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Abstract A receptive field constitutes a region in the visual

field where a visual cell or a visual operator responds to

visual stimuli. This paper presents a theory for what types of

receptive field profiles can be regarded as natural for an ide-

alized vision system, given a set of structural requirements

on the first stages of visual processing that reflect symmetry

properties of the surrounding world. These symmetry prop-

erties include (i) covariance properties under scale changes,

affine image deformations, and Galilean transformations of

space–time as occur for real-world image data as well as spe-

cific requirements of (ii) temporal causality implying that the

future cannot be accessed and (iii) a time-recursive updating

mechanism of a limited temporal buffer of the past as is nec-

essary for a genuine real-time system. Fundamental struc-

tural requirements are also imposed to ensure (iv) mutual

consistency and a proper handling of internal representa-

tions at different spatial and temporal scales. It is shown

how a set of families of idealized receptive field profiles can

be derived by necessity regarding spatial, spatio-chromatic,

and spatio-temporal receptive fields in terms of Gaussian

kernels, Gaussian derivatives, or closely related operators.

Such image filters have been successfully used as a basis

for expressing a large number of visual operations in com-

puter vision, regarding feature detection, feature classifica-

tion, motion estimation, object recognition, spatio-temporal

recognition, and shape estimation. Hence, the associated
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so-called scale-space theory constitutes a both theoretically

well-founded and general framework for expressing visual

operations. There are very close similarities between recep-

tive field profiles predicted from this scale-space theory and

receptive field profiles found by cell recordings in biological

vision. Among the family of receptive field profiles derived

by necessity from the assumptions, idealized models with

very good qualitative agreement are obtained for (i) spatial

on-center/off-surround and off-center/on-surround receptive

fields in the fovea and the LGN, (ii) simple cells with

spatial directional preference in V1, (iii) spatio-chromatic

double-opponent neurons in V1, (iv) space–time separable

spatio-temporal receptive fields in the LGN and V1, and (v)

non-separable space–time tilted receptive fields in V1, all

within the same unified theory. In addition, the paper presents

a more general framework for relating and interpreting these

receptive fields conceptually and possibly predicting new

receptive field profiles as well as for pre-wiring covariance

under scaling, affine, and Galilean transformations into the

representations of visual stimuli. This paper describes the

basic structure of the necessity results concerning receptive

field profiles regarding the mathematical foundation of the

theory and outlines how the proposed theory could be used

in further studies and modelling of biological vision. It is

also shown how receptive field responses can be interpreted

physically, as the superposition of relative variations of sur-

face structure and illumination variations, given a logarithmic

brightness scale, and how receptive field measurements will

be invariant under multiplicative illumination variations and

exposure control mechanisms.

Keywords Receptive field · Scale space · Gaussian

derivative · Scale covariance · Affine covariance · Galilean

covariance · Illumination invariance · LGN · Primary visual

cortex · Visual area V1 · Functional model · Simple cell ·
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Double-opponent cell · Complex cell · Vision · Theoretical

neuroscience · Theoretical biology

1 Introduction

When light reaches a visual sensor such as the retina, the

information necessary to infer properties about the surround-

ing world is not contained in the measurement of image inten-

sity at a single point, but from the relationships between

intensity values at different points. A main reason for this

is that the incoming light constitutes an indirect source of

information depending on the interaction between geometric

and material properties of objects in the surrounding world

and on external illumination sources. Another fundamental

reason why cues to the surrounding world need to be col-

lected over regions in the visual field as opposed to at sin-

gle image points is that the measurement process by itself

requires the accumulation of energy over non-infinitesimal

support regions over space and time. Such a region in the

visual field for which a visual sensor and or a visual operator

responds to visual input or a visual cell responds to visual

stimuli is naturally referred to as a receptive field (Hubel and

Wiesel 1959, 1962) (see Fig. 1).

If one considers the theoretical and algorithmic problems

of designing a vision system that is going to make use of

incoming reflected light to infer properties of the surrounding

world, one may ask what types of image operations should

be performed on the image data. Would any type of image

operation be reasonable? Specifically, regarding the notion

. . . . .

. . . . .

. . . . .

. . . . .

x_1

x_2

Fig. 1 A receptive field is a region in the visual field for which a

visual sensor/neuron/operator responds to visual stimuli. This figure

shows a set of partially overlapping receptive fields over the spatial

domain with all the receptive fields having the same spatial extent.

More generally, one can conceive distributions of receptive fields over

space or space–time with the receptive fields of different size, different

shape, and orientation in space as well as different directions in space–

time, where adjacent receptive fields may also have significantly larger

relative overlap than shown in this schematic illustration

of receptive fields, one may ask what types of receptive field

profiles would be reasonable? Is it possible to derive a the-

oretical model of how receptive fields “ought to” respond to

visual data?

Initially, such a problem might be regarded as intractable

unless the question can be further specified. It is, how-

ever, possible to study this problem systematically using

approaches that have been developed in the area of computer

vision known as scale-space theory (Iijima 1962; Witkin

1983; Koenderink 1984; Koenderink and Doorn 1992;

Lindeberg 1994a,b, 2008; Sporring et al. 1996; Florack 1997;

ter Haar Romeny 2003). A paradigm that has been developed

in this field is to impose structural constraints on the first

stages of visual processing that reflect symmetry properties

of the environment. Interestingly, it turns out to be possible

to substantially reduce the class of permissible image opera-

tions from such arguments.

The subject of this article is to describe how structural

requirements on the first stages of visual processing as for-

mulated in scale-space theory can be used for deriving ide-

alized models of receptive fields and implications of how

these theoretical results can be used when modelling bio-

logical vision. A main theoretical argument is that idealized

models for linear receptive fields can be derived by necessity

given a small set of symmetry requirements that reflect prop-

erties of the world that one may naturally require an idealized

vision system to be adapted to. In this respect, the treatment

bears similarities to approaches in theoretical physics, where

symmetry properties are often used as main arguments in

the formulation of physical theories of the world. The treat-

ment that will follow will be general in the sense that spatial,

spatio-chromatic, and spatio-temporal receptive fields are

encompassed by the same unified theory.

An underlying motivation for the theory is that due to

the properties of the projection of three-dimensional objects

to a two-dimensional light sensor (retina), the image data

will be subject to basic image transformations in terms of

(i) local scaling transformations caused by objects of differ-

ent sizes and at different distances to the observer, (ii) local

affine transformations caused by variations in the viewing

direction relative to the object, (iii) local Galilean transfor-

mations caused by relative motions between the object and

the observer, and (iv) local multiplicative intensity trans-

formations caused by illumination variations (see Fig. 2).

If the vision system is to maintain a stable perception of

the environment, it is natural to require the first stages of

visual processing to be robust to such image variations. For-

mally, one may require the receptive fields to be covariant

under basic image transformations, which means that the

receptive fields should be transformed in a well-behaved and

well-understood manner under corresponding image trans-

formations (see Fig. 3). Combined with an additional cri-

terion that the receptive field must not create new struc-

123



Biol Cybern (2013) 107:589–635 591

Fig. 2 Visual stimuli may vary substantially on the retina due to geo-

metric transformations and lighting variations in the environment. Nev-

ertheless, the brain is able to perceive the world as stable. This figure

illustrates examples of natural image transformations corresponding to

(left column) variations in scale, (middle column) variations in viewing

direction, and (right column) relative motion between objects in the

world and the observer. A main subject of this paper is to present a

theory for visual receptive fields that make it possible to match recep-

tive field responses between image data that have been acquired under

different image conditions, specifically involving these basic types of

natural image transformations. To model the influence of natural image

transformations on receptive field responses, we first approximate the

possibly nonlinear image transformation by a local linear transforma-

tion at each image point (the derivative), which for these basic image

transformations correspond to (i) local scaling transformations, (ii) local

affine transformations, and (iii) local Galilean transformations. Then,

we consider families of receptive fields that have the property that the

transformation of any receptive field within the family using a locally

linearized image transformation within the group of relevant image

transformations is still within the same family of receptive fields. Such

receptive field families are referred to as covariant receptive fields. The

receptive field family is also said to be closed under the relevant group

of image transformations

tures at coarse scales that do not correspond to simpli-

fications of corresponding finer scale structures, we will

describe how these requirements together lead to idealized

families of receptive fields (Lindeberg 2011) in good agree-

ment with receptive field measurements reported in the lit-

erature (Hubel and Wiesel 1959, 1962; DeAngelis et al.

