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ABSTRACT: In this work, the interactions between the Na neutral atom and Na+ ion and three 

nanostructures such as sumanene (SM), corannulene (CN), and nanosheet were investigated.  

The main goal of this work is to calculate the cell voltage (V) for Na−ion batteries, NIBs. The total 
energies, geometry optimizations, and density of states (DOS) diagrams were studied by using 

M06−2X level and 6−31+G(d,p) basis set. The DFT calculations indicated that the energy adsorption 

between Na+ ion and nanostructures, Ead, were increased in the order: SM-i > Sheet > CN-i > CN > SM. 

Nevertheless, the Vcell for SM has obtained the highest value. The Vcell of NABs are increased  

in the order: SM > CN > Sheet > SM-i > CN-i. This research theoretically described the possible 

uses of the mentioned nanostructures as anode the anodes in Na−ion Batteries. 
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INTRODUCTION 

Dry batteries play remarkable role in generation  
the electricity. The dry batteries, such as Zn−C, Ni−Cd, 
Ni−Zn and Na−ion batteries are very important because  
of readily uses. Some these batteries have drawbacks 
including environmental issues and transportable 
problems. 

Lithium (Li) is a suitable anode metal for rechargeable 
batteries because of its low density, high specific capacity, 
and the lowest electrochemical potential [1]. However,  
the important issues involved for using Li-ion batteries,  
 
 
 

LIBs, are environmental issues  the lifetime, cost, low-
temperature performance of Li-ion batteries [2]. It can be 
suggested that Na-ion batteries (NIBs) may be a suitable 
replacement for LIBs because of the wide availability  
of sodium, its low cost and nontoxicity. 

One of the important points for the development  
of sodium-ion batteries, NIB, is to find useful electrode 
materials with suitable electrochemical properties. Various 
nanostructures have been studied to use in the electronics, 
optics and sensor fields [3–5]. Some of the nanostructures  
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are suitable to use in metal−ion batteries, MIB [6–9]. 
Recently, some efforts have been devoted to find some 
nanostructures such as nanosheet and nanotube [10], 
dichalcogenides [11], phosphorene [12], transition metal 
carbides or nitrides (MXenes) [13], nanocomposites [14] 
in ion-batteries. 

Our goal in this work is to study the use of some carbon 
nanostructures including sumanene (SM), corannulane (CN) 
and nanosheet with different structures in NIBs as an anode. 
Different shapes and structures of nanostructures lead to 
different interactions between Na+/Na and nanostructures 
which obtain various cell voltages. We investigated interactions 
between Na atom and Na+ ion and three nanostructures 
including SM, CN and nanosheet (Fig. 1). Sumanene can be 
synthesized by oxidation of 1,5,9−trimethyltriphenylene [15]. 
Corannulane was first prepared in 1966 by organic multistep 
synthesis [16]. The synthesis and properties of corannulane 
have also reported in 1971 [17]. 

In continuing previous works [18], in this research,  
the cell voltage (V) of the three nanostructures such as SM, 
CN and nanosheet based on Na−ion battery was compared 
(Table 1). We expect that this reported computational 
results will aid the experimental chemists to improvement 
in Na−ion battery equipment. 

 

COMPUTATIONAL METHODS 

The total energies, geometry optimizations and density 
of states (DOS) for SM, CN and nanosheet were computed 
at the M06−2X level using 6−31+G(d,p) basis set [19].  
All calculations were done in the G09 program [20]. 
During optimization process, all the atoms were optimized 
and the atoms were not fixed. All the structures are true 
minima on the potential energy surface and imaginary 
frequency was not obtained. 

The chemical formulas of the nanostructures are SM, 
C21H12; CN, C20H10; and nanosheet, C54H18. Hydrogen atoms 
are used to cap the boundary carbon atoms of the nanostructures. 

The Natural Bond Orbitals (NBO) of the 
Na+/Na−nanocone complex were computed for the charge 
and hybridization study. 

The Na and Na+ adsorption energy is computed using 
the below equation: 

Ead = Ecomplex – Enanostructure – ENa/Na+ + EBSSE   (1) 

where, Enanostructure is the energy of the nanostructures 
including SM, CN and nanosheet. The Ecomplex is the energy 
of each nanostructure which Na or Na+ adsorbed  
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Fig. 1: Optimized molecular structures of (a) sumanene 
(SM); (b) corannulane (CN); (c)  nanosheet. 
 
on the surface. The EBSSE relates to the basis set 
superposition error which is calculated by the counterpoise 
method of Boys and Bernardi [21]. 

