONS 9,466 CITATIONS

SEE PROFILE

Mark Johnston

University of Worcester

111 PUBLICATIONS 1,768 CITATIONS

SEE PROFILE

All content following this page was uploaded by Su Nguyen on 20 October 2015.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/255485424_A_Computational_Study_of_Representations_in_Genetic_Programming_to_Evolve_Dispatching_Rules_for_the_Job_Shop_Scheduling_Problem?enrichId=rgreq-0cfb8dd7bbfe627d2574898539cbcc04-XXX&enrichSource=Y292ZXJQYWdlOzI1NTQ4NTQyNDtBUzoyODY0OTA4NjIwODAwMDBAMTQ0NTMxNjE1MjI5Mg%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/255485424_A_Computational_Study_of_Representations_in_Genetic_Programming_to_Evolve_Dispatching_Rules_for_the_Job_Shop_Scheduling_Problem?enrichId=rgreq-0cfb8dd7bbfe627d2574898539cbcc04-XXX&enrichSource=Y292ZXJQYWdlOzI1NTQ4NTQyNDtBUzoyODY0OTA4NjIwODAwMDBAMTQ0NTMxNjE1MjI5Mg%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/GP-for-Transfer-learning?enrichId=rgreq-0cfb8dd7bbfe627d2574898539cbcc04-XXX&enrichSource=Y292ZXJQYWdlOzI1NTQ4NTQyNDtBUzoyODY0OTA4NjIwODAwMDBAMTQ0NTMxNjE1MjI5Mg%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/Genetic-Programming-for-Manifold-Learning?enrichId=rgreq-0cfb8dd7bbfe627d2574898539cbcc04-XXX&enrichSource=Y292ZXJQYWdlOzI1NTQ4NTQyNDtBUzoyODY0OTA4NjIwODAwMDBAMTQ0NTMxNjE1MjI5Mg%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-0cfb8dd7bbfe627d2574898539cbcc04-XXX&enrichSource=Y292ZXJQYWdlOzI1NTQ4NTQyNDtBUzoyODY0OTA4NjIwODAwMDBAMTQ0NTMxNjE1MjI5Mg%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Su_Nguyen3?enrichId=rgreq-0cfb8dd7bbfe627d2574898539cbcc04-XXX&enrichSource=Y292ZXJQYWdlOzI1NTQ4NTQyNDtBUzoyODY0OTA4NjIwODAwMDBAMTQ0NTMxNjE1MjI5Mg%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Su_Nguyen3?enrichId=rgreq-0cfb8dd7bbfe627d2574898539cbcc04-XXX&enrichSource=Y292ZXJQYWdlOzI1NTQ4NTQyNDtBUzoyODY0OTA4NjIwODAwMDBAMTQ0NTMxNjE1MjI5Mg%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/La_Trobe_University?enrichId=rgreq-0cfb8dd7bbfe627d2574898539cbcc04-XXX&enrichSource=Y292ZXJQYWdlOzI1NTQ4NTQyNDtBUzoyODY0OTA4NjIwODAwMDBAMTQ0NTMxNjE1MjI5Mg%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Su_Nguyen3?enrichId=rgreq-0cfb8dd7bbfe627d2574898539cbcc04-XXX&enrichSource=Y292ZXJQYWdlOzI1NTQ4NTQyNDtBUzoyODY0OTA4NjIwODAwMDBAMTQ0NTMxNjE1MjI5Mg%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Mengjie_Zhang2?enrichId=rgreq-0cfb8dd7bbfe627d2574898539cbcc04-XXX&enrichSource=Y292ZXJQYWdlOzI1NTQ4NTQyNDtBUzoyODY0OTA4NjIwODAwMDBAMTQ0NTMxNjE1MjI5Mg%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Mengjie_Zhang2?enrichId=rgreq-0cfb8dd7bbfe627d2574898539cbcc04-XXX&enrichSource=Y292ZXJQYWdlOzI1NTQ4NTQyNDtBUzoyODY0OTA4NjIwODAwMDBAMTQ0NTMxNjE1MjI5Mg%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Victoria_University_of_Wellington?enrichId=rgreq-0cfb8dd7bbfe627d2574898539cbcc04-XXX&enrichSource=Y292ZXJQYWdlOzI1NTQ4NTQyNDtBUzoyODY0OTA4NjIwODAwMDBAMTQ0NTMxNjE1MjI5Mg%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Mengjie_Zhang2?enrichId=rgreq-0cfb8dd7bbfe627d2574898539cbcc04-XXX&enrichSource=Y292ZXJQYWdlOzI1NTQ4NTQyNDtBUzoyODY0OTA4NjIwODAwMDBAMTQ0NTMxNjE1MjI5Mg%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Mark_Johnston20?enrichId=rgreq-0cfb8dd7bbfe627d2574898539cbcc04-XXX&enrichSource=Y292ZXJQYWdlOzI1NTQ4NTQyNDtBUzoyODY0OTA4NjIwODAwMDBAMTQ0NTMxNjE1MjI5Mg%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Mark_Johnston20?enrichId=rgreq-0cfb8dd7bbfe627d2574898539cbcc04-XXX&enrichSource=Y292ZXJQYWdlOzI1NTQ4NTQyNDtBUzoyODY0OTA4NjIwODAwMDBAMTQ0NTMxNjE1MjI5Mg%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University_of_Worcester?enrichId=rgreq-0cfb8dd7bbfe627d2574898539cbcc04-XXX&enrichSource=Y292ZXJQYWdlOzI1NTQ4NTQyNDtBUzoyODY0OTA4NjIwODAwMDBAMTQ0NTMxNjE1MjI5Mg%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Mark_Johnston20?enrichId=rgreq-0cfb8dd7bbfe627d2574898539cbcc04-XXX&enrichSource=Y292ZXJQYWdlOzI1NTQ4NTQyNDtBUzoyODY0OTA4NjIwODAwMDBAMTQ0NTMxNjE1MjI5Mg%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Su_Nguyen3?enrichId=rgreq-0cfb8dd7bbfe627d2574898539cbcc04-XXX&enrichSource=Y292ZXJQYWdlOzI1NTQ4NTQyNDtBUzoyODY0OTA4NjIwODAwMDBAMTQ0NTMxNjE1MjI5Mg%3D%3D&el=1_x_10&_esc=publicationCoverPdf

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. X, NO. X, JANUARY XXXX 1

A Computational Study of Representations in

Genetic Programming to Evolve Dispatching Rules

for the Job Shop Scheduling Problem
Su Nguyen, Mengjie Zhang, Senior Member, IEEE

Mark Johnston, Member, IEEE and Kay Chen Tan, Senior Member, IEEE

Abstract—Designing effective dispatching rules is an important
factor for many manufacturing systems. However, this time-
consuming process has been performed manually for a very long
time. Recently, some machine learning approaches have been
proposed to support this task. In this paper, we investigate the
use of genetic programming for automatically discovering new
dispatching rules for the single objective job shop scheduling
problem (JSP). Different representations of the dispatching rules
in the literature and newly proposed in this work are compared
and analysed. Experimental results show that the representation
which integrates system and machine attributes can improve the
quality of the evolved rules. Analysis of the evolved rules also
provides useful knowledge about how these rules can effectively
solve JSP.

Index Terms—Genetic Programming, job shop scheduling,
hyper-heuristic, dispatching rule.

I. INTRODUCTION

IN the field of sequencing and scheduling, Job Shop

Scheduling is one of the most popular problems because

of its complexity and applicability in real world situations.

In the job shop scheduling problem (JSP), given a set of

machines and a set of jobs with various pre-determined routes

through the machines, the objective is to find the schedule

of jobs that minimises certain criteria such as makespan,

maximum lateness, total weighted tardiness, etc. Different

approaches have been proposed to solve this problem and they

can be classified into two main categories [1]: (1) theoretical

studies of optimisation methods which are usually restricted

to static problems and (2) experimental studies of heuristics

or dispatching rules to deal with both static and dynamic

problems. Although the dispatching rules do not guarantee to

provide optimal solutions for the problems, they have been

applied extensively in research and practice because of their

simplicity and ability to cope with the dynamic environment.

Different from optimisation approaches which represent the

scheduling solution in a very sophisticated way in order to em-

ploy specialised techniques to solve the scheduling problem, a

dispatching rule provides a way to perform a scheduling task

which is understandable to shop floor operators. Normally,

Su Nguyen, Mengjie Zhang, and Mark Johnston are with the Evolutionary
Computation Research Group at Victoria University of Wellington, PO Box
600, Wellington, New Zealand. Kay Chen Tan is with the Department of
Electrical and Computer Engineering, National University of Singapore, 4
Engineering Drive 3, 117576, Singapore.
Copyright (c) 2012 IEEE. Personal use of this material is permitted. However,
permission to use this material for any other purposes must be obtained from
the IEEE by sending a request to pubs-permissions@ieee.org.

a dispatching rule is considered as a simple function that

determines the priorities of jobs in the queue of a machine and

decides which one should be processed next. The popularity of

the dispatching rule is derived from the fact that it can be easily

modified when real world aspects such as setup time, release

time or parallel machines are considered. Another aspect that

makes dispatching rules attractive to both researchers and

practitioners is that they do not have the scalability problems

which are a big issue of almost all optimisation methods.

Moreover, effective dispatching rules can also be used to create

good initial solutions for optimisation methods.

Many studies have been done in order to discover new

effective dispatching rules. One of the most straightforward

ways to improve the performance of dispatching rules without

affecting their simplicity is to use a combination of simple

dispatching rules. Another way to employ different dispatching

rules is to monitor the status of jobs in the system and make

a change from one dispatching rule to another as planned. For

example, FIFO/SPT will apply first-in-first-out (FIFO) when

the jobs in the queue of the considered machine have been

waiting for more than a specific time and shortest-processing-

time (SPT) will be applied otherwise. This combination, even

though very simple, can take advantage of each rule at proper

decision making moments and is normally better than the

application of a single dispatching rule. Another approach to

improving the performance of dispatching rules is to create

composite dispatching rules (CDR) [2], [3] which provide

heuristic combinations of simple rules basically in the form

of sophisticated human-made priority functions of various

scheduling parameters (processing times, waiting times, etc.).

Although the combinations of different simple dispatching

rules may create better rules, the task of developing such

rules is complicated and time consuming. Recently, machine

learning methods have been proposed to facilitate this task.

Some genetic programming (GP) methods [4], [5], [6], [7],

[8], [9], [10] have been proposed to evolve dispatching rules.

In these methods, the GP programs are used to calculate the

priority of jobs in the queue of each machine and the job

with highest priority will be processed first. The experimental

results showed that the dispatching rules evolved by GP can

outperform simple dispatching rules. Li and Olafsson [11]

applied a data mining technique to discover new dispatching

rules based on production data. Data engineering was also

considered in their research in order to create more useful

attributes besides the ones recorded as part of the raw pro-

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. X, NO. X, JANUARY XXXX 2

duction data. The results show that the discovered decision

rules can accurately replicate the dispatching list obtained by

specific rules. Ingimundardottir and Runarsson [12] proposed

a supervised learning approach which tries to discover new

dispatching rules using the characteristics of optimal solutions.

The learned linear priority dispatching rules showed better

results than simple rules.

With its ability to evolve sophisticated rules and flexible

representations, GP is a very promising method for auto-

matically generating dispatching rules for the JSP. Moreover,

if properly implemented, GP can evolve effective reusable

rules to solve the JSP. This feature makes GP more attrac-

tive than other evolutionary computation and meta-heuristic

methods where only a disposable solution is obtained for each

problem instance. One of the key factors that can enhance

the performance of dispatching rules is the incorporation of

machines and shop status into the rules in order to make

more informative sequencing decisions. Miyashita [8] pro-

posed three models to evolve dispatching rules with GP and

showed that the two models which evolved different dedicated

dispatching rules for different machines in the shop are better

than the model which only employed a common dispatching

rule for all machines. One of the drawbacks with this method

is that evolving different dedicated dispatching rules would

significantly increase the computational time of the proposed

GP system and can also lead to overfitting problems [8].

Another disadvantage is that the representation in these models

required the specific knowledge of the environment which

can be changed in real situations. For that reason, it is very

difficult to create more generalised and effective rules to deal

with such a complicated problem as JSP. Jakobovic and Budin

[6] proposed a more dynamic method to incorporate machine

attributes into the evolved dispatching rules. Their proposed

GP-3 system evolved three components including two dis-

patching rules and a (discrimination) function to determine

which dispatching rule the considered machine should employ

based on the attributes of that machine. The results showed

that GP-3 was better than the GP method that only evolved

dispatching rules. Unfortunately, no analysis or description of

the evolved dispatching rules were provided in the paper. It

should be noted that these existing studies emphasised not

only the importance of machine attributes in the evolved rules

but also the importance of how to embed these attributes into

the evolved dispatching rules. Although some GP systems for

evolving dispatching rules have been proposed, no detailed

comparison and analysis of those representations have been

done, which is an important issue in GP.

In this study, we use GP to evolve adaptive dispatching

rules (ADR) for the static JSP with makespan and total

weighted tardiness as objective functions. Basically, an ADR

is a combination of different dispatching rules and it is

“adaptive” because the master rule will choose a specific

dispatching rule to sequence jobs in the queue based on the

status of the machines at each decision making step. Three

representations of dispatching rules are proposed and tested

with the GP system. The objectives of this study are to: (1)

investigate the performance of the GP system with different

types of representations; (2) compare the performance of the

evolved rules with well known dispatching rules both on the

training set and test set; and (3) analyse the performance of the

proposed algorithm as well as the evolved rules and compare

evolved rules with improvement heuristics.