1995; DeAngelis and Anzai 2004; Conway and Livingstone

2006).

Specifically, explicit functional models will be given of

spatial and spatio-temporal response properties of LGN neu-

rons and simple cells in V1, which will be compared to related

models in terms of Gabor functions (Marcelja 1980; Jones

and Palmer 1987b,a), differences of Gaussians (Rodieck

1965), and Gaussian derivatives (Koenderink and Doorn

1987; Young 1987; Young et al. 2001; Young RA, Lesperance

2001; Lindeberg 1994a,b, 1997, 2011). For chromatic input,

the model also accounts for color-opponent spatio-chromatic

cells in V1. Notably, the diffusion equations that describe the

evolution properties over scale of these linear receptive field

models are suitable for implementation on a biological archi-

tecture, since the computations can be expressed in terms of

communications between neighboring computational units,

where either a single computational unit or a group of com-

putational units may be interpreted as corresponding to a

neuron or a group of neurons.

Compared to previous approaches of learning receptive

field properties and visual models from the statistics of nat-

ural image data (Field 1987; van der Schaaf and van Hateren
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Fig. 3 Consider a vision system that is restricted to using rotationally

symmetric image operations over the spatial image domain only. If such

a vision system observes the same three-dimensional object from two

different views, then the backprojections of the receptive fields onto the

surface of the object will in general correspond to different regions in

physical space over which corresponding information will be weighed

differently. If such image measurements would be used for deriving

correspondences between the two views or performing object recogni-

tion, then there would be a systematic error caused by the mismatch

between the backprojections of the receptive fields from the image

domain onto the world. By requiring the family of receptive fields to

be covariant under local affine image deformations, it is possible to

reduce this amount of mismatch, such that the backprojected receptive

fields can be made similar when projected onto the tangent plane of the

surface by local linearizations of the perspective mapping. Correspond-

ing effects occur when analyzing spatio-temporal image data (video)

based on receptive fields that are restricted to being space–time sepa-

rable only. If an object is observed over time by two cameras having

different relative motions between the camera and the observer, then the

corresponding receptive fields cannot be matched unless the family of

receptive fields possesses sufficient covariance properties under local

Galilean transformations

1996; Olshausen and Field 1996; Rao and Ballard 1998;

Simoncelli and Olshausen 2001; Geisler 2008; Hyvärinen et

al. 2009; Lörincz et al. 2012), the proposed theoretical model

makes it possible to determine spatial and spatio-temporal

receptive fields from first principles and thus without need

for any explicit training stage or gathering of representative

image data. In relation to such learning-based models, the

proposed theory provides a normative approach that can be

seen as describing the solutions that an ideal learning-based

system may converge to, if exposed to a sufficiently large and

representative set of natural image data. For these reasons,

the presented approach should be of interest when modelling

biological vision.

We will also show how receptive field responses can be

interpreted physically as a superposition of relative varia-

tions of surface structure and illumination variations, given

a logarithmic brightness scale, and how receptive field mea-

surements will be invariant under multiplicative illumina-

tion variations and exposure control mechanisms. Despite

the image measurements fundamentally being of an indi-

rect nature, in terms of reflected light from external objects

subject to unknown or uncontrolled illumination, this result

shows how receptive field measurements can nevertheless

be related to inherent physical properties of objects in the

environment. This result therefore provides a formal justifi-

cation for using receptive field responses as a basis for visual

processes, analogous to the way linear receptive fields in the

fovea, LGN and V1 provide the basic input to higher visual

areas in biological vision.

We propose that these theoretical results contribute to an

increased understanding of the role of early receptive fields in

vision. Specifically, if one aims at building a neuro-inspired

artificial vision system that solves actual visual tasks, we

argue that an approach based on the proposed idealized mod-

els of linear receptive fields should require a significantly

lower amount of training data compared to approaches that

involve specific learning of receptive fields or compared to

approaches that are not based on covariant receptive field

models. We also argue that the proposed families of covari-

ant receptive fields will be better at handling natural image

transformations as resulting from variabilities in relation to

the surrounding world.

In their survey of our knowledge of the early visual sys-

tem, Carandini et al. (2005) emphasize the need for func-

tional models to establish a link between neural biology

and perception. Einhäuser and König (2010) argue for the

need for normative approaches in vision. This paper can

be seen as developing the consequences of such ways of

reasoning by deriving functional models of linear receptive

fields using a normative approach. Due to the formulation of

the resulting receptive fields in terms of spatial and spatio-

temporal derivatives of convolution kernels, it furthermore

becomes feasible to analyze how receptive field responses

can be related to properties of the environment using

mathematical tools from differential geometry and thereby

analyzing possibilities as well as constraints for visual

perception.

1.1 Outline of the presentation

The treatment will be organized as follows: Sect. 2 formu-

lates a set of structural requirements on the first stages of

visual processing with respect to symmetry properties of the

surrounding world and in relation to internal representations

that are to be computed by an idealized vision system. Then,

Sect. 3 describes the consequences of these assumptions with

regard to intensity images defined over a spatial domain, with

extensions to color information in Sect. 4. Sect. 5 develops

a corresponding theory for spatio-temporal image data, tak-

ing into account the special nature of time-dependent image

information.

Section 6 presents a comparison between spatial and

spatio-temporal receptive fields measured from biological
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vision to receptive field profiles generated by the presented

spatial, spatio-chromatic, and spatio-temporal scale-space

theories, showing a very good qualitative agreement. Sec-

tion 7 describes how a corresponding foveal scale-space

model can be formulated for a foveal sensor to account for

a spatially dependent lowest resolution with suggestions for

extensions in Sect. 8.

Section 9 relates the contributions in the paper to previous

work in the area in a retrospective manner, and Sect. 10 con-

cludes with a summary and discussion, including an outline

of further applications of how the presented theory can be

used for modelling biological vision.

2 Structural requirements of an idealized visual front

end

The notion of a visual front end refers to a set of processes at

the first stages of visual processing, which are assumed to be

of a general nature and whose output can be used as input to

different later-stage processes, without being too specifically

adapted to a particular task that would limit the applicability

to other tasks. Major arguments for the definition of a visual

front end are that the first stages of visual processing should

be as uncommitted as possible and allow initial processing

steps to be shared between different later-stage visual mod-

ules, thus implying a uniform structure on the first stages

of visual computations (Koenderink et al. 1992; Lindeberg

1994b, Sect. 1.1).

In the following, we will describe a set of structural

requirements that can be stated concerning (i) spatial geom-

etry, (ii) spatio-temporal geometry, (iii) the image measure-

ment process with its close relationship to the notion of scale,

(iv) internal representations of image data that are to be com-

puted by a general purpose vision system, and (v) the para-

meterization of image intensity with regard to the influence

of illumination variations.

The treatment that will follow can be seen as a unifica-

tion, abstraction and extension of developments in the area

of scale-space theory (Iijima 1962; Witkin 1983; Koenderink

1984; Koenderink and Doorn 1992; Lindeberg 1994a,b,

2008; Sporring et al. 1996; Florack 1997; ter Haar Romeny

2003) as obtained during the last decades, see Sect. 9.2 and

(Lindeberg 1996, 2011; Weickert et al. 1999; Duits et al.