The HOMO−LUMO energy gap (Eg) is calculated as: 

Eg = ELUMO−EHOMO                  (2) 

where ELUMO and EHOMO are energies of HOMO and 
LUMO levels. The change of Eg is computed as follows: 

ΔEg = [(Eg2 − Eg1)/Eg1] * 100                     (3) 

Where, Eg1 and Eg2 are for nanostructures value and  
the complex value. This parameter indicates the electronic  
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sensitivity of the nanostructure to the Na/Na+ adsorption. 
The Gaussum program has been used to compute the DOS 
plots [22].  
 
RESULTS AND DISCUSSIONS 

Following investigation of researchers in different 
fields of organic compounds [23-58] here, three kinds of 
nanostructures were designated to investigate their 
interactions with Na atom and Na+ ion. Then, the cell 
voltage (V) of the three nanostructures based Na−ion 
battery (NIBs) was calculated and discussed. We check all 
regions at top of pentagon or hexagon ring for possible 
interaction with Na neutral atom and Na+ ion. The global 
minima for all complexes were found in where the Na/Na+ 
located in middle top of the pentagon or hexagon rings. 

For SM and CN, the adsorption position of Na/Na+  
can be on concave and convex faces (Figs. 2, 5, 7 and 9). It 
would be important in compare the calculated data for both 
concave and convex faces. The interaction between Na+ and 
SM in concave face is more (−2.08 kcal/mol) than convex 
surface. The interaction between Na+ and CN in concave 
surface is slightly more (−0.47 kcal/mol) than convex surface.  

 

Adsorption of Na/Na+ over the sumanene 
The core of SM is a benzene ring and the borderline 

consists of cyclopentadiene and benzene rings which  
is shown in Fig. 1 [59]. SM has a bowl−shaped with a bowl 
depth of 1.18 angstrom [59]. The six hub carbon atoms  
are pyramidalized by 9° and SM shows bond lengths  
(from 1.38 to 1.43 angstrom). 

The HOMO and LUMO energies are −6.95 and −0.29 eV, 
respectively; thus the HOMO−LUMO gap energy is 6.67 eV 
(Table 1). In order to investigate the behavior of adsorption 
of Na+/Na on SM, we must study all possibilities of  
the interaction between Na+/Na and both inside or outside 
the bowl. 

 

Adsorption of Na/Na+ outside the bowl of sumanene 

The Na+ ion and Na atom were optimized above 
 the plane of the six−membered ring in SM with distances 
of 2.69 and 3.37 Å from carbon atoms, respectively (Fig. 2). 
This indicates a good interaction between SM and both 
Na+ ion and Na neutral. The adsorption energy, Ead, of  
the Na+ ion on the SM is −32.34 kcal/mol that is larger than 
that of the Na neutral (−4.60 kcal/mol) (Table 1). Higher 
interaction between SM and Na+ ion attributed to an interaction 
between Lewis base and Lewis acid.   

 

 
(a) 

 

 
(b) 

 

Fig. 2: Optimized structures of Na+ and Na−SM complexes.  
(a) Na+−SM complex (b) Na−SM complex. Pink, green and 
blue balls are carbon, sodium and hydrogen atoms. 
 

The purpose of frontier molecular orbital analysis  
from the changes of the orbital level is to find which orbitals  
play main role in the interactions between nanostructures 
and Na atom or Na+ ion. 

The HOMO and LUMO change to the lower energies 
for the SM−Na+ complex (Fig. 3). The HOMO and LUMO 
levels stabilized by Na+ adsorption on SM in where  
the stabilization is sharp for LUMO level. The LUMO 
level mainly stabilized from −0.29 eV in SM to −4.62 eV 
in the SM−Na+ complex (Table 1), cause to slightly 
diminish in the Eg (∼−10.5%) amount. The variations  
in HOMO, LUMO and Eg values are illustrated in Fig. 3 
by density of state (DOS) diagrams. The partial density  
of states, PDOS, evidently shows that a new level created 
at the Eg gap of pristine which arises from Na+ cation; 
decrease slightly in Eg of the Na+−SM complex (Fig. 4). 