The remainder of this paper is organised as follows. In

the next section, the background of JSP and heuristic gen-

eration methods is given. Section III will provide a detailed

description of the proposed method. The experimental setting

is presented in Section IV and the results will be shown

in Section V. Some insights regarding the proposed method

and the evolved rules will be discussed further in Section

VI. Section VII offers some conclusions and future research

directions.

II. BACKGROUND

This section provides a brief review of JSP and hyper-

heuristic methods for heuristic generation which provides

essential background for later sections.

A. Job Shop Scheduling Problem (JSP)

This study concentrates on minimisation of the makespan

and total weighted tardiness, known as Jm||Cmax and

Jm||
∑

wjTj in the JSP literature. In this case, the shop

includes a set of M machines and N jobs that need to

be scheduled. Each job j has its own pre-determined route

through a sequence of machines to follow and its own pro-

cessing time at each machine it visits. In this paper, jobs are

only allowed to visit a machine at most once; and therefore no

recirculation can occur. Some basic definitions and notations

are presented below that will be used in the rest of this paper.

Parameters:

• Oj = {oj,1, . . . , oj,l, . . . , oj,Nj
}: the set of all operations

of job j where oj,l, is the lth operation of job j and Nj

is the number of operations of job j.

• wj : the weight given to job j in the weighted tardiness

objective function.

• dj : the due date assigned to job j.

• p(σ): the processing time of operation σ.

• m(σ): the machine that processes operation σ.

• next(σ): the next operation of the job that contains σ or

null if σ is the last operation of that job (if σ = oj,l then

next(σ) = oj,l+1).

Variables:

• Rk: the ready time of machine k, which is the time that

the machine becomes idle; in this study, all machines are

idle at the beginning.

• r(σ): the ready time of operation σ, which is the release

time of job j (the time that job j is allowed to start,

considered to be zero in all instances in the experiments)

for the first operation or the completion time of its

preceeding operation for other operations.

• Cj : the completion time of job j. Makespan Cmax =
max(C1, . . . , CN).

• Tj : the tardiness of job j and Tj = max(Cj − dj , 0).
The total weighted tardiness is

∑
wjTj .

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. X, NO. X, JANUARY XXXX 3

1: Ω← {o1,1, o2,1, . . . , oN ,1}
2: repeat

3: let t(Ω) = minσ∈Ω{max{r(σ), Rm(σ)}+ p(σ)}
4: let σ∗ be the operation that minimum is achieved,

m∗ = m(σ∗), and Ω∗ = {σ ∈ Ω|m(σ) = m∗}
5: let S(m∗) = max{minσ∈Ω∗{r(σ)}, Rm∗}
6: let Ω′ = {σ ∈ Ω∗|r(σ) ≤ S(m∗)+α(t(Ω)−S(m∗))}
7: apply dispatching rule ∆ on Ω′ to find the next

operation σ′ to be scheduled on m∗

8: remove σ′ from Ω′ and include next(σ) into Ω if

next(σ) ̸= null
9: until all operations have been scheduled

Fig. 1. Generic procedure to construct a schedule for JSP.

1) Active schedules and non-delay schedules: In JSP, a

schedule is called active if it cannot be altered to make some

operations complete earlier without delaying the completion

time of other operations. Active schedules were first proposed

by Giffler and Thompson [13] in their seminal work and it

has been proven that an optimal solution of JSP must be

an active schedule. Schedules are called non-delay schedules

where no machine is allowed to be idle when there are jobs

in the queue. A non-delay schedule is more restricted than

an active schedule and the set of non-delay solutions may

not include the optimal solution. Non-delay schedules are

often applied in experiments using simulation since a machine

will immediately process all jobs in its queue in the order

determined by a specific sequencing rule.

Figure 1 shows a generic procedure to construct an active

schedule, a non-delay schedule or a hybrid of both active

and non-delay schedules. In this procedure, Ω contains all

the operations that are ready to be scheduled. The procedure

will first determine the next operation that would complete

first if scheduled and the corresponding machine m∗ (ties are

broken arbitrarily). The non-delay factor α ∈ [0, 1] controls

the look ahead ability of the algorithm and decides which jobs

should be considered by the dispatching rule ∆. If α = 0, the

procedure can only construct non-delay schedules and only

operations that have already joined the queue are considered

for scheduling. On the other hand, if α = 1, the procedure will

consider all the potential jobs that are ready to join the queue

of machine m∗ before the earliest completion time of m∗. In

general, α determines the interval of time that a machine is

allowed to wait even when there are operations in the queue.

As a result, there are fewer operations to be considered in each

step of the algorithm when α is small.

2) Job shop scheduling techniques: Over the last few

decades, a large number of techniques have been applied to

JSP, ranging from simple heuristics to artificial intelligence

and mathematical techniques [14]. Because of the complexity

of JSP, finding optimal solutions can be very time-consuming

particularly for large and complex shops. The research on

meta-heuristics approaches for scheduling has been very active

in the last two decades, mostly with makespan as the objective

function, i.e., Jm||Cmax. Local search based approaches such

as large step optimisation [15], tabu search [16], and guided

local search [17] have shown very promising results in solving

the static JSP. The focus of these approaches is on the devel-

opment of efficient neighbourhood structures and diversifying

strategies to escape from local optima. Since neighbourhood

structures play an important role in these approaches, the

neighbourhood structures and their related operators have to

be redesigned in order to incorporate real world constraints;

even then it is still questionable whether they produce superior

results.

A more general alternative for solving JSP is the use of

evolutionary computation methods. Genetic Algorithm (GA)

is one of the most popular approaches in this line of research

(refer to [18] for a review of GA approaches for JSP). Besides

Jm||Cmax, research on other objective functions have also

been considered in the literature, especially due date related

objectives due to the need to improve the delivery perfor-

mance in modern manufacturing systems. For Jm||
∑

wjTj ,

several methods have been proposed in the literature and

shown promising results. For example, Kreipl [19] proposed

an efficient large step random walk (LSRW) method, which

is still one of the best local search methods to deal with

Jm||
∑

wjTj . Zhou et al. [20] introduced a general framework

using a genetic algorithm and heuristic rules to solve a similar

problem and showed that it is better than the pure genetic

algorithm. Even though the proposed hybrid GA provides

solutions that are inferior to those obtained by LSRW [19], it

is still very promising since it is capable of solving a variety

of scheduling problems without major redesign.

Although there have been many breakthroughs in the de-

velopments of exact and approximate approaches for JSP,

these approaches are mainly focused on static problems and

simplified job shop environments. General approaches like

GA can be extended to solve problems with realistic con-

straints, but the major drawback is its weak computational

efficiency. Moreover, as pointed out in McKay et al. [21],

the conventional operational research and artificial intelligence

approaches are often not applicable to the dynamic charac-

teristics of the actual situation because these approaches are

fundamentally based on static assumptions. For that reason,

simple dispatching rules have been used consistently in prac-

tice because of their ability to cope with the dynamics of

shop changes [22]. There have been a large number of rules

proposed in the literature and they can be classified into three

categories [14]: (1) simple priority rules, which are mainly

based on the information related to the jobs; (2) combinations

of rules that are implemented depending on the situation that

exists on the shop floor; and (3) weighted priority indices

which employ more than one piece of information about

each job to determine the schedule. Composite dispatching

rules (CDR) [2], [3] can also be considered as a version of

rules based on weighted priority indices, where scheduling

information can be combined in more sophisticated ways

instead of linear combinations.

B. Hyper-Heuristics for Heuristic Generation

Hyper-heuristics (HH) are a new search method and have

attracted a lot of attention from the research community. A

hyper-heuristic is an automated methodology for selecting

or generating heuristics to solve hard computational search

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. X, NO. X, JANUARY XXXX 4

problems [23]. Heuristic selection and heuristic generation are

currently the two main research methodologies in HH [24].

The focus of this paper is on hyper-heuristics for heuristic

generation. In order to generate a new heuristic, the HH

framework must be able to combine various small components

(normally common statistics or operators used in pre-existing

heuristics) and these heuristics are trained on a training set

and evolved to become more effective.

1) Genetic Programming based hyper-heuristics (GP-HH):

Recently, Genetic Programming (GP) has become popular

in the field of hyper-heuristics and it is known as genetic

programming based hyper-heuristics (GP-HH) [25]. Because

GP is able to represent and evolve complex programs or

rules, it naturally becomes an excellent candidate for heuris-

tic generation. Bolte and Thonemann [26] proposed a GP

system to evolve annealing schedule functions in simulated

annealing to solve the quadratic assignment problem (QAP).

The experimental results showed that the method with GP as

a meta-algorithm can find near optimal solutions for QAP.

Fukunaga [27] used GP to evolve variable selection heuris-

tics in each application of a local search algorithm for the

satisfiability (SAT) problem and showed competitive results

when compared with other heuristics. Bader-El-Den and Poli

[28] also employed GP to evolve disposable local search

heuristics to solve SAT for a specific set of instances and the

evolved heuristics show very competitive results as compared

to other well-known evolutionary or local search heuristics.

Burke et al. [29], [30] proposed a GP-HH framework to evolve

construction heuristics for online bin packing. The basic idea

of this GP system is to generate a priority function from static

and dynamic statistics of the problem to decide where the

considered pieces should be placed. The experimental results

showed that human designed heuristics can be obtained by GP.

A similar idea was also applied to evolve two dimensional

strip packing heuristics and showed very good results [31].

Keller and Poli [32], [33] proposed a grammar based linear

genetic programming method to solve the travelling salesman

problem. Several grammars are introduced, including ones

with a looping construct. Bader-El-Den et al. [34] introduced

a sophisticated grammar based GP for evolving timetabling

heuristics. The evolved heuristics were able to produce com-

petitive results when compared with some existing search

methods in the literature. Burke et al. [35] proposed a gram-

matical evolution method for automatic design of local search

heuristics for cutting and packing problems. The experimental

results showed the competitiveness of the evolved local search

heuristics.

2) GP-HH for scheduling problems: Dimopoulos and Za-

lzala [36] used GP to evolve reusable dispatching rules for the

one-machine scheduling problem with a standard function set

and a terminal set of scheduling statistics (processing time,

release time, due date, number of jobs, etc.). The evolved

dispatching rules were found to be better than traditional rules

and these rules can be reused for a range of unseen problem

instances. The best evolved rules were also examined and the

analysis showed that these rules are interpretable. Jakobovic et

al. [37] employed the same method for developing dispatching

rules for the parallel machine scheduling problem in both

static and dynamic environments. However, the evolved rules

obtained from these studies have not considered the effects of

different representations on the performance of the GP system

and the machine and system attributes were not included in the

evolved rules. Also, trying to learn new dispatching rules for

the single machine environment, Geiger et al. [38] presented a

learning system that combines GP with a simulation model of

an industrial facility. The proposed GP system is used to create

the priority rule for a single machine in static and dynamic en-

vironments. The terminal set of GP includes system attributes,

job attributes, and machine attributes, and the function set

consists of basic operators. The paper also proposed a method

to learn dispatching rules for multiple machine problems

in which GP will evolve multiple trees simultaneously with

modified crossover and mutation operators. Comparison with

the optimal rule in a simple two machine environment showed

that the evolved rules are quite competitive. However, the use

of an independent dispatching rule for each machine may

rapidly increase the complexity of the scheduling systems

and make it difficult to generate generalised rules for large

manufacturing systems. Geiger and Uzsoy [39] also applied

this system for learning dispatching rules for batch processor

scheduling, with very promising results. For a stochastic single

machine scheduling problem, Yin et al. [40] proposed a GP

system employing bi-tree structured representation scheme to

deal with machine breakdowns. The empirical results under

different stochastic environments showed that GP can evolve

high quality predictive scheduling heuristics.

Miyashita [8] developed an automatic method using GP to

design customised dispatching rules for a job shop environ-

ment and viewed JSP as a model of a multi-agent problem

where each agent represents a resource (machine or work

station). Three multi-agent models are proposed: (1) a homo-

geneous model where all resources share the same dispatching

rule, (2) a distinct agent model where each resource employs

its own evolved rule, and (3) a mixed agent model where two

rules can be selected to prioritise jobs depending on whether

the resource is a bottleneck or not. Although the multi-agent

models perform better, the use of these models depends on

the some prior-knowledge of the job shop environment, which

can be changed in dynamic situations. A similar system was

also proposed by Atlan et al. [41] but the focus of their paper

is on finding the solution for a particular problem instance.

Jakobovic and Budin [6] applied GP to evolve dispatching

rules for both single machine and job shop environments.

The results for the single machine environment are shown to

be better than existing rules. For the job shop environment,

a meta-algorithm is defined to show how the evolved rules

are used to construct a schedule. This study also proposed

an interesting way to provide some adaptive behaviours for

the evolved rules. They proposed a GP-3 system that evolves

three components, a discriminant function and two dispatching

rules. The discriminant function aims at identifying whether

the considered machine to be scheduled is a bottleneck or not.

This function serves as the classifier in binary classification

problems. Based on the classification decision obtained from

the discriminant function, one of two dispatching rules will be

selected to sequence jobs in the queue of that machine. Even

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. X, NO. X, JANUARY XXXX 5

though the purpose of the discriminant function in this case is

to identify the bottleneck machine, there is no guarantee that

the classification can help indicate the bottleneck machine or

just some useful attributes of the shop or machines. The results

show that the GP-3 system performed better than traditional

GP with a single tree. Unfortunately, no demonstrations or

analyses of the evolved rules are given. Tay and Ho [5]

proposed a GP system to evolve dispatching rules for a

job shop environment. The proposed GP program can be

considered as a priority function which is used to calculate

the priority of operations in the queue of a machine. The

set of instances was randomly generated and it was shown

that the evolved dispatching rules can outperform other simple

dispatching rules. However, they did not consider the use of

machine attributes in the priority function. Hildebrandt et al.