2004) for complementary surveys. It will then be shown how

a generalization of this theory to be presented next can be

used for deriving idealized models of receptive fields by

necessity, including new extensions for modelling illumi-

nation variations in the intensity domain. Specifically, we

will describe how these results can be used for computa-

tional neuroscience modelling of receptive fields with regard

to biological vision.

2.1 Static image data over spatial domain

Let us initially restrict ourselves to static (time-independent)

data and focus on the spatial aspects: If we regard the incom-

ing image intensity f as defined on a 2D image plane

f : R
2 → R with Cartesian image coordinates1 denoted by

x = (x1, x2)
T , then the problem of defining a set of early

visual operations can be formulated in terms of finding a

family of operators Ts that are to act on f to produce a fam-

ily of new intermediate image representations2

L(·; s) = Ts f (1)

which are also defined as functions on R
2, i.e., L(·; s) : R

2 →
R. These intermediate representations may be dependent

on some parameter s, which in the simplest case may be

one-dimensional or under more general circumstances multi-

dimensional.

2.1.1 Linearity and convolution structure

If we want these the initial visual processing stages to make as

few irreversible decisions as possible, it is natural to initially

require Ts to be a linear operator such that3

Ts(a1 f1 + a2 f2) = a1Ts f1 + a2Ts f2 (2)

holds for all functions f1, f2 : R
2 → R and all real constants

a1, a2 ∈ R. This linearity assumption implies that any special

properties that we will derive for the internal representation L

will also transfer to any spatial, temporal, or spatio-temporal

derivatives of the image data, a property that will be essential

regarding early receptive fields, since it implies that different

types of image structures will be treated in a similar manner

irrespective of what types of linear filters they are captured

by.

Furthermore, if we want all image positions x ∈ R
2 to

be treated similarly, such that the visual interpretation of an

1 Concerning notation, we will throughout use a notation similar to

physics or mathematics, with scalars and vectors represented by lower

case letters, a ∈ R and x ∈ R
2, (without explicit notational overhead

for vectors) and matrices represented by upper case letters, A or Σ .

Operators that act on functions will be represented by calligraphic sym-

bols, T and A, and we use either lower case or upper case letters for

functions, f and L . The overall convention is that the meaning of a

symbol is defined the first time it is used.

2 In Eq. (1), the symbol “·” at the position of the first argument of L

is a place holder to emphasize that in this relation, L is regarded as

a function and not evaluated with respect to its first argument x . The

following semi-colon emphasizes the different natures of the image

coordinates x and the filter parameters s.

3 More precisely, we will assume that linearity should hold for some

transformation f = z(I ) of the original luminosity values I in units

of local energy measurements. In Sect. 2.3 it will be shown that a log-

arithmic intensity mapping f ∼ log I is particularly attractive in this

respect by allowing for invariance of receptive field responses under

local multiplicative intensity transformations.
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object remains the same irrespective of its location in the

image plane, then it is natural to require the operator Ts to be

shift invariant such that

Ts (S�x f ) = S�x (Ts f ) (3)

holds for all translation vectors �x ∈ R
2, where S�x denotes

the shift (translation) operator defined by (S�x f )(x) =
f (x − �x). Alternatively stated, the operator Ts can be said

to be homogeneous across space.4

The requirements of linearity and shift invariance together

imply that the operator Ts can be described as a convolution

transformation5 (Hirschmann and Widder 1955)

L(·; s) = T (·; s) ∗ f (·) (4)

of the form

L(x; s) =
∫

ξ∈R2

T (ξ ; s) f (x − ξ) dξ (5)

for some family of convolution kernels T (·; s) : R
2 → R.

To be able to use tools from functional analysis, we will

initially assume that both the original signal f and the fam-

ily of convolution kernels T (·; s) are in the Banach space

L2(RN ), i.e. that f ∈ L2(RN ) and T (·; s) ∈ L2(RN ) with

the norm

‖ f ‖2
2 =

∫

x∈RN

| f (x)|2 dx . (6)

Then, also the intermediate representations L(·; s) will be in

the same Banach space and the operators Ts can be regarded

as well defined.

2.1.2 Image measurements at different scales

The reduction in the first stage of visual processing to a set

of convolution transformations raises the question of what

types of convolution kernels T (·; s) could be regarded as

natural? Specifically, we may consider convolution kernels

with different spatial extent. A convolution kernel having a

large spatial support can generally be expected to have the

ability to respond to phenomena at coarser scales, whereas a

convolution kernel with a small spatial support is generally

needed to capture fine-scale phenomena. Hence, it is natural

4 For us humans and other higher mammals, the retina is obviously

not translationally invariant. Instead, finer scale receptive fields are con-

centrated to the fovea in such a way that the minimum receptive field

size increases essentially linearly with eccentricity (see Sect. 7). With

respect to such a sensor space, the assumption about translational invari-

ance should be taken as an idealized model for the region in space where

there are receptive fields above a certain size.

5 The symbol “·” used as placeholder for the first argument of T and

the argument of f in Eq. (4) indicate that the convolution operation “∗”

is performed over the corresponding variable.

to associate a notion of scale with every image measurement.

Let us therefore assume that the parameter s represents such

a scale attribute and let us assume that this scale parameter

should always be nonnegative s ∈ R
N
+ with the limit case

when s ↓ 0 corresponding to an identity operation

lim
s↓0

L(·; s) = lim
s↓0

Ts f = f. (7)

Hence, the intermediate image representations L(·; s) can be

regarded as a family of derived representations parameterized

by a scale parameter s.6

2.1.3 Structural requirements on a scale-space

representation

Semigroup and cascade properties For such image measure-

ments to be properly related between different scales, it is

natural to require the operators Ts with their associated con-

volution kernels T (·; s) to form a semigroup

Ts1Ts2 =Ts1+s2 ⇔ T (·; s1) ∗ T (·; s2)=T (·; s1 + s2). (8)

Then, the transformation between any two different and

ordered7 scale levels s1 and s2 with s2 ≥ s1 will obey the

cascade property

L(·; s2) = T (·; s2 − s1) ∗ T (·; s1) ∗ f

= T (·; s2 − s1) ∗ L(·; s1) (9)

i.e., a similar type of transformation as from the original

image data f . An image representation having these proper-

ties is referred to as a multi-scale representation.

Self-similarity Regarding the choice of convolution kernels

to be used for computing a multi-scale representation, it is

natural to require them to be self-similar over scale (scale

6 With s = (s1, . . . , sN ) representing a multi-dimensional scale para-

meter s ∈ R
N
+ , Eq. (7) should be interpreted as lim|s|↓0 L(·; s) =

lim|s|↓0 Ts f = f with |s| =
√

s2
1 + · · · + s2

N .