The influence of atomic Na adsorption on the 
electronic aspects of SM−Na is unlike from that of 
SM−Na+. Different to the Na+ adsorption, the Na 
adsorption mainly leads the SOMO unstable because of 
being an unpaired electron in HOMO of the SM−Na 
complex. The amount of the SOMO level is changed  
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Fig. 3: Density of states (DOS) plot of SM (right) and Na+− SM complex (left). 

 
from −6.95 to −3.54 eV which is singly occupied.  
In consistent to the sharp energy change, the shape of 
HOMO is changed mainly by transferring to the adsorbing 
region. The energy amount of the LUMO level is slightly 
changed from −0.29 to −0.52 eV as shown in Table 1 and 
Fig. 4. The Eg (3.01 eV.) amount is significantly narrowed 
by about 53.0%, demonstrating that the effect of Na 
adsorption on the Eg is much more than that of the Na+ 
adsorption. The partial density of states, PDOS, (Fig. 4) 
obviously shows that a new level formed at the Eg gap of 
pristine mostly arises from the Na neutral which causes  
to diminish mainly in Eg of Na−SM complex. 

From the analysis of Partials Density of States (PDOS) 
plot of Na+− SM and Na− SM, the electronic charge 
transfer could be explained that a new level produced from 
Na+ cation at the LUMO area leads to decrease slightly  
in Eg of the Na+−SM complex as well as increase  
the electronic charge transfer from HOMO of SM to LUMO 
of Na+. In the Na−SM complex, Na atom interaction  
on SM produce an unstable SOMO which leads to increase 
the electronic charge transfer. The electronic charge 
transfer for the Na−SM complex is more than the Na+−SM 
complex because the Eg for the Na−SM complex is  
less than the Na+−SM complex. 

The DFT calculations described that the p character  
of carbon atoms in the six−membered ring increases 
during adsorption of Na+ since those carbon atoms intend 
to interact with the Na+ cation. Strong interaction between  
π electrons of the six−membered ring and Na+ cause to 
increase of the p character of carbon atoms and 
consequently to an increase of the bond length distance 
from 1.38 in pristine to 1.41 Å in Na+−SM complex.  

Adsorption of Na/Na+ inside the bowl of sumanene 

The Na+ ion and Na atom were optimized inside  
the plane of the six−membered ring of SM-i with lengths 
of 2.67 and 3.33 Å from carbon atom, respectively (Fig. 5). 
This indicates a good interaction between SM-i and both 
Na+ ion and Na neutral. The adsorption energy, Ead,  
of the Na+ ion inside the SM-i is −34.42 kcal/mol that  
is larger than that of the Na neutral (−11.50 kcal/mol) (Table 1). 
These adsorption energies, Ead, show a suitable interaction 
between SM and Na+ ion as well as Na neutral inside  
the bowl of SM-i respect to outside the bowl of SM. 

The changes in the HOMO and LUMO levels and Eg for 
Na/Na+ inside the bowl of SM-i is similar to outside the bowl 
of SM; stabilizing during Na+ adsorption over SM which  
the stabilization is sharp for LUMO level. The LUMO level 
mainly stabilized from −0.29 eV in SM-i to −4.64 eV  
in the Na+−SM-i complex (Table 1); decreasing in the Eg (∼−4.6%). 
The changes in HOMO, LUMO and Eg are illustrate in Fig. 6 
by density of state (DOS) diagrams.    

The Na adsorption mainly makes the SOMO unstable due 
to being an unpaired electron in HOMO of the Na−SM-i 
complex. This SOMO level decreased from −6.95 to −3.59 eV 
which is singly occupied. The energy of the LUMO level is 
slightly increased from −0.29 to −0.54 eV as shown in Table 1 
and Fig. 6. As a result of large change in HOMO, the Eg  
is significantly narrowed by about 52.5%, indicating that  
the effect of Na adsorption on the Eg is much more than that 
of the Na+ adsorption process. 

 

Adsorption of Na/Na+ outside the bowl of corannulene 

The corannulene nanostructure formed by a 
cyclopentane ring fused with four benzene rings named 
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Fig. 4: Partials density of states (PDOS) plot of Na+− SM and Na− SM. (a) PDOS plot of Na+− SM (b) PDOS plot of Na− SM. 
 