[7] re-examined the GP system proposed in [5] in different

dynamic job shop scenarios and showed that rules evolved by

Tay and Ho [5] are only slightly better than the earliest release

date (ERD) rule and quite far away from the performance of

the SPT rule. They explained that the poor performance of

these rules is caused by the use of the linear combination of

different objectives and the fact that the randomly generated

instances cannot effectively represent the situations that hap-

pened in a long term simulation. For that reason, Hildebrandt

et al. [7] evolved dispatching rules by training them on four

simulation scenarios (10 machines with two utilisation levels

and two job types) and only aimed at minimising the mean

flow time. Some aspects of the simulation models were also

discussed in their study. The experimental results indicated that

the evolved rules were quite complicated but effective when

compared to other existing rules. Moreover, these evolved

rules are also robust when tested with another environment

(50 machines and different processing time distributions).

Pickardt et al. [42] applied this system to evolve dispatching

rules for semiconductor manufacturing to minimize weighted

tardiness. Vazquez-Rodriguez and Ochoa [43] proposed a GP

system to learn variants of the Nawaz, En-score and Ham

(NEH) procedure for flow shop scheduling. The results showed

that the evolved heuristics can outperform the original and

stochastic variants of NEH.

Other methods have also been proposed for generating new

dispatching rules. Li and Olafsson [11] applied data mining

techniques on production data to generate dispatching rules.

For further improvement, the authors used data engineering to

create more useful attributes besides ones recorded as part of

the raw production data. The results show that the decision

rules discovered can accurately replicate the dispatching list

obtained by specific rules. However, since the rules are learned

from the historical records of the production system, it is

difficult to generate new dispatching rules and the performance

of the evolved rules may only be as good as the actual rules.

Most recently, Ingimundardottir and Runarsson [12] proposed

a supervised learning approach which tries to discover new

dispatching rules using the characteristics of optimal solutions.

The learned linear priority dispatching rules showed better

results than simple rules. One of the drawbacks is that the

proposed supervised learning approach tries to learn from the

optimal solutions which are not available in many cases.

Dispatching rules have been a very practical tool for

scheduling in real world situations. However, manual design of

new dispatching rules is still a very time consuming process.

Several machine learning methods have been proposed to ease

this task. GP is one of the more popular methods because

of its flexibility which helps it easily cope with different

problem environments. Since the design process is automated

by GP, not only priority functions but also complicated issues

such as incorporating machine and system attributes can be

considered in order to improve the effectiveness of evolved

rules. However, the existing GP systems mainly focus only

on evolving priority functions. Also, bottleneck was the only

system attribute used in the previous studies [6], [8]. In this

study, we propose two new representations for GP which

evolve rules with the ability to incorporate different machine

and system attributes to make better sequencing decisions. A

comparison between the proposed rules and the arithmetic

representation used in previous studies is also presented.

This study also examines other important issues, such as the

influence of fitness functions and analysis of evolved rules,

to gain more understanding of how GP can evolve effective

dispatching rules.

III. METHODOLOGY

This section discusses a new GP system that is able to

learn new dispatching rules which can adaptively sequence

operations in the queue based on the status of the shop and the

machines to be scheduled. In this section, the representations

of a dispatching rule are presented first, followed by the

fitness function used to measure the performance of an evolved

dispatching rule.

A. Representations

Three representations of dispatching rules are considered

in this study. The first representation (R1) provides a way to

incorporate machine attributes into the GP program along with

simple dispatching rules and the hybrid scheduling strategy

(between non-delay and active scheduling). The second repre-

sentation (R2) is the traditional arithmetic representation like

that employed in [5]; the purpose of this representation is to

generate composite dispatching rules. The last representation

(R3) is a combination of R1 and R2, in which different

composite dispatching rules exist and are logically applied to

JSP based on the machine and system attributes.

1) Decision-tree like representation (R1): The key idea of

this representation is to provide the adaptive dispatching rules

the ability to apply different simple dispatching rules based on

machine attributes. In this case, the adaptive dispatching rules

are represented in a decision-tree form. To make the rules more

readable and explainable, the proposed grammar in Figure 2

is used when building the GP programs and performing the

genetic operators (e.g. dispatching nodes must contain two

arguments, which are a value of the non-delay factor and

a single dispatching rule). Two example rules based on this

grammar are shown in Figure 3. In Figure 3(a), the rule is

similar to that of SPT which is applied with the non-delay

factor α = 0.084. The rule in Figure 3(b) is a bit more

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. X, NO. X, JANUARY XXXX 6

Start ::= <action>

<action> ::= <if> | <dispatch>

<if> ::= if <attributetype> <op> <threshold>

then <action> else <action>

<op> ::= ≤ | >

<attributetype> ::= WR | MP | DJ | CMI | CWR | BWR

<threshold> ::= 10%|20%|30%|40%|50%|60%|70%|80%|90%|100%

<dispatch> ::= assign <nondelayfactor> assign <rule>

<nondelayfactor> ::= uniform[0,1]

<rule> ::= FIFO | SPT | LPT | LSO | LRM | MWKR | SWKR |

MOPR | EDD | MS | WSPT

Fig. 2. Grammar for the proposed GP system with R1.

sophisticated. The rule firstly checks the workload ratio WR
(the ratio of the total processing times of jobs in the queue to

the total processing times of all jobs that have to be processed

at the machine) of the considered machine m∗; if the workload

ratio is less than or equal to 20%, dispatching rule SPT is

applied with α = 0.221; otherwise, dispatching rule FIFO is

applied with α = 0.078. This ADR can be considered as a

variant of FIFO/SPT, in which the workload of the machine

is used as the switch instead of the waiting times of jobs in

the queue. Different from other applications [44], [45] where

a single non-delay factor is evolved, the proposed GP system

using this representation allows different values of non-delay

factors to be employed based on the status of the shop.

0.084

Dispatch

SPT

(a) SPT with α =
0.084

0.221

Dispatch

SPT 0.078

Dispatch

FIFO

≤

20

I

WR

(b) If (WR ≤ 20%) then use SPT with α = 0.221
else use FIFO with α = 0.078

Fig. 3. Example program trees based on representation R1.

In this study, we will consider six attributes which indicate

the status of machines in the shop. Let Λ be the set of

operations that are planned to visit the considered machine

m∗, and K and I are the sets of all operations that have and

have not yet been processed by m∗, respectively (Λ = K∪I).

In the shop, we call a machine critical if it has the greatest

total remaining processing time
∑

σ∈I p(σ) and a machine is

called bottleneck if it has the largest workload
∑

σ∈Ω′ p(σ)
in Ω′. The following definitions of the machine and system

attributes are used in this study:

• Workload ratio, WR =
∑

σ∈Ω′ p(σ)∑
σ∈I p(σ) : indicates the work-

load in Ω′ compared to the total remaining workload that

m∗ has to process (including the operations in the queue

and operations that have not yet visited m∗).

• Machine progress, MP =
∑

σ∈K p(σ)
∑

σ∈Λ
p(σ) : indicates the

progress of m∗, calculated as the ratio of the total pro-

cessing time that m∗ has processed to the total processing

time of all operations in Ω′ that have to visit m∗.

• Deviation of jobs, DJ =
minσ∈Ω′{p(σ)}
maxσ∈Ω′{p(σ)}

: is a simple ratio

of minimum processing time to the maximum processing

time of operations in Ω′.

• Critical machine idleness, CMI: is the workload ratio

WR of the critical machine.

• Critical workload ratio, CWR =
∑

σ∈Ωc p(σ)
∑

σ∈Ω′ p(σ
: is the ratio

of the workload of operations in Ωc to the workload in Ω′

where Ωc ⊂ Ω′ is the set of operations belonging to the

jobs that have operations that still need to be processed

at the critical machine after being processed at m∗.

• Bottleneck workload ratio, BWR =
∑

σ∈Ωb p(σ)
∑

σ∈Ω′ p(σ)
: is the

ratio of the workload of operations in Ωb to the workload

in Ω′ where Ωb ⊂ Ω′ is the set of operations belonging

to the jobs that have operations that still need to be

processed at the bottleneck machine after being processed

at m∗.

While the first three attributes provide the local status at

m∗, the last three attributes indicate the status of the shop with

a special focus on the critical and bottleneck machines. The

machine and system attributes here appear in the scheduling

literature in different forms. The key difference between our

attributes and the attributes used in other studies is that our at-

tributes have been scaled from 0 to 1. The scaled (normalized)

attribute values aim to enhance the generality of the evolved

rules and also make the evolved rules easier to understand.

Jakobovic and Budin [6] employed attributes similar to ours

without normalization (e.g. remaining work at the machine

is similar to workload ratio in our study). The definition of

attributes for bottleneck and critical machines are adapted

from the bottleneck concept [46] for static problems and these

attributes are used to adjust the rules to react appropriately to

the changes of the shop.

For representation R1, eleven simple dispatching rules are

considered as the candidate rules in the ADR. The aim of these

rules is to determine which operation σ in Ω′ will be processed

next. Let n(σ) be the job which operation σ belongs to, j =
n(σ) and oj,h = σ. The following are brief descriptions of the

candidate dispatching rules. Detailed discussion of these rules

can be found in [1] and [47].

• FIFO: operations are sequenced first-in-first-out.

• SPT: select the operation with the shortest processing

time p(σ).
• LPT: select the operation with the longest processing time

p(σ).
• LSO: select the operation belonging to the job that has

the longest subsequent operation p(next(σ))
• LRM: select the operation belonging to the job that has

the longest remaining processing time (excluding the

operation under consideration)
∑Nj

l=h+1 p(oj,l).
• MWKR: select the operation belonging to the job that has

the most work remaining
∑Nj

l=h p(oj,l).
• SWKR: select the operation belonging to the job that has

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. X, NO. X, JANUARY XXXX 7

the smallest work remaining
∑Nj

l=h p(oj,l).
• MOPR: select the operation belonging to the job that has

the largest number of operations remaining Nj − h+ 1.

• EDD: select the operation belonging to the job that has

the earliest due date dj .

• MS: select the operation belonging to the job that has

the minimum slack MSj = dj −
∑Nj

l=h p(oj,l)− t. Value

t = Rm∗ is the time at which the sequencing decision

needs to be made.

• WSPT: select the operation that has the maximum

weighted shortest processing time wj/p(σ).

The non-delay factor is treated as Ephemeral Random

Constants (ERC) [48]. The values of the non-delay factor will

initially be a random number from 0 to 1. Meanwhile, attribute

type, attribute threshold and dispatching rule terminals are

randomly chosen from their candidate values as described in

the previous section with equal probabilities.

2) Arithmetic representation (R2): For this representation,

the focus is to formulate composite dispatching rules that

include different pieces of information from jobs and ma-

chines. Basically, the GP programs are priority functions that

can be used to calculate the priorities for operations in Ω′

and the operation with the highest priority will be scheduled

to be processed next on the machine m∗. Different from

R1 rules that become more effective by logical choices of

single dispatching rules, R2 rules create their sophisticated

behaviour by arithmetically combining various terms into the

priority functions. The advantage of this representation is that

more information can be directly considered to determine the

priorities of operations when sequencing decisions need to be

made.

TABLE I
TERMINAL SET FOR R2 (j = n(σ) AND oj,h = σ)

Notation Description Value

RJ operation ready time r(σ)
RO number of remaining operations of job j Nj − h+ 1

RT work remaining of job j
∑Nj

l=h
p(oj,l)

PR operation processing time p(σ)
W weight wj

DD due date dj
RM machine ready time Rm∗

constant Uniform[0,1]

In our GP system, the four basic arithmetic operators

(+,−, ∗, protected division %) are used in the function set.

Since we evolve a function to prioritise operations, it seems

useful to include a single-argument function (−1∗) in the

function set to provide a more convenient way to create

priority functions. The terminal set contains popular terms

that are used in developing existing dispatching rules. The

descriptions of the terminals used for calculating the priority

of operation σ are shown in Table I. Figure 4 shows two simple

examples when WSPT and MS are represented by R2 rules.

The non-delay scheduling strategy will be used along with

this representation like common applications of composite

dispatching rules.

W PR

(a) W%PR

+

RT RM

-

DD

(b) (RT +RM)−
DD

Fig. 4. Example program trees based on representation R2.

3) Mixed representation (R3): This representation tries to

combine the advantages of R1 and R2 to create sophisticated

adaptive dispatching rules. Within R3, the incorporation of

both system/machine status and composite dispatching rules

are considered. The representation R3 inherits the grammar

in R1 and the composite dispatching rules will be used to

calculate the priorities of operations for sequencing decisions

besides the use of simple dispatching rules. An example of an

R3 rule is shown in Figure 5.

0.015

Dispatch

WSPT 0.241

Dispatch≤

50

I

-

RT PR

WR

Fig. 5. An example program tree based on representation R3.

B. Fitness Evaluation

The focus of this study is to learn effective rules for JSP

to minimise the makespan or total weighted tardiness. In

order to estimate the effectiveness of an evolved dispatching

rule, it will be applied within the construction procedure in

Figure 1 to solve a set of instances in the training set and

the resulting objective values from all instances are recorded.