7 With s1 = (s1,1, . . . , s1,N ) and s2 = (s2,1, . . . , s2,N ) denoting two

N -dimensional scale parameters, the inequality s2 ≥ s1 should be

interpreted as a requirement that the scale levels s1 and s2 have to

be ordered in the sense that the increment u = s2 − s1 should cor-

respond to a positive direction in parameter space that can be inter-

preted as increasing levels of scale. For example, for the affine spatial

scale-space concept L(x; Σ) to be considered later in Sect. 3, which

for two-dimensional images f can be parameterized by positive semi-

definite 2×2 covariance matrices Σ , the requirement of an ordered and

positive scale direction u between the scale-space representations com-

puted for two different covariance matrices Σ1 and Σ2 means that the

difference between these covariance matrices Σu = Σ2 − Σ1 must be

positive semi-definite. With the corresponding multi-dimensional scale

parameters s1 and s2 expressed as vectors s1 = (Σ1,11,Σ1,12,Σ1,22)

and s2 = (Σ2,11,Σ2,12,Σ2,22) where Σk,i j denote the elements of Σk

for k = 1 and 2, the condition for u = (u1, u2, u3) = s2 − s1 to

correspond to a positive direction in parameter space can therefore be

expressed as u1u3 − u2
2 ≥ 0 and u1 + u3 ≥ 0.
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invariant) in the sense that each kernel T (·; s) can be

regarded as a rescaled version of some prototype kernel T̄ (·).
In the case of a scalar scale parameter s ∈ R+, such a con-

dition can be expressed as

T (x; s) = 1

ϕ(s)
T̄

(

x

ϕ(s)

)

(10)

with ϕ(s) denoting a monotonously increasing transforma-

tion of the scale parameter s. For the case of a multi-

dimensional scale parameter s ∈ R
N
+ , the requirement of

self-similarity over scale can be generalized into

T (x; s) = 1

| det ϕ(s)| T̄ (ϕ(s)−1x) (11)

where ϕ(s) now denotes a non-singular 2 × 2-dimensional

matrix regarding a 2D image domain and ϕ(s)−1 its inverse.

With this definition, a multi-scale representation with a scalar

scale parameter s ∈ R+ will be based on uniform rescalings

of the prototype kernel, whereas a multi-scale representation

based on a multi-dimensional scale parameter might also

allow for rotations as well as non-uniform affine deforma-

tions of the prototype kernel.

Together, the requirements of a semigroup structure and

self-similarity over scales imply that the parameter s gets both

a (i) qualitative interpretation of the notion of scale in terms

of an abstract ordering relation due to the cascade property in

Eq. (9) and (ii) a quantitative interpretation of scale, in terms

of the scale-dependent spatial transformations in Eqs. (10)

and (11). When these conditions are simultaneously satisfied,

we say that the intermediate representation L(·; s) consti-

tutes a candidate for being regarded as a (weak) scale-space

representation.

Infinitesimal generator For theoretical analysis, it is prefer-

able if the scale parameter s can be treated as a continuous

parameter and if image representations at adjacent scales can

be related by partial differential equations. Such relations can

be expressed if the semigroup possesses an infinitesimal gen-

erator (Hille and Phillips 1957; Pazy 1983)

BL = lim
h↓0

T (·; h) ∗ f − f

h
(12)

and imply that the image representations at adjacent scales

can be related by an evolution equation of the form

∂s L(x; s) = (BL)(x; s) (13)

where we would preferably like the operator B to be a partial

differential operator. The infinitesimal generator is the nat-

ural correspondence to a derivative operator for semigroups.

In Eq. (13), we have for simplicity assumed the scale para-

meter s to be a scalar (one-dimensional) parameter. For a

multi-parameter scale space with a scale parameter of the

form s = (s1, . . . , sN ), an analogous concept can be defined

in terms of the directional derivative of the semigroup along

any positive direction u = (u1, . . . , uN ) in the parameter

space

(Du L)(x; s) = (B(u) L)(x; s)

= (u1B1 + · · · + uN BN ) L(x; s) (14)

where each Bk (k = 1 . . . N ) constitutes the infinitesimal

generator for the parameter sk along the unit direction ek in

the N -dimensional parameter space

Bk L = lim
h↓0

T (·; h ek) ∗ f − f

h
(15)

and with the notion of a “positive direction” in parameter

space similar as in footnote 7.

Smoothing property: non-enhancement of local extrema A

further requirement on a scale-space representation is that

convolution with the scale-space kernel T (·; s) should corre-

spond to a smoothing transformation in the sense that coarser-

scale representations should be guaranteed to constitute sim-

plifications of corresponding finer scale representations and

that new image structures must not be created at coarser

scales L(·; s) that do not correspond to simplifications of

corresponding structures in the original data f .

For one-dimensional signals f : R → R, such a condi-

tion can be formalized as the requirement that the number of

local extrema or equivalently the number of zero-crossings

in the data must not increase with scale and is referred to as

non-creation of local extrema (Lindeberg 1990). For higher-

dimensional signals, however, it can be shown that there

are no non-trivial linear transformations guaranteed to never

increase the number of local extrema in an image (Lifshitz

and Pizer 1990; Lindeberg 1990).

For higher-dimensional image data, a particularly useful

generalization of this notion is that local extrema must not be

enhanced with increasing scale (non-enhancement of local

extrema). In other words, if at some scale level s0 a point

(x0; s0) is a maximum (minimum) over the spatial domain

x , i.e., for the mapping x 
→ L(x; s0), then the derivative

with respect to scale at this point must not be positive (nega-

tive). For a scale-space representation based on a scalar scale

parameter, we should hence require (Lindeberg 1990, 1996):

∂s L(x0; s0) ≤ 0 at any local maximum, (16)

∂s L(x0; s0) ≥ 0 at any local minimum. (17)

For a multi-parameter scale space, a corresponding require-

ment on a scale-space representation is that if a point (x0; s0)

is local maximum (minimum) of the mapping x 
→ L(x; s0),

then for every positive direction in the N -dimensional para-

meter space, the directional derivative of the semigroup

(Du L)(x; s) according to Eq. (14) must satisfy (Lindeberg

2011):
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(Du L)(x0; s0) ≤ 0 at any local maximum, (18)

(Du L)(x0; s0) ≥ 0 at any local minimum. (19)

As will be described later, this condition constitutes a strong

restriction on what convolution kernels T (·; s) can be

regarded as scale-space kernels.

Nonnegativity and normalization Regarding the convolution

kernels T (·; s), it is natural to require that any scale-space

kernel should be nonnegative

T (x; s) ≥ 0 (20)

and have unit mass (unit L1-norm)

∫

x∈R2

T (x; s) dx = 1. (21)

Nonnegativity follows from the requirement of non-creation

of new zero-crossings with increasing scale for one-dimensi-

onal signals. Normalization to unit L1-norm can be derived

as a consequence of the requirement of non-enhancement of

local extrema.

2.1.4 Requirements regarding spatial geometry

Rotational symmetry For a multi-scale representation based

on a scalar scale parameter s ∈ R+, it is natural to require

the scale-space kernels to be rotationally symmetric

T (x; s) = h

(

√

x2
1 + x2

2 ; s

)

(22)

for some one-dimensional function h(·; s) : R → R. Such

a symmetry requirement can be motivated by the require-

ment that in the absence of further information, all spatial

directions should be equally treated (isotropy).

For a scale-space representation based on a multi-dimens-

ional scale parameter, one may also consider a weaker

requirement of rotational invariance at the level of a family

of kernels, for example regarding a set of elongated kernels

with different orientations in image space. Then, although

the individual kernels in the filter family are not rotationally

symmetric as individual filters, a collection or a group of such

kernels may nevertheless capture image data of different ori-

entation in a rotationally invariant manner, for example if all

image orientations are explicitly represented or if the recep-

tive fields corresponding to different orientations in image

space can be related by linear combinations.

Affine covariance When considering surface patterns that

are being deformed by the perspective transformation from

the surface of an object to the image plane, a restriction to

rotationally symmetric kernels only will, however, interfere

with the image deformations that occur if the viewing direc-

tion varies in relation to the surface normal. If we approxi-

mate the geometry of an image deformation by the derivative

of the perspective mapping and assume that there are no illu-

mination variations, then such an image deformation can be

modelled by an affine transformation

f ′ = A f (23)

corresponding to

f ′(x ′) = f (x) with x ′ = A x + b (24)

where A is a 2 × 2 matrix and b ∈ R
2 a constant offset.

Specifically, we can at any image point regard such an affine

transformation as a local linear approximation of the per-

spective mapping.