                            
                                                       (a)                                                                                               (b) 

 
Fig. 5: Optimized structures of Na+ and Na−SM-i complexes. (a) Na+−SM-i complex (b) Na−SM-i complex. Pink,  

green and blue balls are carbon, sodium and hydrogen atoms. 

 
as a buckybowl. The CN nanostructure have a 
bowl−to−bowl inversion with a barrier energy of  
10.2 kcal/mol at −64 °C [60]. The Na+ ion and Na atom 
were occurred above the plane of the five−membered ring 
of CN with distances of 2.66 and 2.56 Å from carbon atom, 
respectively (Fig. 7). The adsorption energy, Ead, of  

the Na+ ion on the CN is −32.67 kcal/mol that is higher 
than that of the Na neutral (−6.46 kcal/mol) (Table 1).  
The interactions between CN and both Na+ ion and Na 
neutral are stronger than those of surname. 

The HOMO and LUMO levels shift to the lower 
energies (more negative) for the CN−Na+ complex (Fig. 8) 
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Fig. 6: Density of States (DOS) plot of (a) Na+− SM-I; (b) Na−SM-i. 

 

                            
                                                       (a)                                                                                               (b) 
 

Fig. 7: Optimized structures of Na+ and Na−CN complexes. (a) Na+−CN complex (b) Na−CN complex, Distances are in Å.  
Pink, green and blue balls are carbon, sodium and hydrogen atoms. 

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 8: Density of States (DOS) plot of (a) Na+− CN; (b) Na−CN. 

 
which shifting is sharp for LUMO level. The LUMO 
 level considerably stabilized from −1.14 eV in CN  
to −4.66 eV in the CN−Na+ complex (Table 1), leading  
to slightly diminish in the Eg (∼−7.3%). The changes  
in HOMO, LUMO and Eg are illustrated in Fig. 4  
by density of state (DOS) diagrams. The density  
of states, DOS, obviously explains that a new peak formed 

at the Eg gap of pristine mostly arises from Na+ cation 
which leads to diminish slightly in Eg of the Na+−CN 
complex (Fig. 8). 

The Na adsorption over CN mainly leads the SOMO 
unstable because of being an unpaired electron in HOMO 
of the CN−Na complex. This SOMO level is changed from 
−7.56 for CN to −3.51 eV for CN−Na complex which
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                                                       (a)                                                                                               (b) 
 

Fig. 9: Optimized structures of Na+ and Na−CN−i complexes. (a) Na+−CN-i complex (b) Na−CN-i complex. Pink,  
green and blue balls are carbon, sodium and hydrogen atoms. 

 

 is singly occupied. The shape of HOMO is changed 
remarkably by transferring to the adsorbing region.  
The energy of the LUMO level is unchanged as shown  
in Table 1 and Fig. 8. The Eg is significantly decreased  
by 71.2%, indicating that the Na adsorption changes the Eg 
much more than that of the Na+ adsorption. The changes  
in HOMO, LUMO and Eg are demonstrated in Fig. 8 using 
Density of State (DOS) diagrams.  

 
Adsorption of Na/Na+ inside the bowl of corannulene 

The Na+ ion and Na atom were optimized inside  
the plane of the five−membered ring of CN with distances 
of 2.66 and 2.56 Å, respectively (Fig. 9). The adsorption 
energy, Ead, of the Na+ ion inside the CN is −33.14 kcal/mol 
that is higher than that of the Na neutral (−12.85 kcal/mol) (Table 1).  

The changes in the HOMO and LUMO levels and Eg 
for Na/Na+ inside the bowl of CN is more or less similar 
to outside the bowl of CN. The LUMO level considerably 
stabilized from −1.14 eV in CN to −4.85 eV in the Na+−CN−i 
complex (Table 1); causing to slightly diminish in the Eg 
(∼−3.0%). The changes in HOMO, LUMO and Eg are 
illustrate in Fig. 10 by density of state (DOS) diagrams.  

This SOMO level is changed from −7.56 for CN to 
−2.29 eV for Na−CN−i complex which is singly occupied. 
The energy of the LUMO level is almost slightly changed 
from −1.14 to −1.44 eV as shown in Table 1 and Fig. 10. 
As a result of large change in HOMO, the Eg is mainly 
narrowed by about −65.6%, indicating that the effect of Na 
adsorption on the Eg is much more than that of the Na+ 
adsorption process.  
 