Since the objective values obtained by a dispatching rule ∆
for each instance are very different, we will measure the

quality of an obtained schedule by the relative deviation of

its objective value from its corresponding reference objective

value as shown in equation (1).

dev(∆, In) =
Obj(∆, In)−Ref(In)

Ref(In)
(1)

In this equation, Obj(∆, In) is the objective value obtained

when applying rule ∆ to instance In, and Ref(In) is the

reference objective value for instance In. The fitness of rule

∆ on the training set is calculated by equation (2). The fitness

function devaverage(∆) will measure the average performance

of ∆ across T instances in the data set.

devaverage(∆) =

∑
In∈{I1,...,IT } dev(∆, In)

T
(2)

The objective of the GP system is to minimise this fitness

function. In the case of Jm||Cmax, the reference objective

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. X, NO. X, JANUARY XXXX 8

value is the lower bound obtained by other approaches (refer

to [49] for a list of lower bound values obtained for popular

benchmark instances). Since lower bounds are used in this

case, the fitness values for the GP programs are always non-

negative. If the fitness value is close to zero, it indicates

that the evolved rules can provide near optimal solutions. For

Jm||
∑

wjTj , because the lower bound values are not avail-

able for all instances, we will use objective values obtained

by EDD using non-delay scheduling as the reference objective

values for all instances in the data set since it is a widely used

dispatching rule for due date related problems. Because EDD

is just a simple rule, it can be dominated by more sophisticated

rules. For that reason, the fitness value of the GP programs for

Jm||
∑

wjTj can be negative, which means that the evolved

rules perform better than EDD with a given fitness function.

C. Proposed GP algorithm

Figure 6 shows the GP algorithm used in this study to

evolve dispatching rules for JSP. The GP system first sets up

the training set D and randomly initialises the population.

At a generation, each dispatching rule (or individual) ∆i

will be applied to solve all instances in the training set D
to find the relative deviation dev(∆i, In) for each instance.

Then, the fitness value of each rule is calculated by using

devaverage(∆i). If the evaluated rule is better (has smaller

fitness value) than the best rule ∆∗, it will be assigned to

the best rule ∆∗ and the best fitness value fitness(∆∗)
is also updated. After all individuals in the population are

evaluated, the GP system will apply genetic operators such as

reproduction (elitism), crossover and mutation to the programs

in the current population to generate new individuals for the

next generation. More details of the genetic operators used

in this study will be provided in the next section. When the

maximum number of generations is reached, the GP algorithm

will stop and return the best found rule ∆∗, which will be

applied to the test set to evaluate the performance of the GP

system.

IV. DESIGN OF EXPERIMENTS

This section discusses the configuration of the GP system

and the data sets used for training and testing.

A. Parameter setting

The GP system for learning ADRs is developed based on

the ECJ20 library [50] (a java-based evolutionary computation

research system). The parameter settings of the GP system

used in the rest of this paper are shown in Table II. The

population size of 1024 is used to ensure that there is enough

diversity in the population. The initial GP population is created

using the ramped-half-and-half method [48]. Since the rules

are created based on the grammar in Figure 2, we use strongly

typed GP to ensure that the GP nodes will provide proper

return types as determined by the grammar. In this case, the

crossover and mutation operators of GP are only allowed if

they do not violate the grammar. For crossover, the GP system

uses the subtree crossover [48], which creates new individuals

for the next generation by randomly recombining subtrees

Inputs: training instances D ← {I1, I2, . . . , IT }
Output: the best evolved rule ∆∗

1: randomly initialise the population P ← {∆1, . . . ,∆S}
2: set ∆∗ ← null and fitness(∆∗) = +∞
3: generation← 0
4: while generation ≤ maxGeneration do

5: for all ∆i ∈ P do

6: for all In ∈ D do

7: dev(∆i, In)← solve In with ∆i

8: end for

9: evaluate fitness(∆i)← devaverage(∆i)
10: if fitness(∆i) < fitness(∆∗) then

11: ∆∗ ← ∆i

12: fitness(∆∗)← fitness(∆i)
13: end if

14: end for

15: P ← apply reproduction, crossover, mutation to P
16: generation← generation+ 1
17: end while

18: return ∆∗

Fig. 6. GP algorithm to evolve dispatching rules for JSP.

TABLE II
PARAMETERS OF THE PROPOSED GP SYSTEM

Population Size 1024
Crossover rate 95%,90%,85%
Mutation rate 0%,5%,10%
Reproduction rate 5%
Generations 50
Max-depth 6

Function set (R1) If, Dispatch, ≤,>
Terminal set (R1) attribute type, attribute threshold, non-delay

factor, dispatching rule

Function set (R2) +,−, ∗,%, (−1∗)
Terminal set (R2) as shown in Table I

Function set (R3) Function set (R1) and Function set (R2)

Terminal set (R3) Terminal set (R1) and Terminal set (R2)

Fitness devaverage(∆)

from two selected parents. Meanwhile, mutation is performed

by subtree mutation [48], which randomly selects a node of a

chosen individual and replaces the subtree rooted by that node

by a newly randomly-generated subtree. The combinations of

three levels of crossover rates and mutation rates will be tested

in our experiments to examine the influence of these genetic

operators on the performance of GP. When generating random

initial programs or applying crossover/mutation, the maximum

depth of six is used to restrict the program from becoming too

large. Greater maximum depths can also be used here to extend

the search space of GP; however, we choose this maximum

depth to reduce the computational times of the GP system and

make the evolved rules easier to analyse. Tournament selection

with the tournament size of seven is used to select individuals

for genetic operations.

B. Data sets

There are many data sets in the JSP literature which are

generated by different scheduling researchers [51], [52], [53],

[54] to measure the performance of different heuristic and

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. X, NO. X, JANUARY XXXX 9

TABLE III
JSP DATA SETS

Data set Notation # of instances Problem size (N ×M) Reference

LA la01-la40 40 from 10× 5 to 15× 15 Lawrence [51]
ORB orb01-orb10 10 10× 10 Applegate and Cook [52]
TA ta01-ta80 80 from 15× 15 to 100× 20 Taillard [53]

DMU dmu01-dmu80 80 from 20× 15 to 50× 20 Demirkol et al. [54]

optimisation methods. The instances in these data sets are still

very useful because they include a wide range of instances

with different levels of difficulty. Moreover, lower bounds for

these instances are available and can be used to calculate the

fitness of the evolved dispatching rules as described in Section

III-B. Descriptions of the data sets used for the experiments

are shown in Table III. In this study, we combine these data

sets and distribute them into the training set and test set used

by the proposed GP system. The training set and test set are

created to include halves of the instances of each individual

data set in Table III. In particular, the training set will contain

{la01, la03, . . . , la39}, {orb01, . . . , orb09},{ ta01, . . . , ta79},
{dmu01, . . . , dmu79}. The other (even index) instances will

be included in the test set. This allows a fair distribution of

problems with different instance sizes into both training set

and test set. There are 105 instances in each of the training

set and test set. For the case of Jm||
∑

wjTj , the due dates

for jobs in each instance will be generated (following Baker

[55]) by a due date assignment rule:

dj = rj + h×

Nj∑

l=1

p(oj,l) (3)

The parameter h is used to indicate the tightness of due dates.

We choose h = 1.3 for all instances in the training set and test

set because it is the common value used in previous research

[19], [20]. For the weights of jobs, we employ the 4 : 2 : 1 rule

which has been used in [19] and [20]. This rule is inspired

by Pinedo and Singer [56] when their research showed that

20% of the customers are very important, 60% are of average

importance and the remaining 20% are of less importance. For

that reason, in Jm||
∑

wjTj , the weights of 4 are assigned to

the first 20% of jobs, the next 60% are assigned a weight of

2 and the last 20% of jobs are assigned a weight of 1.

V. RESULTS

The proposed GP systems with different settings are now

applied to evolve new dispatching rules. This section shows the

results obtained from the GP system with three representations,

three levels of crossover/mutation rates, and two objective

values of JSP. In total, we need 3× 3× 2 = 18 experiments.

For each experiment, 30 independent runs are performed with

different random seeds. Table IV and Table VI show the means

and standard deviations of fitness values (of the best evolved

rules from each run) obtained from all experiments on the

training set and test set. The triple ⟨c,m, r⟩ indicates the

GP parameters used in a specific experiment. For example,

⟨85, 10, 5⟩ represents the experiment where the crossover rate

is 85%, the mutation rate is 10% and the reproduction rate

is 5%. All statistical tests discussed in this section are the

standard z-tests and they are considered significant if the

obtained p-value is less than 0.05 1.

A. Makespan

As shown in Table IV, the evolved rules based on R1

show a performance close to those obtained by R2 and

R3 on the training set. It is also noted that the R1 rules

evolved with higher mutation rates are significantly better than

those evolved without lower mutation (all p-values < 0.0174)

on the training set. Since R1 rules contain many possible

terminals higher mutation rates seem quite useful to improve

the performance of the GP system with the R1 representation.

However, the performance of R1 rules are quite poor on the

test set. This indicates the overfitting issue of R1 rules when

learning with the training set. The reason for this problem

comes from the fact that the candidate rules used in R1 are

too simple, and therefore the rules have to depend strongly on

the machine and system status to provide better sequencing

decisions on the training instances. However, the overuse of

the machine and system attributes make R1 rules less effective

when dealing with unseen instances in the test set.

Evolved R2 rules show a more consistent performance on

both the training set and test set. Different from R1, the

statistical tests indicate that the choice of GP parameters does

not have significant influence (all p-values > 0.1434) when

R2 is used as the representation of the dispatching rule. These

results indicate that mutation is not really useful in this case

and the crossover operator is sufficient for the GP system to

evolve good individuals. Since R2 provides only one way to

sequence operations, the effectiveness is obtained by good

combinations of different terms. Hence, they are also less

affected when working with unseen instances like R1 rules.

Taking the advantages of R1 and R2, the evolved R3 rules

show very promising performance. Different from R1, the

incorporation of the machine and system attributes into the

R3 rules are supported by better composite dispatching rules,

and therefore they do not need to depend heavily on the use of

machine and system attributes to be effective. The performance

on the test set shows that the evolved R3 rules also have good

generalisation qualities like that of the R2 rules. Mutation does

not affect the GP system with R3 as strongly as the GP system

with R1. The significant difference is only observed between

the experiment with no mutation and the experiment with the

mutation rate of 10% (p-value < 0.0031). Although there is no

obvious difference in the performance of evolved rules from

different configurations on the training set, R2 rules and R3

rules (evolved with non-zero mutation rate) are significantly

1Wilcoxon tests are also performed and the results from these tests are
consistent with those obtained z-tests.

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. X, NO. X, JANUARY XXXX 10

TABLE IV
PERFORMANCE OF EVOLVED RULES FOR Jm||Cmax ON TRAINING SET AND TEST SET WITH DIFFERENT SETTINGS

(mean± standard deviation)

Setting
R1 R2 R3

Training Testing Training Testing Training Testing

devaverage(∆)
⟨95, 0, 5⟩ 0.188± 0.008 0.197± 0.007 0.181± 0.003 0.187± 0.004 0.183± 0.005 0.186± 0.005
⟨90, 5, 5⟩ 0.181± 0.003 0.192± 0.005 0.181± 0.003 0.188± 0.005 0.181± 0.005 0.184± 0.006
⟨85, 10, 5⟩ 0.180± 0.003 0.191± 0.006 0.180± 0.003 0.188± 0.004 0.179± 0.005 0.184± 0.004

TABLE V
RELATIVE DEVIATIONS OBTAINED BY EVOLVED RULES AND OTHER RULES FOR Jm||Cmax

Rules
Training Set Test Set

Min Mean Max Min Mean Max

FIFO
Active 0.012 0.325 0.691 0.000 0.325 0.654

Non-Delay 0.012 0.325 0.691 0.000 0.325 0.654

SPT
Active 0.322 0.694 1.252 0.316 0.711 1.091

Non-Delay 0.029 0.292 0.576 0.092 0.312 0.664

LRM
Active 0.020 0.321 0.745 0.000 0.319 0.723

Non-Delay 0.000 0.224 0.556 0.000 0.225 0.529

MWKR
Active 0.047 0.323 0.736 0.000 0.328 0.713

Non-Delay 0.000 0.253 0.590 0.000 0.254 0.584

Evolved

∆c1
R1

0.000 0.173 0.448 0.000 0.192 0.525
∆c2

R1
0.000 0.174 0.428 0.000 0.183 0.479

∆c1
R2

0.000 0.174 0.479 0.000 0.190 0.442
∆c2

R2
0.000 0.175 0.457 0.000 0.191 0.446

∆c1
R3

0.000 0.171 0.490 0.000 0.185 0.572
∆c2

R3
0.000 0.172 0.447 0.000 0.177 0.428

better than R1 rules on the test set (all p-values < 0.0361
over (3 + 2)× 3 = 15 statistical tests). Also, the evolved R3

rules from the GP system with non-zero mutation rates are

significantly better than R1 and R2 rules on the test set (all

p-values < 0.014 over 2× (3 + 3) = 12 statistical tests).

Table V shows the performance of the evolved rules with

four selected existing dispatching rules for Jm||Cmax. The

values in this table are the statistics of relative deviations using

equations (1) obtained when applying the evolved rules to the

instances in the training set and test set. The values of Mean
can be calculated by using equation (2) to measure the average

while Min and Max values show the best-case and worst-case

performance of a dispatching rule on a given set of instances.

From each representation, two evolved rules that show the

best fitness in the training stage are used here for comparison.

Rule ∆yv
Rx

is the vth best rule that was evolved by using the

representation Rx to minimise objective function y for the

JSP. For example, ∆c2
R2

is the second best rule evolved with

the representation R2 and Cmax as the objective function (t
will be used to indicate the total weighted tardiness).