A natural requirement on an idealized vision system that

observes objects whose projections on the image plane are

being deformed in different ways depending on the viewing

conditions is that the vision system should be able to relate

or match the different internal representations of external

objects that are acquired under different viewing conditions.

Such a requirement is natural to enable a stable interpretation

of objects in the world under variations of the orientation of

the object relative to the observer, to enable invariance under

variations of the viewing direction.

Hence, if an internal representation L(·; s) of an image

pattern f has been computed with a (possibly multi-

parameter) scale parameter s, we would like the vision system

to be able to match this internal representation to the internal

representation L ′(·; s′) of an affine transformed image pat-

tern f ′ computed with a different (possibly multi-parameter)

scale parameter s′

L ′(x ′; s′) = L(x; s) (25)

corresponding to

TA(s) A f = ATs f (26)

as reflected in the commutative diagram in Fig. 4, where

s′ = A(s) denotes some appropriate transformation of the

scale parameter. This requirement is referred to as affine

covariance. Within the class of linear operators Ts over a

two-dimensional image domain, it is, however, not possible

to realize such an affine covariance property within a scale-

space concept based on a scalar scale parameter. For two-

dimensional image data, such affine covariance can, how-

ever, be accomplished within a three-parameter linear scale

space.

2.2 Time-dependent image data over a spatio-temporal

domain

Regarding spatio-temporal image data f (x, t), which we

assume to be defined on a 2+1D spatio-temporal domain
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Fig. 4 Commutative diagram for scale-space representations com-

puted under affine deformations of image space. Such an affine trans-

formation may, for example, represent a local linear approximation of

the projective mapping between two different perspective projections

of a surface patch

R
2 × R with x = (x1, x2)

T denoting image space and t

denoting time, it is natural to inherit the above-mentioned

symmetry requirements expressed for the spatial domain.

Hence, corresponding structural requirements as stated in

Sects. 2.1.1, 2.1.2, and 2.1.3 should be imposed on a spatio-

temporal scale space, with space x ∈ R
2 replaced by space–

time (x, t) ∈ R
2 × R and with the scale parameter now

encompassing also a notion of temporal scale τ , such that

the multi-dimensional scale parameter s will be of the form

s = (s1, . . . , sN , τ ).

2.2.1 Additional requirements regarding spatio-temporal

geometry

Galilean covariance For time-dependent image data, it is

natural to also take into explicit account the basic fact that

objects may move relative to the observer. Specifically, con-

stant velocity motion

x ′ = x + v t, (27)

where v = (v1, v2)
T denotes the image velocity, is referred

to as a Galilean transformation of space–time

f ′ = Gv f (28)

corresponding to

f ′(x ′, t ′) = f (x, t) with x ′ = x + v t. (29)

If we assume that the image intensities at corresponding

image points remain constant over time t (the constant bright-

ness assumption),8 such a Galilean model can be regarded as

8 This constant brightness assumption is guaranteed to hold for a Lam-

bertian reflectance model extended with a spatially varying albedo,

if the surface pattern is subject to illumination that is constant over

time for corresponding surface points, see Sect. 2.3 for a more detailed

model of receptive field responses under illumination variations. If the

illumination intensity or the orientation of the surface normal in rela-

tion to the light source varies over time, however, the constant bright-

ness assumption may be violated, or if the reflectance model com-

prises non-Lambertian, e.g., specular components. In such situations, a

motion field computed from the optical flow obtained from the constant

a local linear approximation of a more general motion field

x(t) = (x1(t), x2(t))
T .

Analogously to the previously described affine covariance

property over a spatial domain, a desirable property of an ide-

alized vision system is that it should be able to compute an

internal representation L(x, t; s) of a spatio-temporal pat-

tern f (x, t) that can be related or matched to the internal rep-

resentation of some other spatio-temporal pattern f ′(x ′, t ′)
that moves with a different velocity v relative to the observer.

Therefore, we would like to have the ability to relate an inter-

nal representation of this pattern L ′(x ′, t ′; s′) to the internal

representation L(x, t; s) of the original pattern for some

appropriately transformed scale parameter s′ = Gv(s):

L ′(x ′, t ′; s′) = L(x, t; s) (30)

corresponding to

TGv(s) Gv f = Gv Ts f (31)

as illustrated in the commutative diagram in Fig. 5. Such a

property is referred to as Galilean covariance.

Again, within the class of linear transformations Ts , it

is not possible to realize such a Galilean covariance prop-

erty within a spatio-temporal scale concept based solely

on a scalar spatial scale parameter s ∈ R and a scalar

temporal scale parameter τ ∈ R. As will be shown later,

Galilean covariance can, however, be achieved within a four-

parameter linear spatio-temporal scale space.

Footnote 8 continued

brightness assumption may therefore be different than the projected

motion field of physical particles in the world. This situation can on the

other hand be improved by instead applying a constancy assumption to

spatial derivatives of the image intensity instead of the original zero-

order image intensity. As explained in Sect. 2.3, such an assumption will

in the specific case of a logarithmic brightness scale cancel the influence

of local multiplicative illumination variations. By furthermore applying

the constancy assumption to the output from several derivative opera-

tors simultaneously and additionally combining this assumption with

an assumption of local coherence of the motion, e.g., in terms of a low

parameter motion model over local regions in image space, one may

additionally address the ambiguity of the aperture problem, provided

that the local region of image space at which the low parameter image

model is applied contains a sufficiently rich distribution of image struc-

tures of different orientations. Otherwise, the aperture problem states

that under the assumption of constant brightness of corresponding phys-

ical points over time, only the motion component that is parallel to the

local image gradient can be computed. The notion a Reichardt detec-

tor (Reichardt 1961; Reichardt and Schögl 1988) also addresses this

issue by delay-coupled receptive fields in the retina. For the purpose

of describing motion selective and motion-adapted properties of recep-

tive fields, we shall, however, here for simplicity of presentation model

temporal motions in terms of local Galilean transformations applied to

image intensities, bearing in mind that this model can in a straightfor-

ward manner be transferred to the assumption of constancy of spatial

derivative responses over time. Indeed, the spatio-temporal biological

receptive fields that we shall describe in more detail in Sect. 6.3.2 do

all support such a view by all comprising nonzero first, second, or third

orders of spatial differentiation.
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Fig. 5 Commutative diagram for a spatio-temporal scale-space rep-

resentation computed under a Galilean transformation of space–time.

Such a constant velocity motion may, for example, represent a local

linear approximation of the projected motion field for corresponding

image points under relative motions between objects in the world and

the visual observer

Temporal causality When dealing with time-dependent

image data, another structural requirement arises because of

the basic fact that the future cannot be accessed. Hence, for

any real-time computer vision system or a biological organ-

ism that interacts with the world, the convolution kernel must

be time-causal in the sense that its values must be zero regard-

ing any access to the future

T (x, t; s) = 0 if t < 0. (32)

When analyzing pre-recorded video data in an off-line sit-

uation, we may, however, decide to relax this condition to

simplify the computations.

2.2.2 Specific constraints regarding a real-time system

Time recursivity and temporal memory When dealing with

spatio-temporal image data in a real-time setting, we cannot

expect the vision system to have direct access to all infor-

mation from the past, since we cannot assume a computer

vision system or a biological organism to store a complete

recording of all visual information it has seen.

If we assume that the vision system should compute inter-

nal image representations at different temporal scales, the

only reasonable approach will therefore be that these com-

putations have to be expressed in terms of computations on

some internal temporal buffer M(x, t), which we assume is

to be much more condensed than a complete video record-

ing of the past. Such an internal representation is referred

to as a temporal memory, and the restriction of the set of

possible computations to a combination of the current image

data f (x, t) with such a compact temporal memory M(x, t)

is referred to as time recursivity. Specifically, this temporal

memory M(x, t) must be updated over time t according to

some time-recursive model.