Adsorption of Na/Na+ over nanosheet 

The Na+ ion and Na atom were optimized above  
the plane of the six−membered ring of nanosheet  
with distances of 2.68 and 2.62 Å, respectively (Fig. 11).  

The adsorption energy, Ead, of the Na+ ion on the nanosheet 
is −34.3 kcal/mol that is larger than that of the Na neutral 
(−10.81 kcal/mol) (Table 1).  

The HOMO and LUMO levels for nanosheet changes 
to the lower energies for the nanosheet−Na+ complex (Fig. 12). 
The LUMO level mainly stabilized from −1.59 eV  
in nanosheet to −4.63 eV in the nanosheet−Na+ complex 
(Table 1), causing to slightly diminish in the Eg (∼−3.9%). 
The changes in HOMO, LUMO and Eg are illustrate  
in Fig. 12 by Density of State (DOS).  

The Na adsorption mainly causes the SOMO unstable 
because of being an unpaired electron in HOMO of the 
nanosheet−Na complex. This amount of the SOMO level 
is changed from −5.95 to −3.67 eV which is singly 
occupied. The energy of the LUMO level is slightly 
changed as shown in Table 1. The Eg is significantly 
decreased by 58.4%, representing that the Na adsorption 
changes the Eg more than that of the Na+ adsorption.  
The changes in HOMO, LUMO and Eg are demonstrated 
in Fig. 12 using density of state (DOS). 

It was very interesting that distance of Na from CN 
plane is smaller than that of Na+ while distance of Na from 
SM plane is larger than that of Na+. It is seemed that  
the six-membered ring in SM is aromatic which there is  

a strong -cation interaction that leads to decrease distance 
of Na+ and SM plane while five-membered ring in CN  
is not aromatic and the carbon atoms of five-membered 
ring have slightly positive charge which leads to larger 
distance between Na+ and CN plane. 

 

Comparison the nanostructures in the Na+−ion batteries 
(NABs) 

Three kinds of nanostructures proposed as an anode  
for the NIBs. The typical reactions in the anode and 
cathode are the following process [61]: 
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Fig. 10: Density of states (DOS) plot of (a) Na+− CN-i; (b) Na−CN-i. 

 

                            
                                                       (a)                                                                                               (b) 
 

Fig. 11: Optimized structures of Na+ and Na−Sheet complexes. (a) Na+−Sheet complex (b) Na−Sheet complex,  
Distances are in Å. Pink, green and blue balls are carbon, sodium and hydrogen atoms. 

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 12: Density of states (DOS) plot of (a) Na+− Sheet; (b) Na−Sheet. 
 
Anode: Na−nanostructure ↔   (4) 
Na+− nanostructure + e−  

This reaction can be divided into several reactions that 
are presented below: 

Cathode: Na+ + e− ↔ Na      (5) 

The total reaction of the cell can be defined as: 

Na+ + Na−nanostructure ↔     (6) 
Na+−nanostructure + Na + ∆Gcell 

The Nernst equation is used to obtain the cell voltage 
(Vcell) as follows:  
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Table 1: The adsorption energies of atomic Na and Na+ (Ead, kcalmol−1) on different nanostructures. 

Nanostructure Ead EHOMO ELUMO Eg %ΔEg ΔEcell Vcell 

SM −−− −6.95 −0.29 6.67 −−− −−− −−− 

SM/Na -4.60 -3.54 -0.52 3.01 -53.02 −−− −−− 

SM/Na+ -32.34 -10.36 -4.62 5.74 -10.53 -27.74 -1.20 

SM−i/Na -11.50 -3.59 -0.54 3.05 -52.54 −−−  

SM−i/Na+ -34.42 -10.76 -4.64 6.12 -4.59 −22.92 -0.99 

CN −−− −7.56 −1.14 6.42 −−−− −−− −−− 

CN/Na -6.46 -3.51 -1.59 1.92 -71.16 −−− −−− 

CN /Na+ -32.67 -10.84 -4.66 6.18 -7.35 −26.20 -1.14 

CN −i/Na -12.85 -3.74 -1.44 2.29 -65.58 −−−  

CN −i/Na+ -33.14 -11.31 -4.85 6.46 -3.02 −20.29 -0.88 

Sheet −−− -5.95 -1.59 4.36 −−− −−− −−− 

Sheet/Na -10.81 -3.67 -1.86 1.81 −58.41 −−− −−− 

Sheet/Na+ -34.32 -9.16 -4.63 4.53 3.91 -23.51 −1.02 

Energies of HOMO, LUMO, and HOMO−LUMO gap (Eg) in eV. ΔEg indicates the change of Eg of nanostructures after the Na/Na+ adsorption. The total 

energy change (ΔEcell, kcal/ mol ) and cell voltage (V) of the nanostructures based Na−ion battery. 
 