Each simple dispatching rule is used to generate both active

and non-delay schedules for all instances in the training set and

test set. The results show that LRM with non-delay scheduling

strategy is better than other simple rules. The performance of

the evolved rules are better than all of the simple dispatching

rules on the training set and test set. However, not all evolved

rules can produce consistent results when dealing with unseen

instances. Rules ∆c2
R1

and ∆c2
R3

are the rules that provide the

best performance on the test set even though they are not the

best rules on the training set. Generally, it seems quite difficult

to develop a rule that produces good average and worst-case

performance. One explanation is that the rules evolved with

devaverage(∆) focus on the overall performance, therefore

they may ignore some extreme cases. Evolved rule ∆c2
R3

is

one specific case when the best average performance and very

good worst-case performance is achieved.

B. Total weighted tardiness

In Table VI, the experiments with R3 as the representation

can produce rules with better fitness than experiments with

R1 or R2 as the representation. The statistical tests show that

evolved R3 rules from the GP system with non-zero mutation

rates are significantly better than other evolved R1 and R2

rules on both training set and test set (all p-values < 0.0009
over 2× (3+3)×2 = 24 statistical tests). These results again

confirm the effectiveness of the R3 representation. Also, the

R1 rules from the GP system with non-zero mutation rates

are significantly better than R2 rules in this case (all p-values

< 2×10−16 over 2×3×2 = 12 statistical tests). This suggests

that the machine attributes and scheduling strategies are quite

important when dealing with Jm||
∑

wjTj .

The comparison of the evolved rules and other dispatching

rules are shown in Table VII. It is easy to see that non due

date related rules such as FIFO and LRM have very poor

performance when dealing with Jm||
∑

wjTj even though

LRM achieves good performance on Jm||Cmax. MS and

WSPT show better performance than FIFO and LRM because

information about the due date and the weight of a job is

considered in these rules. While MS is still much worse than

EDD, WSPT shows good performance even though it still

cannot totally beat EDD. Sophisticated due-date related rules

W(CR+SPT), W(S/RPT+SPT), COVERT and ATC (see [47],

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. X, NO. X, JANUARY XXXX 11

TABLE VI
PERFORMANCE OF EVOLVED RULES FOR Jm||

∑
wjTj ON TRAINING SET AND TEST SET WITH DIFFERENT SETTINGS

(mean± standard deviation)

Setting
R1 R2 R3

Training Testing Training Testing Training Testing

devaverage(∆)
⟨95, 0, 5⟩ −0.227± 0.004 −0.221± 0.005 −0.216± 0.003 −0.203± 0.005 −0.240± 0.015 −0.233± 0.015
⟨90, 5, 5⟩ −0.235± 0.006 −0.223± 0.003 −0.216± 0.004 −0.205± 0.006 −0.245± 0.012 −0.233± 0.014
⟨85, 10, 5⟩ −0.237± 0.006 −0.222± 0.003 −0.216± 0.004 −0.204± 0.006 −0.247± 0.013 −0.235± 0.013

negative values mean the evolved rules are better than EDD

TABLE VII
RELATIVE DEVIATIONS OBTAINED BY EVOLVED RULES AND OTHER RULES FOR Jm||

∑
wjTj

Rules
Training Set Test Set

Min Mean Max Min Mean Max

FIFO
Active −0.318 0.455 1.600 −0.159 0.442 1.196

Non-Delay −0.318 0.455 1.600 −0.159 0.442 1.196

LRM
Active 0.193 0.832 2.129 −0.125 0.836 1.813

Non-Delay −0.189 0.507 1.571 −0.236 0.494 1.425

MS
Active 0.106 0.601 1.519 0.035 0.607 1.321

Non-Delay −0.040 0.387 1.205 −0.133 0.363 0.822

WSPT
Active −0.133 0.148 0.874 −0.154 0.160 0.946

Non-Delay −0.394 −0.169 0.168 −0.459 −0.161 0.253

W(CR+SPT)
Active −0.133 0.140 0.670 −0.234 0.147 0.858

Non-Delay −0.398 −0.173 0.177 −0.459 −0.165 0.435

W(S/RPT+SPT)
Active −0.110 0.149 0.867 −0.154 0.161 0.853

Non-Delay −0.394 −0.168 0.168 −0.459 −0.161 0.253

COVERT
Active −0.171 0.146 0.722 −0.235 0.147 0.853

Non-Delay −0.394 −0.173 0.177 −0.459 −0.160 0.253

ATC
Active −0.258 0.145 0.757 −0.260 0.140 0.795

Non-Delay −0.394 −0.168 0.168 −0.459 −0.163 0.253

Evolved

∆t1
R1

−0.586 −0.247 0.020 −0.560 −0.220 0.150
∆t2

R1
−0.531 −0.244 0.003 −0.507 −0.224 0.018

∆t1
R2

−0.467 −0.223 −0.003 −0.517 −0.199 0.326
∆t2

R2
−0.529 −0.223 0.151 −0.523 −0.206 0.116

∆t1
R3

−0.506 −0.265 −0.033 −0.616 −0.246 −0.002
∆t2

R3
−0.581 −0.265 −0.022 −0.555 −0.253 0.031

[57] for a detailed description of these rules) which have not

been included in the list of candidate dispatching rules are also

presented here. The expected waiting time in COVERT and

ATC is calculated based on the standard method [47] in which

the expected waiting time W = b × PR, where PR is the

operation processing time. For each method, two parameters

needed to be specified which are k (look-ahead parameter)

and b. 25 combinations of b ∈ {0.5, 1.0, 1.5, 2.0, 2.5} and

k ∈ {1.5, 2.0, 2.5, 3.0, 3.5} are examined on the training set,

and the combination that gives the best average performance

is selected for comparison in the paper (k = 2.5, b = 2.5 for

COVERT and k = 1.5, b = 0.5 for ATC). The performance

of these rules are quite good since they are customised to deal

with weighted tardiness problems. However, in the worst case,

they still cannot provide better schedules than those obtained

by EDD.

The best two evolved rules obtained by the GP system

with different settings are now compared with these human-

made dispatching rules. On both the training set and the test

set, all evolved rules show better average performance than

the existing rules. Similar to what has already been stated

for Jm||Cmax, R1 and R3 rules here are also much better

than R2 rules. However, it is still not easy to find a rule

that totally dominates EDD. Among all the evolved rules,

the evolved R3 rules are the most promising ones. The best

two evolved R3 rules obtained very good average relative

deviations for both training set and test set compared to

those obtained by R1 and R2 rules. Rule ∆t1
R3

is also the

only evolved adaptive dispatching rule that totally dominates

EDD on all training and testing instances. Meanwhile, ∆t2
R3

produces a very good average performance, even better than

∆t1
R3

on the test set and it is just slightly worse than ∆t1
R3

in the worst case. The promising results of R3 rules again

confirm the need for integrating machine and system attributes

with sophisticated dispatching rules to produce generalised and

effective dispatching rules.

VI. ANALYSIS AND DISCUSSION

The previous section shows the results obtained by the

proposed GP system and it is noted that the evolved rules

can effectively provide good results for Jm||Cmax and

Jm||
∑

wjTj . In this section, we will further investigate the

evolved rules to figure out how they can produce good perfor-

mance. An analysis on the components of the evolved rules

is given in order to gain more understanding of each factor

within the proposed representations that may influence the

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. X, NO. X, JANUARY XXXX 12

ability of the GP system to generate better rules. A comparison

between the evolved rules and some meta-heuristic approaches

is then provided. Finally, the dispatching rules evolved by the

proposed GP system are tested under a simulated dynamic JSP

environment.

A. Insights from the evolved rules

In the previous experiment, there are 540 rules evolved with

different GP parameters and representations for Jm||Cmax

and Jm||
∑

wjTj . The performance of the two best evolved

rules for each representation and each objective function of

JSP were shown in Table V and Table VII. As an example, we

pick one evolved rule from each representation among these

rules based on their overall performance on the training set

and test set for further analysis (other evolved rules have a

similar pattern).

1) Evolved rules for Jm||Cmax: Here, ∆c1
R1

, ∆c1
R2

and ∆c2
R3

are chosen for analysis. The detailed representations of these

rules are shown in Figure 7. For ∆c1
R1

, the first observation

is that even though the rule looks complicated, it is just a

combination of four simple dispatching rules (LRM, SPT,

LPT and WSPT) and three machine attributes (CMI, CWR,

DJ). Since WSPT is less relevant to Jm||Cmax and LPT is

not very effective in this case, they only appear once in the

entire adaptive dispatching rule. The root condition of ∆c1
R1

checks the critical machine idleness and it is noted that LRM

is the main dispatching rule when the idleness of the critical

machine is greater than 10%. When CMI is small, the rule

is more complicated and rules that favour small processing

time operations like SPT and WSPT occur more in this case.

This rule suggests that when the critical machine is idle, the

considered machine should focus on completing operations

with small processing times in order to feed more work to the

critical machine and keep it busy; otherwise LRM should be

used to prevent certain jobs from being completed so late and

increase the makespan.

Different from ∆c1
R1

, ∆c1
R2

(Figure 7(b)) is a pure

mathematical function. In order to make it easy for analysis,

we will simplify the whole function by eliminating terms,

which appear to be less relevant. The simplification step is as

follows:

∆c1a
R2

= (PR+RM)W
PR

− (RJ+RM)PR

RT
+RT

+ DD
(PR+RM)

RT W

(PR2)
+ RT

PR
(RJ +RM)

≈ RT + RT
PR

DD
(PR+RM)

W
(PR)

+ RT
PR

(RJ +RM)

≈ RT + k × RT
PR

Since the first and second terms of ∆c1
R2

do not make

much sense in this case, we just drop them from the priority

function2. The rest of the function can be grouped in two parts.

The first part has RT , like rule MWKR, and the second part

contains RT
PR

, which is a combination of SPT and MWKR.

When considering other terms in the second part as a constant

k, we have the approximation of ∆c1
R2

as a linear combination

2The revised rules after dropping these irrelevant terms have been tested
and it is noted that the performance is not significantly changed.

(IF (> CMI 10%)

(IF (> CWR 20%)

(IF (> CWR 80%) (DISPATCH 0.131 LRM)

(IF (≤ DJ 30%) (DISPATCH 0.198 SPT) (DISPATCH 0.102 LRM)))

(IF (> CWR 10%) (DISPATCH 0.102 LRM) (DISPATCH 0.131 LRM)))

(IF (> CWR 10%)

(IF (> CWR 80%) (DISPATCH 0.014 WSPT)

(IF (≤ DJ 30%) (DISPATCH 0.198 SPT) (DISPATCH 0.131 LRM)))

(IF (> CWR 80%) (DISPATCH 0.830 LPT)

(IF (≤ DJ 20%) (DISPATCH 0.198 SPT) (DISPATCH 0.102 LRM)))))

(a) Evolved rule ∆c1
R1

(+ (+ (-

(*(+ PR RM) (% W PR))

(%(+ RJ RM) (% RT PR)))

RT)

(-(*

(% DD(+ PR RM))

(*(% RT PR) (% W PR)))

((-1*) (*(% RT PR) (+ RJ RM)))))

(b) Evolved rule ∆c1
R2

(IF (> CWR 90%)

(DISPATCH 0.069 (% (* (+ RJ 0.594) (+ RT PR)) (+ W PR)))

(IF (≤ MP 100%) (DISPATCH 0.128 (% (- RT PR) (+ W PR)))

(IF (≤ CWR 100%) (IF (≤ MP 100%)

(DISPATCH 0.166 WSPT) (DISPATCH 0.282 LPT))

(IF(≤ MP 100%)(DISPATCH 0.044 LRM) (DISPATCH 0.736 FIFO)))))

(c) Evolved rule ∆c2
R3

Fig. 7. Selected evolved rules for Jm||Cmax.

of MWKR and SPT/MWKR. This rule is actually not new. If

we omit RT in the approximation function, the rest is known

as shortest processing time by total work (SPTtwk) rule in the

literature.

Rule ∆c2
R3

(see Figure 7(c)) is the most interesting rule in

this case because both arithmetic rules and simple dispatching

rules are employed. However, with the condition that MP has

to be less than 100% at the second level, we can totally

eliminate the subtrees that contain the simple dispatching

rules. After some simplification steps, it is also noted that the

arithmetic rules are also variants of SPTtwk. With the support

of the machine attribute, the obtained arithmetic rules become

much easier to analyse. The simplified version of ∆c2
R3

is as

follows:

∆c2a
R3

=

{

⟨ (RJ+0.594845)(RT+PR)
W+PR

, α = 0.069⟩ if CWR > 90%

⟨ (RT−PR)
(W+PR)

, α = 0.128⟩ otherwise

≈

{

⟨ (RJ+0.594845)(RT+PR)
PR

, α = 0.069⟩ if CWR > 90%

⟨ (RT−PR)
PR

, α = 0.128⟩ otherwise

The notation ⟨·, ·⟩ indicates the dispatching rule and α value

as in the middle and right subtrees of Figure 5. Although both

priority functions of ∆c2
R3

are variants of SPTtwk, the non-

delay factor α is smaller for the case when CWR > 90%. One

explanation is that when Ω′ contains many critical operations,

it is reasonable to start the available operations right away

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. X, NO. X, JANUARY XXXX 13

instead of waiting for the operations that will be ready after

the ready time of m∗.