Given the assumption that the vision system should com-

pute an internal scale-space representation L(x, t; s, τ ) at

different temporal scales τ (where we have now changed the

notation and separated the spatial scale parameter s from the

temporal scale parameter τ ), a particularly attractive solution

is if this internal representation can also serve as the inter-

nal temporal memory M(x, t; τ) for corresponding tempo-

ral scales. Let us therefore require that the spatio-temporal

scale-space representation L(x, t; s, τ ) should be updated

according to a time-recursive evolution equation over scale

and time of the form (Lindeberg 2011, section 5.1.3,

page 57)

L(x, t2; s2, τ )

=
∫

ξ∈RN

∫

ζ≥0

U (x−ξ, t2−t1; s2−s1, τ, ζ )

× L(ξ, t1; s1, ζ ) dζ dξ

+
∫

ξ∈RN

t2
∫

u=t1

B(x−ξ, t2−u; s2, τ ) f (ξ, u) dξ du (33)

for any pair of scale levels s2 ≥ s1 and any two time moments

t2 ≥ t1, where

– the kernel U performs the update on the internal repre-

sentation L while simultaneously respecting a cascade

property for L over spatial scales s and

– the kernel h incorporates new information from the new

image data f (x, t) that arrive between t = t1 and t = t2.

Non-enhancement of local extrema in a time-causal and time-

recursive setting When formalizing the notion of a smooth-

ing operation in a time-causal and time-recursive context,

where the internal temporal scale levels τ are also used as

the internal temporal buffer of past information, it turns out

to be both useful and necessary to reformulate the require-

ment of non-enhancement of local extrema in the following

way, to take into the fact that at any temporal moment t0, we

will have access to image data over space x , spatial scales s,

and temporal scales τ , but no direct access to image data in

the future or from the past:

If at some spatial scale s0 and time moment t0 a point

(x0, τ0) is a local maximum (minimum) for the mapping

(x, τ ) → L(x, t0; s0, τ ), then for every positive direc-

tion u = (u1, . . . , uN , uN+1) in the N + 1-dimensional

space consisting of the N -dimensional spatial scale para-

meter s complemented by time t , the directional derivative

(Du L)(x, t; s, τ ) of the spatio-temporal scale-space repre-

sentation in this direction u must satisfy (Lindeberg 2011,

equations (79)–(80), page 52):

(Du L)(x0, t0; s0, τ0) ≤ 0 at any local maximum, (34)

(Du L)(x0, t0; s0, τ0) ≥ 0 at any local minimum. (35)

This formulation constitutes a generalization of the non-en-

hancement condition (18) from a regular multi-parameter

scale space to a time-recursive multi-parameter scale space.
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Both of these formulations imply a strong smoothing effect

over spatial scales s. For a non-causal multi-parameter scale-

space applied to space–time in a non-recursive setting where

time t is treated in an essentially similar way as space x ,

non-enhancement of local extrema according to (18) implies

a strong evolution property over temporal scales τ . The con-

ceptual difference with this time-recursive formulation is that

the strong temporal smoothing property, as imposed by non-

enhancement of local extrema, is instead expressed in terms

of the evolution properties over time t and not over temporal

scales τ .

Notably, this formulation of a temporal evolution prop-

erty has an interesting interpretation of enforcing a smooth

(stabilizing) temporal behavior of the internal representation

L(x, t; s, τ ) of the surrounding world as the spatio-temporal

data f (x, t) varies over time t .

2.3 Influence of illumination variations

The above-mentioned symmetry requirements essentially

refer to the geometry of space and space–time and its relation

to image measurements over non-infinitesimal regions over

space or space–time as formalized into the notion of a scale-

space representation. Regarding the actual image intensities,

these have so far been assumed to be given beforehand.

We may, however, consider different ways of parameter-

izing the intensity domain. Essentially, any monotonic inten-

sity transformation will preserve the ordering of the intensity

values from dark to bright. The perceptual impression of an

image may, however, be substantially different after a nonlin-

ear intensity transformation. Hence, one may ask whether we

should assume the image data f to be proportional to image

irradiance f ∼ I (in units of power per unit area), some self-

similar power of image irradiance f ∼ I γ or whether there

is a better choice?

Logarithmic brightness scale Given the huge range of

brightness variations under imaging natural conditions (a

range corresponding to a factor of the order of 1010 between

the darkest and brightest cases for human vision), it is natural

to represent the image brightness on a logarithmic scale:

f (x) ∼ log I (x) (time-independent images),

f (x, t) ∼ log I (x, t) (spatio-temporal image data).
(36)

Such a logarithmic scale is also reflected in the construction

of most visual sensors (cameras), where aperture steps and

exposure times are logarithmically distributed to handle the

large range of brightness variations that occur under varying

illumination conditions. A local adaptation of the sensitiv-

ity of the photoreceptors to an average illumination level can

also be seen as implementing an approximation of a logarith-

mic transformation, provided that both the baseline and the

sensitivity regarding deviations from the baseline are adapted

in a corresponding manner.

2.3.1 Behavior under illumination variations: spatial

image data

In this section, we will express properties of a logarithmic

brightness scale in relation to a physical illumination model

and image measurements in terms of receptive fields.

Projection model Consider a planar perspective camera

model with X = (X1, X2, X3)
T denoting world coordinates

with the X3-direction perpendicular to the image plane and

with the image coordinates (x1, x2)
T for simplicity expressed

in units of the focal length f , leading to the perspective pro-

jection equations (assuming that X3 > 0)

x = (x1, x2)
T =

(

X1

X3
,

X2

X3

)T

. (37)

Let us furthermore assume that the incoming light is collected

by a thin lens with diameter d.

Model for image irradiance Then, given that the image irra-

diance I is proportional to the surface radiance R along the

direction from a point X on the surface toward its projection

X im = (x1, x2, 1)T × f on the image plane

I (x) ∼ R(X) (38)

or more specifically (Horn 1986, page 208)

I (x)= R(X)
π

4

(

d

f

)

cos4 φ(X)=Ccam( f̃ )R(X) cos4 φ(X)

(39)

with the ratio f̃ = f/d referred to as the effective f-number,

and with a spatially varying reduction in image intensities

toward the periphery of the image (natural vignetting) deter-

mined by the geometric factor9 cos4 φ(X) with

cos φ(X) = X3
√

X2
1 + X2

2 + X2
3

= 1
√

1 + x2
1 + x2

2

= cos φ(x). (40)

9 Note that the form of the vignetting effect may be different for lens

systems composed of several lenses, and that lens systems are usually

constructed to reduce the vignetting effect over some central part of the

field of view. Notably, this natural vignetting effect will not be present

with a spherical camera geometry, which is of high relevance with regard

to biological vision.
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From this expression, it is clear that the proportionality

constant in Eq. (38) depends on (i) the internal geometry of

the visual sensor as captured by the constant Ccam( f̃ ) and

(ii) the angle φ(x) between the viewing direction and the

surface normal of the image plane.

Model for surface reflectance Let us next assume that the

surface reflectance R in the direction from the point X =
(X1, X2, X3)

T on the surface toward its projection X im =
(x1, x2, 1)T on the image planed can be modelled as pro-

portional to an albedo factor ρ determined by the surface

material and the amount of incoming illumination i

R(X) ∼ ρ(X) i(X) (41)

with the implicit assumption that the same amount of light is

emitted along all directions from the surface.

This model has a similar behavior as Lambertian surface

model, with the extension that the surface may be regarded

as “gray” by not reflecting all incident light. Please note,

however, that this reflectance model constitutes a substantial

simplification of the bidirectional reflectance function and

does not comprise, e.g., specularities or materials with dif-

fraction grating effects.