Vcell = − ∆Gcell/zF      (7) 

 Where, F and z are the Faraday constant (96500 C/mol) 
and charge of Na+ (z=1, the cation in electrolyte), 
respectively. The ΔGcell is the Gibbs free energy difference 
of the total reaction of cell. For DFT calculations at 0 K,  
it can be presented: 

ΔGcell = ΔEcell + PΔV – TΔS       (8) 

Theoretical storage capacity was achieved by 
comparing two relative interaction energies. One 
interaction energy is related to interaction between the Na+ 

ion and nanostructure which strong interaction energy 
leads to high cell voltage. Another interaction energy  
is related to interaction between the Na atom and 
nanostructure which weak interaction energy leads to high 
cell voltage. 

In previous reports we assume that the amount of 
volume and entropy contribution are very small (< 0.01 V) 
to the Vcell [62]. Therefore, the Vcell for Na+– or  
Na–nanostructure can be determined by calculating  
the internal energy change (ΔE) from Eqs. (6) and (8) as follows: 

ΔEcell ~ ΔGcell =            (9) 
ENa + ENa+−nanostructure – ENa+ – ENa−nanostructure 

Eq. (9) indicates that the strong interaction between 
Na+ and nanostructure and weak interaction between Na atom 
and nanostructure obtain more negative and high ΔEcell.  
In conclusion, the strong adsorption of Na+ and weak 
adsorption of Na on the nanostructure lead to high Vcell 
(Table 1). The adsorption energy between Na+ and 
nanostructures, Ead, is increased in the order:  SM-i > Sheet 
> CN-i > CN > SM.  The ΔEcell, and Vcell are calculated for 
three nanostructures which presented in Table 1 and 
schemed in Fig. 13. The ΔEcell, and Vcell values for three 
nanostructures in NIBs changed in the same order:  
SM > CN > Sheet > SM-i > CN-i. The largest ΔEcell and 
Vcell values of −27.74 kcal/mol and 1.20 V, respectively, 
belonged to SM. The Vcell for SM is the highest because 
the interaction between SM and the Na neutral is  
the lowest. The strong interaction between Na+ and 
nanostructure and the weak interaction between  
the Na atom and nanostructure lead to higher Vcell amount 
of the NIBs−nanostructure. The ΔEcell and Vcell for 
NIBs−nanosheet are −22.92 kcal/mol and 0.99 V, 
respectively, which are lower than the values of SM.  
The lowest Vcell value belongs to the NIBs−CN−i due to 
highest interaction between the Na neutral and CN−i.  
In general, the Vcell value for NIBs−nanostructures are 
from −0.88 to −1.20 V, makes these nanostructures  
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the promising candidates which could use to manufacture 
of the NIBs as anode. We can report that the interaction 
between the Na neutral and nanostructures play  
a significant role in Vcell respect to the interaction between 
the Na+ neutral and nanostructures. 

 
CONCLUSIONS 

In this research, the adsorption of Na+ and Na on three 
kinds of the nanostructures including sumanene (SM), 
corannulene (CN) and nanosheet was investigated to find  
a suitable anode of NIBs. The interaction between Na+ and 
the surface of nanostructures is obviously stronger than that 
of the Na which reveals that these nanostructures are suitable 
for an anode of NIBs. The energy adsorption, Ead, between 
Na+ and nanosheet was the highest adsorption energy which 
Ead were changed in the order: SM-i > Sheet > CN-i > CN > 
SM. However, the cell voltage, Vcell, was the highest for 
Sumanene. The changes in Vcell of NABs are in the order: SM 
> CN > Sheet > SM-i > CN-i. The interaction between Na+ 
and Na and nanostructures play a remarkable role in 
determination of the cell voltage. The strong interaction 
between Na+ and nanostructures and weak interaction 
between Na and nanostructures led to obtain a high Vcell.  
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