2) Evolved rules for Jm||
∑

wjTj: Here, ∆t1
R1

, ∆t2
R2

and ∆t1
R3

are selected to represent the evolved rules for

Jm||
∑

wjTj . The three full rules obtained by the GP are

shown in Figure 8. For ∆t1
R1

, it is quite interesting that

this rule can obtain such a good result (as shown in Table

VII) without any due-date related components. The two main

simple dispatching rules used in this case are WSPT and

LPT. While WSPT can be considered as a suitable rule for

Jm||
∑

wjTj , it does not make sense to include LPT in this

case. The result when we replace LPT by WSPT shows that the

refined rule can still produce the results as good as ∆t1
R1

. For

this reason, the contribution for the success of the rule comes

from WSPT and other factors instead of the combination

of different rules as we observed in the previous section. It

is noted that most values of α in this case are about 0.4.

Using these values for the WSPT alone show that WSPT

with appropriate choice of α can produce the results much

better than the case when the non-delay scheduling strategy is

used. In this rule, the contribution of the machine and system

attributes are not very important and they are mainly employed

to improve the worst-case performance.

(IF (>DJ 80%)

(IF (>BWR 90%)

(IF (≤ DJ 90%) (DISPATCH 0.426 WSPT)

(IF (≤ MP 10%) (DISPATCH 0.436 WSPT) (DISPATCH 0.364 LPT)))

(DISPATCH 0.065 WSPT))

(IF (> BWR 20%)

(IF (≤ DJ 30%) (DISPATCH 0.436 WSPT)

(IF (≤ DJ 30%) (DISPATCH 0.364 LPT) (DISPATCH 0.389 WSPT)))

(IF (≤ DJ 30%) (DISPATCH 0.436 WSPT)

(IF (> DJ 80%) (DISPATCH 0.364 LPT) (DISPATCH 0.181 WSPT)))))

(a) Evolved rule ∆t1
R1

(- (+ (*

(* PR (* 0.614577 PR))

(- ((-1*) RM) (% RM W)))

((-1*) (* (* RT PR) (% RT W))))

(+ (-

(% (* RT PR) (- W 0.5214191))

(* (% RM W) (* 0.614577 PR)))

(* (% (* RT PR) (- W 0.5214191)) (+ (% RM W) (% RM W)))))

(b) Evolved rule ∆t2
R2

(IF (≤ DJ 50%)

(DISPATCH 0.331 ((-1*) (* DD (% PR W))))

(DISPATCH 0.163 ((-1*) (* (% DD W) (% RT W)))))

(c) Evolved rule ∆t1
R3

Fig. 8. Selected evolved rules for Jm||
∑

wjTj .

For ∆t2
R2

, we perform the following steps to simplify the

evolved rule:

∆t2a
R2

= 0.614PR2(−RM − RM
W

)−RT × PR× RT
W

−(RT PR
W

−0.521)−0.614RM
W

PR+2RT PR
(W−0.5214191)

RM
W

≈ −0.614RM×PR2(1+ 1
W

)−RT PR
W

(RT+2 RM
(W−0.5214191)

)

≈ −k1 × PR2(1 + 1
W

)− k2 ×RT PR
W

The simplified rule is a linear combination of two sophis-

ticated variants of WSPT where the first part includes PR2

instead of PR and the second part includes RT . Repeating the

experiment on this simplified rule shows that it can perform

better than sophisticated rules like ATC and COVERT regard-

ing the average relative deviation with appropriate choice of

k1 and k2 (with k2 > k1, similar to the original rule).
It is very surprising that the best evolved rule for

Jm||
∑

wjTj with the R3 representation is also the smallest
rule. Rule ∆t1

R3
can be formally described as follows:

∆t1a
R3

=

{

⟨−DD×PR
W

, α = 0.331⟩ if DJ ≤ 50%
⟨−DD×RT

W2 , α = 0.163⟩ otherwise

The dispatching rule following the first priority function is a

combination of EDD and WSPT and it is applied when the

deviation of processing times of operations in Ω′ is less than

50% (which means that the minimum processing time is less

than half of the maximum processing time). When DJ is larger

than 50% (which means that the gap between the minimum

and maximum processing time is small), RT is used instead

of PR and W 2 is used instead of W to increase the priority of

jobs with small remaining processing times and high weights.

In general, even though the evolved rules can be very com-

plicated sometimes, they always contain some good patterns

which are very useful for creating good dispatching schedules.

While R1 rules can be easily explained with the support of the

machine and system attributes, R2 rules are quite sophisticated

and often possess very interesting properties. It is surprising

that the R3 rules presented here are quite straightforward

although they contain both machine attributes and composite

dispatching rules. Rule ∆t1
R3

could be quite tricky to represent

as a pure mathematical function and it could be more difficult

to discover its useful patterns; however, the use of machine

and system attributes makes it much easier to identify and

explain the rule.

B. Aggregate view of the evolved rules

Figure 9 shows the frequency that machine and system

attributes have occurred in all of the evolved R1 and R3 rules.

For Jm||Cmax, critical machine related attributes are the most

frequent ones while the bottleneck workload ratio has the low-

est frequency. This result indicates that the information related

to the critical machine is very important for the construction

of a good dispatching rule to minimise the makespan. As

shown in the previous section, suitable dispatching rules can be

selected based on the idleness of the critical machine as well

as the critical workload of m∗. In the case of Jm||
∑

wjTj ,

the critical machine related attributes are still employed very

often, and CWR along with DJ are the ones with the highest

occurrence frequency. However, the distribution of attributes

in Jm||
∑

wjTj are more uniform than that in Jm||Cmax.

This observation suggests that different attributes should be

used to construct good dispatching rules for Jm||
∑

wjTj .

For the priority functions (for composite dispatching rules)

within R2 and R3 rules, Figure 10 shows that RT and PR

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. X, NO. X, JANUARY XXXX 14

BWR MP WR DJ CMI CWR

F
re

qu
en

cy

0
10

0
20

0
30

0
40

0
50

0
60

0

(a) Jm||Cmax

WR MP CMI BWR CWR DJ

F
re

qu
en

cy

0
50

10
0

15
0

20
0

(b) Jm||
∑

wjTj

Fig. 9. Frequency of attributes in the evolved R1 and R3 rules

W RO RM DD RJ RT PR

F
re

qu
en

cy

0
20

0
40

0
60

0
80

0
10

00

(a) Jm||Cmax

RJ RO RM RT DD PR W

F
re

qu
en

cy

0
10

0
20

0
30

0
40

0
50

0
60

0

(b) Jm||
∑

wjTj

Fig. 10. Frequency of terminals in the evolved R2 and R3 priority function

are the most used terms for Jm||Cmax. This explains the

occurrence of SPTtwk variants in the best rules in the previous

section. While W is the least used term for Jm||Cmax, it

is the most used term in Jm||
∑

wjTj . This emphasises

the importance of weights for determining the priority of

operations in Jm||
∑

wjTj . It is quite surprising that the

second most frequent term in evolved rules for Jm||
∑

wjTj

is PR instead of DD. Even though due-dates of jobs also

depends on the processing times in aggregate form, the results

here suggest that such local information as PR is still very

useful for the dispatching tasks for due date related problems.

C. Comparison with meta-heuristic methods

This section compares the performance of the evolved dis-

patching rules to some improvement heuristics. Even though

it seems unfair to the proposed GP method, since most meta-

heuristic methods were especially developed for the static

environment and iteratively explore the solution search space

of each instance for better solutions, the comparison can

provide an indicator about what kind of performance the

evolved dispatching rules can achieve. In this section, we only

compare the evolved rules with meta-heuristic methods for

Jm||
∑

wjTj because it is still a very challenging problem

and total weighted tardiness is one of the most important and

practical objective functions in the scheduling literature.

Table VIII shows the total weighted tardiness obtained

by the three best evolved rules for the three representations

mentioned above and dispatching rules ATC and COVERT

with fine-tuned α, and those obtained by the hybrid genetic

algorithm [20] and the large step random walk [19] on

selected problem instances from [20] and [19]. In the table,

GA-(R&M/COVERT) and GA-(R&R) are the two versions

of hybrid GA proposed by [20] (with population size of

100 and 2000 generations) while LSRW(t) is the large step

optimisation method with running time equal to t seconds.

The instances with bold names are ones that have been used

in the training set. Instance la21’ to la24’ are sub-problems

of instance la21-la24 where the last five jobs were omitted

here. In Table VIII, rule ∆t1
R3

produced the best performance

in most instances compared to other evolved rules. Although

∆t1
R3

is a very simple rule, it is still able to beat the hybrid GAs

in several cases. Among 19 instances, ∆t1
R3

outperforms GA-

(R&M/COVERT) in five cases and GA-(R&R) in 12 cases,

including ones that have not been included in the training set.

Although the objective values obtained by the hybrid GAs

are still far from the optimal solutions and those found by

LSRW, they are still very promising because they can be

directly applied to the real dynamic system without major

redesign [20]. The hybrid GAs are also shown to dominate

the GA approach [58]. The fact that the GP evolved rules

in this work can beat the hybrid GAs in some cases and be

competitive in other cases shows the effectiveness of these

rules. Also, while the hybrid GAs need 200,000 evaluations

and LSRW requires about more than 15 seconds to solve

an instance, the GP evolved rules can solve the whole set

of 210 instances in less than one second. This suggests new

rules can produce better performance and still maintain the

efficiency of a dispatching rule. This characteristic makes the

GP approach particularly useful for real-time applications.

Another advantage of the proposed GP method is that it is

able to automatically incorporate information and constraints

of different job shop environments into the rules; this it is a

very hard task for conventional optimisation methods.

D. The performance of evolved rules in a dynamic JSP

environment

This section examines the performance of the evolved

rules in a dynamic environment. A simulation model of a

simple job shop environment is built for the evaluation of

the evolved rules. Table IX shows the parameters of the

simulation model. With this configuration, the utilisation of

each machine λ
µ

is equal to the arrival rate λ (since µ = 1).

The due-date assignment rule is the same as that used in the

previous section. Each simulation experiment consists of 30

replications and the common random seeds are used for each

experiment in order to reduce the variance of the obtained

results. The interval from the beginning of the simulation until

the arrival of job 50,000 is considered as the warm-up time

and all statistics are collected for the next 100,000 jobs. The

results obtained from the experiments are shown in Figure 11.

Since the JSP instances in the data set do not consider the

release times of jobs (all release times of jobs are assumed

to be zero in all instances) which are very important for the

dynamic Jm||Cmax, the evolved rules for Jm||Cmax are not

suitable for these experiments. So, only the evolved rules for

Jm||
∑

wjTj presented in Figure 8 are investigated here. For

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. X, NO. X, JANUARY XXXX 15

TABLE VIII
COMPARISON OF EVOLVED RULES WITH META-HEURISTIC METHODS FOR Jm||

∑
wjTj (h = 1.3)

instance optimal ∆t1
R1

∆t2
R2

∆t1
R3

ATCα COVERTα GA-1 GA-2 LSRW(15) LSRW(200)

la16 1170 2000(a) 2521 2477 2360 2360 1623 1619 ∗ ∗
la17 900 1623(c) 2107 1555(ac) 1936 1777 1464 1779 977 ∗
la18 929 1764 1662 1325(a) 1439 1694 1248 1248 946 ∗
la19 948 1884 2284 1505(bc) 1439(ab) 2189 1696 1671 966 951

la20 809 2702 2898 1784(a) 1866 2069 1402 1402 819 ∗
la21’ 464 1280(c) 2293 1047(ac) 1530 1530 1044 1286 ∗ ∗
la22’ 1068 1931 2270 2600 2960 1870(a) 1550 1909 1149 1086

la23’ 837 2053(a) 2100 2131 2605 2605 1094 1094 875 875

la24’ 835 1948 2692 1136(abc) 1875 1819 1403 1479 844 ∗
orb01 2568 5247 5680 4210(ac) 6289 4583 4005 4865 2726 2616

orb02 1412 2526 2461(a) 2797 3022 2908 2143 2075 1434 1434

orb03 2113 4276 3968 2880(ac) 4215 4215 2866 4647 2289 2204

orb04 1623 3285 3060 2280(abc) 3945 3945 2326 3188 1816 1674

orb05 1593 3360 4031 1986(abc) 3511 3573 2533 2673 1802 1662

orb06 1792 3759 4098 3371(c) 3146(a) 3146(a) 3047 3689 1852 1802

orb07 590 1169 834(abc) 922(bc) 1324 1239 927 982 619 618

orb08 2429 2554(abcd) 5147 4570 3777(bc) 4404 3792 4103 2717 2554

orb09 1316 2388(abc) 2949 2415(c) 2679 3190 2061 2628 1449 1334

orb010 1679 3075 3186 2802(ac) 3418 3109 2217 2913 1837 1775

“GA-1” and “GA-2” represent GA-(R&M/COVERT) and GA-(R&R) [20]; ATCα and COVERTα showed the results from ATC and COVERT with α = 0.4.

“*” means the method found the optimal solution; “a” means that it is the best rule among the three evolved rules for the instance;

“b” means that the evolved rule is better than GA-(R&M/COVERT) for the instance; “c” means that the evolved rule is better than GA-(R&R) for the instance;

“d” means that the evolved rule is better than LSRW(15) for the instance; and “e” means that the evolved rule is better than LSRW(200) for the instance

ease of presentation, the total weighted tardiness is normalised

using the formula proposed by [47]. Thus, the normalised

weighted tardiness =
∑

wjTj

N×M× 1

µ
×w̄

, where the number of jobs

N = 100000, the number of machines M = 6, the average

processing time of an operation 1
µ
= 1 and average weight of

a job w̄ = 2.2.