For an illumination field that is not determined by a point

source only, the entity i(X) can be seen as the integration

of the incoming light i(X, θ, ϕ) from all directions on the

northern hemisphere H defined by the spherical coordinates

θ ∈ [0, π/2] and ϕ ∈ [0, 2π ] relative to the surface normal

at X such that

i(X) =
∫

H

i(X, θ, ϕ) cos θ sin θ dθ dϕ (42)

where the factor cos θ accounts for foreshortening and the

factor sin θ is the integration measure for spherical coordi-

nates.

Combined brightness model By combining the illumination

model in Eqs. (39) and (41) with the logarithmic bright-

ness scale in Eq. (36) and by redefining the functions ρ(X)

and i(X) such that their values for three-dimensional world

coordinates X can be accessed from corresponding projected

image coordinates x according to ρ(x) and i(x), we obtain

f (x)= log ρ(x)+log i(x)+log Ccam( f̃ )−2 log(1+x2
1 +x2

2 )

(43)

which provides an explicit model for how the image bright-

ness f depends on

(i) properties of surfaces of objects in the world as con-

densed into the spatially dependent albedo factor ρ(x)

with the implicit understanding that this entity may in

general refer to different surfaces in the world depending

on the viewing direction (x1, x2, 1)T and thus the image

position x = (x1, x2)
T ,

(ii) properties of the illumination field as reflected in the spa-

tially dependent illumination i(x), which also may refer

to the amount of incoming light on different surfaces in

the world depending on the value of x ,

(iii) geometric properties of the camera as condensed into a

dependency on the effective f -number f̃ captured by

Ccam( f̃ ), and

(iv) a geometric natural vignetting effect of the explicit form

V (x) = V (x1, x2) = −2 log(1 + x2
1 + x2

2 ).

In the following, we shall develop consequences of this

image formation model concerning invariance properties to

the effective f -number and multiplicative illumination trans-

formations, given the specific choice of a logarithmic bright-

ness scale.

Invariance to the effective f-number A noteworthy property

of the model in Eq. (43) is that if we disregard effects of

focal blur (not modelled here), then the influence due to the

internal focal distance f and the diameter d of the camera will

be cancelled, if we differentiate this expression with respect

to space x

(∂xα f )(x) = (∂
x

α1
1 x

α2
2

f )(x1, x2)

= ∂xα

(

log ρ(x)+log i(x)−2 log(1+x2
1 +x2

2 )
)

(44)

where α = (α1, α2) constitutes a multi-index notation.

Hence, with a logarithmic brightness scale (and disregard-

ing effects of focal blur), any spatial derivative operator will

be invariant to variations in the effective f-number (as well

as other multiplicative exposure parameters).

Invariance to multiplicative illumination transformations

Moreover, if we consider image measurements from the same

scene using a different illumination field i ′(x) proportional

to the original illumination field

i ′(x) = Cillum i(x), (45)

then it follows that the influence of Cillum

f ′(x) = log ρ(x)+log Cillum+log i(x)+log Ccam( f̃ )

−2 log(1+x2
1 +x2

2 )= f (x)+log Cillum (46)

will also be cancelled after spatial differentiation

(∂xα f ′)(x) = (∂xα f )(x) (47)

Therefore, with a logarithmic brightness scale, any spa-

tial derivative operator will be invariant to multiplicative

illumination transformations. The influence of the constant
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log Cillum will also disappear after filtering with a kernel hav-

ing integral zero, i.e., equal positive and negative contribu-

tions.

Relative measurements of physical entities Furthermore,

regarding, e.g., any first-order derivative ∂xk
with k equal

to 1 or 2

(∂xk
f )(x1, x2) = (∂xk

ρ)(x1, x2)

ρ(x1, x2)
+ (∂xk

i)(x1, x2)

i(x1, x2)

− 4xk

1 + x2
1 + x2

2

(48)

the interpretation of this first-order spatial derivative operator

is that it responds to relative variations of the physical entities

surface albedo ρ(x) and the illumination i(x) (where we

assume these quantities to always be strictly positive and

never becoming equal to zero):

– For a smooth surface with a spatially dependent surface

pattern ρ(X), the first term ∂xk
ρ/ρ reflects inherent rela-

tive spatial variations of this surface pattern as deformed

by the perspective projection model in analogy with the

affine deformation model (24).

– The second term ∂xk
i/ i reflects relative spatial variations

in the illumination field i as arising from the interaction

between the external illumination field i(X, θ(X), ϕ(X))

and the local surface geometry (θ(X), ϕ(X)) at every

surface point X according to (42).

– The third term (∂xk
V )(x) = (∂xk

V )(x1, x2) = 4xk/(1 +
x2

1 + x2
2 ) constitutes a geometric bias due to vignetting

effects inherent to the camera. (Please note that the image

coordinates in this treatment are expressed in units of the

focal length with |x | =
√

x2
1 + x2

2 ≪ 1 in the central

field of view.) This term will disappear for a spherical

camera geometry.

If the surface albedo ρ(x) and the illumination field i(x) are

also measured on a logarithmic scale, then the algebraic rela-

tionship between derivatives of image intensity f and deriv-

atives of the physical entities ρ(x) and i(x) will be simple

also for any order of differentiation

(∂xα f ′)(x) = ∂xα (log ρ(x))

+∂xα (log i(x)) + ∂xα (log V (x)). (49)

Invariance properties of spatial receptive fields involv-

ing spatial derivatives There is an interesting relationship

between the cancelling of multiplicative illumination trans-

formations in Eq. (44) and image measurements in terms of

receptive fields. If we consider the derived internal scale-

space representation L of a signal f and compute any spatial

derivative of this representation according to

∂xα L = ∂xαTs f = Ts ∂xα f

= Ts ∂xα (log ρ + log i + log V ) (50)

then it follows that the effect of any multiplicative illumina-

tion transformation will be invisible to image measurements

in terms of receptive fields ∂xαTs that involve spatial deriv-

atives. Similarly, besides effects of focal blur, the intensity

dependency due to variations of the effective f -number f̃

will also cancel. Hence, with a logarithmic brightness scale,

image measurements in terms of receptive fields that involve

spatial derivatives (or more generally any receptive field with

its integral equal to zero) will be invariant under multiplica-

tive illumination transformations and exposure conditions,

with the latter corresponding to variations of the exposure

time, the aperture and the ISO number of the sensor in a

digital camera, or the diameter of the pupil and the pho-

tosensitivity of the photoreceptors in biological vision. The

remaining response is a superposition of relative variations in

surface patterns and illumination variations, with a position-

dependent bias due to the vignetting effect.

It should be noted, however, that some care is needed con-

cerning the differentiability properties of the image data. For

images acquired from a natural world, there will in general

be discontinuities in image brightness f , due to discontinu-

ities in depth, surface orientation, illumination, or the albedo

of the surface patterns, which implies that we would gen-

erally expect to obtain strong spikes in the output if plain

derivative operators would be applied to natural image data.

The use of receptive field-based derivative operations, how-

ever, regularizes this problem. For the families of smooth-

ing kernels T (·; s) that can be derived from the requirement

of non-enhancement of local extrema, it can be shown that

the scale-space representation L(·; s) will indeed become

infinitely differentiable after any non-infinitesimal amount

of smoothing s > 0 if we assume bounded brightness data

| f (x)| < C . Hence, the output from the receptive field-based

derivative operators ∂xα T (·; s) will always be well defined

and the validity of the results in Eqs. (44) and (50) can be for-

mally established with (∂xα f )(x) replaced by (∂xα L)(x; s):

∂xα L = ∂xαTs (log ρ + log i + log V ). (51)

Indeed, the notion of receptive field-based derivative approx-

imations can be regarded as necessary to make these compu-

tations of image derivatives valid. The assumption of linearity

as a basic scale-space axiom in Eq. (2) can also be motivated

from the form of this expression, by making it possible to

interpret the receptive field responses as a linear superpo-

sition of relative variations in surface patterns and relative

variations in the illumination field. Such an interpretation

would not be possible if the smoothing operator Ts would be

nonlinear.
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Scale-space properties of receptive field measurements

involving spatial derivatives Due to the linearity property,

receptive field measurements involving spatial derivatives

∂xα L will possess essentially similar scale-space properties

over scales as possessed by the zero-order scale-space repre-

sentation L of the original illumination pattern f as described

in Sect. 2.1.3, with the main difference that the limit case in

Eq. (7) when the scale parameter s tends to zero has to be

replaced by

lim
s↓0

Lxα (·; s) = lim
s↓0

∂xαTs f = ∂xα f (52)

provided that the image data f have sufficient differentiabil-

ity properties.