In Figure 11, the performance of the evolved rules are quite

consistent with what has been shown when dealing with the

static problem. The results show that simple rules such as

FIFO and EDD are easily dominated by the sophisticated rules

like ATC, WSPT, COVERT and the evolved rules. When using

pairwise z-tests to compared the performance of these rules, it

is noted that rule ∆t1
R1

and rule ∆t1
R3

are significantly better (p-

value ≪ 0.05) than existing rules ATC, COVERT and WSPT

when the utilisation is less than or equal to 0.8, but they are

beaten by the existing rules when utilisation is 0.9. On the

other hand, the R2 rule is significantly worse than the existing

rules for all levels of utilisations. The R2 rule is significantly

worse than R1 and R3 rules when the utilisation is less than

or equal to 0.8 and better than R1 when utilisation is 0.9. One

of the reasons for the inferiority of the evolved rules when

the utilisation of the shop is high is that the evolved rules are

TABLE IX
PARAMETER SETTING OF THE SIMULATION MODEL

Parameter Value

Number of machines 6
Arrival process Possion with λ from 0.5 to 0.9
Processing time Exponential with mean 1

µ
= 1

Number of operations per job 6
Visiting order of jobs randomly generated with no machine

being revisited
Weight randomly sampled from {4, 2, 1} with

the probabilities {0.2, 0.6, 0.2}

0.5 0.6 0.7 0.8 0.9

2
4

6
8

Utilisation

N
or

m
al

is
ed

 T
ot

al
 W

ei
gh

te
d

Ta
rd

in
es

s FIFO
EDD
WSPT
COVERT

ATC
∆R1

t1

∆R2
t2

∆R3
t1

Fig. 11. Performance of the evolved rules in the dynamic environment
(FIFO and EDD curves are above all other curves)

trained on a set of static instances which usually reflect the

situations in the dynamic job shop with a low utilisation.

The investigation of the evolved rules in the dynamic

environment shows that there is still a difference in the

characteristics between the static problem and the dynamic

problem which sometimes prevent the evolved rules from

being effective in the dynamic environment. Although the

evolved rules show good results in the dynamic Jm||
∑

wjTj ,

the fact that they are inferior to the existing rules suggests the

lack of generality of the data set used to train the dispatching

rules. The deteriorated performance of the evolved rules when

utilisations of machines are high is not because the GP

system is not able to evolve effective rules but because the

static training instances cannot represent all possible scenarios

happening in a dynamic environment. Thus, if the ultimate

objective of the dispatching rules is to be applied to the

dynamic environment, it seems reasonable to train the rules

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. X, NO. X, JANUARY XXXX 16

in the dynamic situation (e.g. via a simulation model) in order

to ensure that the evolved rules can capture all critical features

of the dynamic system.

E. Further discussions

Many analyses have been performed and it has been noted

that the GP system proposed in this paper can find effec-

tive dispatching rules for the JSP. Different from traditional

applications of evolutionary computation and meta-heuristic

methods which can only find a particular solution for a

problem instance, the GP system can evolve reusable rules

to solve different problem instances without the need to rerun

the search algorithm. Since a dispatching rule only provides

one schedule for a static problem instance, it is very difficult

for these rules to outperform meta-heuristic methods which

perform improving steps by exploring thousands of schedules

to find better schedules. However, the fact that the evolved

rules can beat GA-(R&R) in many instances shows that it is

possible to generate powerful dispatching rules for the JSP

that are competitive with meta-heuristic methods. It is noted

that the program trees are restricted to the maximum depth

of six in this study and many other machine attributes as

well as terminals (scheduling parameters) are not considered

when the GP system is used to evolve new dispatching rules.

These restrictions are made to reduce the computational times

of the GP system but they also prevent the GP system from

finding better dispatching rules. If a better choice of function

set, terminal set, and machine attributes is made, it may be

possible that the GP system can evolve rules that are as good

as effective meta-heuristic methods but much more efficient.

One major advantage of the evolved rules is that they are

quite ready to be applied to the dynamic environment as shown

in the previous subsection, which makes these rules more

practical than meta-heuristic methods. Therefore the evolved

rules are suitable for shops with rapid dynamic changes

[59], [22], [60]. In these shops, even when mathematical

programming methods are able to find optimal schedules, these

schedules can quickly become sub-optimal or even infeasible

under dynamic conditions [22]. Besides, with its flexibility, the

proposed GP system can easily be applied to generate good

rules for complex manufacturing processes (e.g. batch process-

ing, assembly station, etc.), which are difficult to be handled by

conventional optimisation methods. Another advantage of the

evolved dispatching rules is that they are understandable to the

users (managers, operators, and researchers), and therefore it

is much easier for these people to incorporate these rules with

other planning decisions compared to the detailed schedules

produced by other methods.

Most of the proposed GP systems [5], [8], [40], [39] in the

literature is very similar to ours when the R2 representation is

used. Miyashita [8] and Jakobovic and Budin [6] are the only

works that focus on the use of system attributes, specifically

bottleneck machines, to support the sequencing decisions.

However, it is noted that the GP system proposed by Miyashita

[8] is only suitable when we try to evolve dispatching rules

for a specific shop with a small number of machines in which

the bottleneck machine is known. Therefore, it is difficult to

generalise the rules based on on this GP system. Jakobovic

and Budin [6] improved this GP system [8] by using a

dedicated GP tree to detect the bottleneck machine to apply

suitable dispatching rules. The problem is that the bottleneck

machine is not always a good feature to help decide which

dispatching rules to be applied. When there are multiple

bottleneck machines in the shop (especially with a symmetrical

shop), applying a dedicated rule for the detected bottleneck is

not very effective since the temporary bottleneck machine can

change rapidly before that rule shows any noticeable effect.

This explains why the proposed GP-3 system [6] performs

significantly better than the simple GP system, but the gaps

between the objectives obtained by GP-3 and the simple GP

are not large. When examining the GP-3 system with our

training and testing instances (using the same terminal sets for

dispatching rules in R2 and R3), the experimental results show

that there is no significant difference between the rules evolved

by GP-3 and rules evolved with the R2 representation. The

analysis in Section VI-B also showed that the workload ratio

WR (an indicator for the bottleneck level of the considered

machine) is not a major attribute in the best evolved rules. This

suggests that different machine and system attributes should

be used instead of depend solely on bottleneck machines.

Compared to the existing methods, the novelties of this

study are: (1) the introduction of new representations (R1 and

R3) that allow the GP system to evolve effective adaptive dis-

patching rules by incorporating machine and system attributes;

(2) the comparison of different representations for GP; and (3)

the analysis of the evolved dispatching rules, which explain

how they solve JSP instances effectively.

VII. CONCLUSIONS

Dispatching rules are one of the most crucial tools in

production planning and control systems and a large number of

studies have been conducted to develop more effective rules.

However, the development process is still very complicated

and time consuming. The improvement in computing power

provides some alternatives to facilitate this process. In this

paper, we investigated the use of genetic programming as

a hyper-heuristic method for automatically discovering new

dispatching rules for the job shop scheduling problem. New

representations of dispatching rules which take advantage of

the machine and system attributes to support the sequencing

decisions were developed and examined. The experimental

results suggest that the GP system can evolve effective dis-

patching rules for Jm||Cmax and Jm||
∑

wjTj with the

representations that integrate system attributes and suitable

composite dispatching rules. The evolved rules are also shown

to outperform the existing rules on the training set and test set.

Moreover, the best evolved rules produce competitive perfor-

mances when compared to the hybrid GAs of [20]. Although

the performance of the evolved rules is still far from the

optimal solutions in the static JSP, they are still very promising

because they are quite ready to be applied to a dynamic

system whereas the solutions provided by the exact and meta-

heuristic methods have trouble dealing with the dynamics of

the shop change. The simulation experiments have confirmed

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. X, NO. X, JANUARY XXXX 17

the effectiveness of the evolved rules compared to well-known

dispatching rules in the dynamic environment. Also, compared

to the solutions obtained by the conventional meta-heuristic

approaches, the evolved rules in this work provide much better

interpretability of the sequencing decisions. Another advantage

of the proposed GP system is that it only requires one run to

generate dispatching rules which can be used to solve multiple

problem instances.

In general, this is the first study that has compared different

representations of dispatching rules used in a GP system and

investigated how representations influence the performance

of the GP system when evolving dispatching rules for the

JSP. With their flexibility, the proposed representations in this

study can be easily extended to deal with different manufac-

turing environments. Moreover, these representations provide

a convenient way to incorporate special system features of

real world environments into the adaptive dispatching rules.

Therefore, the GP system proposed in this study can also be

employed as a good tool to automatically discover effective

dispatching rules for a particular manufacturing system. The

analysis in the previous section has shown very interesting

characteristics of the evolved rules.

For future studies, there are still many problems that need

to be further investigated. This study has shown that the

explicit incorporation of machine and system attributes into

the decision making process can provide favourable results.

Therefore, it would be very useful to have a comprehensive

study of potential attributes and their effects on each type of

manufacturing environment. Also, since the dispatching rules

will be applied to dynamic situations, whether it is necessary

to evolve these rules in the dynamic environment through

some simulation model would be an important question for the

future research. In addition, while the technique of dispatching

rules can quickly react to changes encountered on the shop

floor, some practical issues (cognitive and organisational)

[59] need to be considered. It would be interesting to study

these issues when designing the dispatching rules, such as

by developing a multi-objective GP-HH method to evolve

rules that can satisfy multiple practical requirements. Fitness

landscapes defined by different fitness functions would be very

interesting to explore and will be a good topic for future

research. Finally, even though the proposed representation is

useful, it also creates a large search space for the GP system to

explore. For that reason, it would be worthwhile paying more

attention to the design of specialised genetic operators to be

able to find the good rules.

ACKNOWLEDGMENT

This work is supported in part by the Marsden Fund of

New Zealand Government (VUW0806 and 12-VUW-134),

administrated by the Royal Society of New Zealand, and the

University Research Fund (200457/3230) at Victoria Univer-

sity of Wellington.

REFERENCES

[1] S. S. Panwalkar and W. Iskander, “A survey of scheduling rules,”
Operations Research, vol. 25, no. 1, pp. 45–61, 1977.

[2] M. S. Jayamohan and C. Rajendran, “Development and analysis of cost-
based dispatching rules for job shop scheduling,” European Journal of

Operational Research, vol. 157, no. 2, pp. 307–321, 2004.

[3] ——, “New dispatching rules for shop scheduling: a step forward,”
International Journal of Production Research, vol. 38, no. 3, pp. 563–
586, 2000.

[4] L. Nie, X. Shao, L. Gao, and W. Li, “Evolving scheduling rules with
gene expression programming for dynamic single-machine scheduling
problems,” The International Journal of Advanced Manufacturing Tech-

nology, vol. 50, no. 5, pp. 729–747, 2010.

[5] J. C. Tay and N. B. Ho, “Evolving dispatching rules using genetic
programming for solving multi-objective flexible job-shop problems,”
Computer & Industrial Engineering, vol. 54, no. 3, pp. 453–473, 2008.

[6] D. Jakobovic and L. Budin, “Dynamic scheduling with genetic program-
ming,” in EuroGP’06: Proceedings of the 9th European Conference on

Genetic Programming, 2006, pp. 73–84.

[7] T. Hildebrandt, J. Heger, and B. Scholz-Reiter, “Towards improved dis-
patching rules for complex shop floor scenarios: a genetic programming
approach,” in GECCO’10: Proceedings of the 12th Annual Conference

on Genetic and Evolutionary Computation, 2010, pp. 257–264.

[8] K. Miyashita, “Job-shop scheduling with GP,” in GECCO’00: Proceed-

ings of the Genetic and Evolutionary Computation Conference, 2000,
pp. 505–512.

[9] S. Nguyen, M. Zhang, M. Johnston, and K. C. Tan, “A coevolution
genetic programming method to evolve scheduling policies for dynamic
multi-objective job shop scheduling problems,” in CEC ’12: Proceedings

of the IEEE Congress on Evolutionary Computation, 2012, pp. 3261–
3268.

[10] ——, “Evolving reusable operation-based due-date assignment models
for job shop scheduling with genetic programming,” in EuroGP’12:

Proceedings of the 15th European Conference on Genetic Programming,
2012, pp. 121–133.

[11] X. Li and S. Olafsson, “Discovering dispatching rules using data
mining,” Journal of Scheduling, vol. 8, no. 6, pp. 515–527, 2005.

[12] H. Ingimundardottir and T. Runarsson, “Supervised learning linear pri-
ority dispatch rules for job-shop scheduling,” in Learning and Intelligent

OptimizatioN (LION 5), 2011, pp. 263–277.

[13] B. Giffler and G. L. Thompson, “Algorithms for solving production-
scheduling problems,” Operations Research, vol. 8, no. 4, pp. 487–503,
1960.

[14] A. Jones, L. C. Rabelo, and A. T. Sharawi, Survey of Job Shop

Scheduling Techniques. John Wiley & Sons, Inc., 2001.

[15] H. R. Lourenco, “Job-shop scheduling: Computational study of local
search and large-step optimization methods,” European Journal of

Operational Research, vol. 83, no. 2, pp. 347–364, 1995.

[16] E. Nowicki and C. Smutnicki, “A fast taboo search algorithm for the
job shop problem,” Management Science, vol. 42, no. 6, pp. 797–813,
1996.

[17] E. Balas and A. Vazacopoulos, “Guided local search with shifting
bottleneck for job shop scheduling,” Management Science, vol. 44, no. 2,
pp. 262–275, 1998.

[18] R. Cheng, M. Gen, and Y. Tsujimura, “A tutorial survey of job-shop
scheduling problems using genetic algorithms, part II: hybrid genetic
search strategies,” Computers & Industrial Engineering, vol. 36, no. 2,
pp. 343–364, 1999.

[19] S. Kreipl, “A large step random walk for minimizing total weighted
tardiness in a job shop,” Journal of Scheduling, vol. 3, no. 3, pp. 125–
138, 2000.

[20] H. Zhou, W. Cheung, and L. C. Leung, “Minimizing weighted tardiness
of job-shop scheduling using a hybrid genetic algorithm,” European

Journal of Operational Research, vol. 194, no. 3, pp. 637–649, 2009.

[21] K. N. McKay, F. R. Safayeni, and J. A. Buzacott, “Job-shop scheduling
theory: What is relevant?” Interfaces, vol. 18, no. 4, pp. 84–90, 1988.

[22] S. C. Sarin, A. Varadarajan, and L. Wang, “A survey of dispatching
rules for operational control in wafer fabrication,” Production Planning

& Control, vol. 22, no. 1, pp. 4–24, 2011.

[23] E. K. Burke, M. R. Hyde, G. Kendall, G. Ochoa, E. Ozcan, and
J. R. Woodward, “A classification of hyper-heuristic approaches,” in
Handbook of Metaheuristics, ser. International Series in Operations
Research and Management Science, vol. 146. Springer, 2010, pp. 449–
468.

[24] E. K. Burke, M. R. Hyde, G. Kendall, G. Ochoa, E. Ozcan, and R. Qu,
“Hyper-heuristics: A survey of the state of the art,” School of Com-
puter Science and Information Technology, University of Nottingham,
Tech. Rep. Computer Science Technical Report No. NOTTCS-TR-SUB-
0906241418-2747, 2010.

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. X, NO. X, JANUARY XXXX 18

[25] E. K. Burke, M. R. Hyde, G. Kendall, G. Ochoa, E. Ozcan, and
J. R. Woodward, “Exploring hyper-heuristic methodologies with genetic
programming,” in Computational Intelligence, ser. Intelligent Systems
Reference Library, C. Mumford and L. Jain, Eds. Springer Berlin
Heidelberg, 2009, vol. 1, pp. 177–201.

[26] A. Bolte and U. W. Thonemann, “Optimizing simulated annealing
schedules with genetic programming,” European Journal of Operational

Research, vol. 92, no. 2, pp. 402–416, 1996.
[27] A. Fukunaga, “Automated discovery of composite SAT variable-

selection heuristics,” in Eighteenth National Conference on Artificial

Intelligence, 2002, pp. 641–648.
[28] M. B. Bader-El-Den and R. Poli, “Generating SAT local-search heuris-

tics using a gp hyper-heuristic framework,” in Proceedings of the 8th

International Conference on Artificial Evolution, 2007, pp. 37–49.
[29] E. K. Burke, M. R. Hyde, and G. Kendall, “Evolving bin packing

heuristics with genetic programming,” in Parallel Problem Solving from

Nature (PPSN), 2006, pp. 860–869.
[30] E. K. Burke, M. R. Hyde, G. Kendall, and J. R. Woodward, “The

scalability of evolved online bin packing heuristics,” in CEC’07: IEEE

Congress on Evolutionary Computation, 2007, pp. 2530–2537.
[31] ——, “A genetic programming hyper-heuristic approach for evolving

two dimensional strip packing heuristics,” IEEE Transactions on Evo-

lutionary Computation, vol. 14, pp. 942–958, 2010.
[32] R. Keller and R. Poli, “Linear genetic programming of parsimonious

metaheuristics,” in CEC’07: IEEE Congress on Evolutionary Computa-

tion, 2007, pp. 4508–4515.
[33] ——, “Cost-benefit investigation of a genetic-programming hyperheuris-

tic,” in Proceedings of the 8th International Conference on Artifcial

Evolution, 2007, pp. 13–24.
[34] M. B. Bader-El-Den, R. Poli, and S. Fatima, “Evolving timetabling

heuristics using a grammar-based genetic programming hyper-heuristic
framework,” Memetic Computing, vol. 1, no. 3, pp. 205–219, 2009.

[35] E. K. Burke, M. R. Hyde, and G. Kendall, “Grammatical evolution of lo-
cal search heuristics,” IEEE Transactions on Evolutionary Computation,
vol. 16, no. 3, pp. 406–417, 2012.

[36] C. Dimopoulos and A. M. S. Zalzala, “Investigating the use of genetic
programming for a classic one-machine scheduling problem,” Advances

in Engineering Software, vol. 32, no. 6, pp. 489–498, 2001.
[37] D. Jakobovic, L. Jelenkovic, and L. Budin, “Genetic programming

heuristics for multiple machine scheduling,” in EuroGP’07: Proceedings

of the 10th European Conference on Genetic programming, 2007, pp.
321–330.

[38] C. D. Geiger, R. Uzsoy, and H. Aytug, “Rapid modeling and discovery of
priority dispatching rules: An autonomous learning approach,” Journal

of Heuristics, vol. 9, no. 1, pp. 7–34, 2006.
[39] C. D. Geiger and R. Uzsoy, “Learning effective dispatching rules

for batch processor scheduling,” International Journal of Production

Research, vol. 46, no. 6, pp. 1431–1454, 2008.
[40] W. J. Yin, M. Liu, and C. Wu, “Learning single-machine scheduling

heuristics subject to machine breakdowns with genetic programming,”
in CEC’03: IEEE Congress on Evolutionary Computation, 2003, pp.
1050–1055.

[41] L. Atlan, J. Bonnet, and M. Naillon, “Learning distributed reactive
strategies by genetic programming for the general job shop problem,” in
Proceedings of the 7th Annual Florida Artificial Intelligence Research

Symposium, 1994.
[42] C. Pickardt, J. Branke, T. Hildebrandt, J. Heger, and B. Scholz-Reiter,

“Generating dispatching rules for semiconductor manufacturing to mini-
mize weighted tardiness,” in Proceedings of the 2010 Winter Simulation

Conference (WSC), 2010, pp. 2504–2515.
[43] J. A. Vazquez-Rodriguez and G. Ochoa, “On the automatic discovery of

variants of the NEH procedure for flow shop scheduling using genetic
programming,” Journal of the Operational Research Society, vol. 62,
no. 2, pp. 381–396, 2011.

[44] D. J. John, “Co-evolution with the Bierwirth-Mattfeld hybrid scheduler,”
in GECCO ’02: Proceedings of the 9th Annual Conference on Genetic

and Evolutionary Computation, 2002, p. 259.
[45] S. Petrovic and E. Castro, “A genetic algorithm for radiotherapy pre-

treatment scheduling,” in Applications of Evolutionary Computation,
2011, pp. 454–463.

[46] W. J. Hopp and M. L. Spearman, Factory Physics: Foundations of

Manufacturing Management. McGraw-Hill, 2000.
[47] A. P. J. Vepsalainen and T. E. Morton, “Priority rules for job shops

with weighted tardiness costs,” Management Science, vol. 33, no. 8, pp.
1035–1047, 1987.

[48] J. R. Koza, Genetic Programming: On the Programming of Computers

by Means of Natural Selection. MIT Press, 1992.

[49] P. Pardalos and O. Shylo, “An algorithm for the job shop scheduling
problem based on global equilibrium search techniques,” Computational

Management Science, vol. 3, no. 4, pp. 331–348, 2006.
[50] S. Luke, Essentials of Metaheuristics. Lulu, 2009. [Online]. Available:

http://cs.gmu.edu/∼sean/book/metaheuristics/
[51] S. Lawrence, “Resource constrained project scheduling: An experimental

investigation of heuristic scheduling techniques,” Ph.D. dissertation,
Graduate School of Industrial Administration, Carnegie-Mellon Univer-
sity, Pittsburgh, Pennsylvania, 1984.

[52] D. Applegate and W. Cook, “A computational study of the job-shop
scheduling instance,” ORSA Journal on Computing, vol. 3, no. 2, pp.
149–156, 1991.

[53] E. Taillard, “Benchmarks for basic scheduling problems,” European

Journal of Operational Research, vol. 64, no. 2, pp. 278–285, 1993.
[54] E. Demirkol, S. Mehta, and R. Uzsoy, “Benchmarks for shop scheduling

problems,” European Journal of Operational Research, vol. 109, no. 1,
pp. 137–141, 1998.

[55] K. R. Baker, “Sequencing rules and due-date assignments in a job shop,”
Management Science, vol. 30, no. 9, pp. 1093–1104, 1984.

[56] M. Pinedo and M. Singer, “A shifting bottleneck heuristic for minimizing
the total weighted tardiness in a job shop,” Naval Research Logistics,
vol. 46, no. 1, pp. 1–17, 1999.

[57] P. Mizrak and G. M. Bayhan, “Comparative study of dispatching rules in
a real-life job shop environment,” Applied Artificial Intelligence, vol. 20,
pp. 585–607, 2006.

[58] D. C. Mattfeld and C. Bierwirth, “An efficient genetic algorithm for
job shop scheduling with tardiness objectives,” European Journal of

Operational Research, vol. 155, no. 3, pp. 616–630, 2004.
[59] J. Riezebos, J. M. Hoc, N. Mebarki, C. Dimopoulos, W. Wezel, and

G. Pinot, “Design of scheduling algorithms: Applications,” in Behavioral

Operations in Planning and Scheduling, J. C. Fransoo, T. Waefler, and
J. R. Wilson, Eds., 2011, pp. 371–412.

[60] T. Sloan, “Shop-floor scheduling of semiconductor wafer fabs: exploring
the influence of technology, market, and performance objectives,” IEEE

Transactions on Semiconductor Manufacturing, vol. 16, no. 2, pp. 281–
289, 2003.

Su Nguyen received a BE degree in Industrial and
Systems Engineering at Ho Chi Minh City Uni-
versity of Technology, Vietnam in 2006 and a ME
degree in Industrial Engineering and Management
at Asian Institute of Technology (AIT), Thailand.
He is currently a PhD candidate in Evolutionary
Computation Research Group at Victoria University
of Wellington (VUW), New Zealand. Prior to VUW,
he was a research associate in Industrial and Manu-
facturing Engineering at the School of Engineering
and Technology, AIT. His primary research interests

include evolutionary computation, discrete-event simulation and their appli-
cations in operations planning and scheduling.

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. X, NO. X, JANUARY XXXX 19

Mengjie Zhang received a BE and an ME in
1989 and 1992 from Artificial Intelligence Research
Center, Agricultural University of Hebei, China, and
a PhD in computer science from RMIT University,
Australia in 2000.

Since 2000, he has been working at Victoria
University of Wellington, New Zealand. He is cur-
rently Professor of Computer Science and heads
the Evolutionary Computation Research Group. His
research is mainly focused on evolutionary compu-
tation, particularly genetic programming and particle

swarm optimisation with application areas of image analysis, multi-objective
optimisation, classification with unbalanced data, and feature selection and
dimension reduction for classification with high dimensions. He has published
over 200 academic papers in refereed international journals and conferences.
He has been serving as an associated editor or editorial board member
for five international journals (including IEEE Transactions on Evolutionary
Computation and the Evolutionary Computation Journal) and as a reviewer of
over fifteen international journals. He has been serving as a steering committee
member and a program committee member for over eighty international
conferences. He has supervised over thirty postgraduate research students.

Prof Zhang is a senior member of IEEE, a member of the IEEE Computer
Society, the IEEE CI Society and the IEEE SMC Society. He is also a member
of the IEEE CIS Evolutionary Computation Technical Committee, a member
of the IEEE CIS Intelligent Systems Applications Technical Committee, a
vice-chair of the IEEE CIS Task Force on Evolutionary Computer Vision and
Image Processing, and a committee member of the IEEE New Zealand Central
Section. He is a member of ACM and the ACM SIGEVO group.

Mark Johnston holds a BSc in mathematics and
computer science and a PhD in operations research
from Massey University, New Zealand. He is a
senior lecturer at Victoria University of Wellington,
New Zealand, where he teaches various operations
research courses. His research is primarily in combi-
natorial optimisation and evolutionary computation,
with particular interest in scheduling models, genetic
programming and multiple-objective optimisation.
Dr Johnston is a member of IEEE.

Kay Chen Tan is currently an Associate Profes-
sor in the Department of Electrical and Computer
Engineering, National University of Singapore. Dr
Tan has published over 100 journal papers, over
100 papers in conference proceedings, co-authored
5 books and co-edited 4 books. Dr Tan has been
invited to be an invited keynote/pleanary speaker for
over 30 international conferences. He served in the
international program committee for over 100 con-
ferences and involved in the organizing committee
for over 40 international conferences, including the

General Co-Chair for IEEE Congress on Evolutionary Computation 2007 in
Singapore and the General Co-Chair for IEEE Symposium on Computational
Intelligence in Scheduling 2009 in Tennessee, USA.

Dr Tan is an IEEE Distinguished Lecturer of IEEE Computational Intel-
ligence Society since 2011. Dr Tan is currently the Editor-in-Chief of IEEE
Computational Intelligence Magazine (CIM). He also serves as an Associate
Editor / Editorial Board member of over 15 international journals, such
as IEEE Transactions on Evolutionary Computation, IEEE Transactions on
Systems, Man and Cybernetics: Part B Cybernetics, IEEE Transactions on
Computational Intelligence and AI in Games, Evolutionary Computation (MIT
Press) etc. Dr Tan is the awardee of the 2012 IEEE Computational Intelligence
Society (CIS) Outstanding Early Career Award. He also received the Recogni-
tion Award (2008) from the International Network for Engineering Education
& Research (iNEER). He was also a winner of the NUS Outstanding Educator
Awards (2004), the Engineering Educator Awards (2002, 2003, 2005), the
Annual Teaching Excellence Awards (2002, 2003, 2004, 2005, 2006), and the
Honour Roll Awards (2007).

View publication statsView publication stats

https://www.researchgate.net/publication/255485424