2.3.2 Behavior under illumination variations:

spatio-temporal image data

Invariance properties of spatial receptive fields involving

spatio-temporal derivatives For spatio-temporal image data,

the corresponding image formation model becomes

f (x, t) = log ρ(x, t) + log i(x, t) + log Ccam( f̃ (t))

− 2 log(1 + x2
1 + x2

2 ) (53)

if we allow the effective f -number to depend on time t . If

we measure such spatio-temporal image data using a spatio-

temporal receptive field with a spatio-temporal scale para-

meter s = (s1, . . . , sN , τ ) that involves integration over both

space x and time t , and if we differentiate such a representa-

tion with respect to both space and time

∂xα tβ L = ∂xα tβ (Ts f ) =
(

∂xα tβ Ts

)

f = Ts ∂xα tβ f

= Ts ∂xα tβ (log ρ + log i), (54)

then it follows that the influence of the possibly time-

dependent effective f -number will be cancelled after any

spatial derivative operation with |α| > 0 (and so will the

influence be of any other possibly time-dependent multiplica-

tive exposure control mechanism).

Regarding temporal derivatives, it follows that the influ-

ence of the vignetting effect V (x) will be cancelled by any

temporal derivative operator with β ≥ 0. The temporal deriv-

ative operator will also suppress the effect of any other solely

spatial illumination variation.

Galilean covariant temporal derivative concept When con-

sidering temporal derivatives of spatio-temporal data com-

puted for an object that moves with image velocity v =
(v1, v2)

T relative to the observer, it is natural to consider

velocity-adapted temporal derivatives ∂t̄ along the direction

of motion according to

∂t̄ = ∂t + vT ∇x = ∂t + v1 ∂x1 + v2 ∂x2 (55)

so as to obtain a temporal derivative concept that commutes

with Galilean transformations. Such velocity-adapted tempo-

ral derivatives make it possible to compute Galilean covari-

ant image representations based on receptive fields involving

temporal derivatives, in analogy with the previous treatment

of Galilean covariance in connection with Eq. (31).

2.3.3 Summary regarding intensity and illumination

variations

To summarize, this analysis shows that with image inten-

sities parameterized on a logarithmic brightness scale and

provided that the smoothing operation Ts has sufficient regu-

larizing properties to make the computation of image deriv-

atives well defined, receptive field responses in terms of spa-

tial and spatio-temporal derivatives have a direct physical

interpretation as the superposition of

– relative variations in the albedo of the observed surface

patterns corresponding to the term ∂xα tβ (Ts log ρ(x)) in

(54), and

– relative variations in the illumination field corresponding

to the term ∂xα tβ (Ts log i(x)) in (54)

with a geometric bias caused by vignetting effects that dis-

appears for temporal derivatives with β > 0. Moreover, such

receptive field measurements are invariant under multiplica-

tive illumination transformations as well as other multiplica-

tive exposure control mechanisms.

3 Spatial domain with pure intensity information

We shall now describe how the structural requirements on

an idealized vision system as formulated in Sect. 2.1 restrict

the class of possible image operations at the first stages of

visual processing. For image data f : R
2 → R defined over

a two-dimensional spatial domain, let us assume that the

first stage of visual processing as represented by the operator

Ts should be (i) linear, (ii) shift invariant, and (iii) obey a

semigroup structure over spatial scales s, where we also have

to assume (iv) certain regularity properties of the semigroup

Ts over scale s in terms of Sobolev norms10 to guarantee

10 To ensure sufficient differentiability properties such that an infin-

itesimal generator exists and the resulting multi-scale representation

obtained by convolution with the semigroup of convolution kernels can

be differentiated with respect to both space and scale such that the

requirement of non-enhancement of local extrema can be applied, we do

formally for an N -dimensional spatial domain require the semigroup Ts

to be C1-continuous such that limh↓0

∥

∥

∥

1
h

∫ h

s=0 T (s) f ds − f

∥

∥

∥

H k (RN )
=

0 should hold for some k > N/2 and for all smooth functions

f ∈ L1(RN )∩C∞(RN ) with ‖·‖H k (RN ) denoting the L2-based Sobolev
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sufficient differentiability properties with respect to space

x ∈ R
2 and scale s. Let us furthermore require (v) non-

enhancement of local extrema to hold for any smooth image

function f ∈ C∞(R2) ∩ L1(R2).

Then, it can be shown (Lindeberg 2011, Theorem 5, page

42) that these conditions together imply that the scale-space

family L must satisfy a diffusion equation of the form

∂s L = 1

2
∇T

x (Σ0∇x L) − δT
0 ∇x L (56)

with the notation ∇x = (∂x1 , ∂x2)
T for the gradient operator,

and with initial condition L(·; 0) = f (·) for some posi-

tive semi-definite 2 × 2 covariance matrix Σ0 and for some

2D vector δ0, where the covariance matrix Σ0 describes the

shape of the underlying smoothing kernel and the vector δ0

describes the spatial offset or the drift velocity of a non-

symmetric smoothing kernel. In terms of convolution trans-

formations, this scale space can equivalently be constructed

by convolution with affine and translated Gaussian kernels

g(x; Σs, δs) = 1

2π
√

det Σs

e−(x−δs )
T Σ−1

s (x−δs )/2 (57)

which for a given Σs = s Σ0 and a given δs = s δ0 satisfy

the diffusion equation (56).

3.1 Gaussian receptive fields

If we require the corresponding convolution kernels to be

rotationally symmetric, then it follows that they will be Gaus-

sians

T (x; s) = g(x; s) = 1

2πs
e−xT x/2s = 1

2πs
e−(x2

1+x2
2 )/2s

(58)

with corresponding Gaussian derivative operators

(∂xα g)(x; s) = (∂
x

α1
1 x

α2
2

g)(x1, x2; s)

= (∂
x

α1
1

ḡ)(x1; s) (∂
x

α2
2

ḡ)(x2; s) (59)

(with α = (α1, α2) where α1 and α2 denote the order

of differentiation in the x1- and x2-directions, respec-

tively) as shown in Fig. 6 with the corresponding one-

dimensional Gaussian kernel and its Gaussian derivatives of

the form:

ḡ(x1; s) = 1√
2πs

e−x2
1/2s, (60)

ḡx1(x1; s) = − x1

s
ḡ(x1; s) = − x1√

2πs3/2
e−x2

1/2s, (61)

Footnote 10 continued

norm ‖u‖H k (RN ) =
(

∫

ω∈RN

(

1 + |ω|2
)k |û(ω)|2dω

)1/2
and û denoting

the Fourier transform of u over R
N ; see Lindeberg (2011, Sect. 3.2 and

“Appendix A”) regarding details.

Fig. 6 Spatial receptive fields formed by the 2D Gaussian kernel with

its partial derivatives up to order two. The corresponding family of

receptive fields is closed under translations, rotations, and scaling trans-

formations, meaning that if the underlying image is subject to a set of

such image transformations, then it will always be possible to find some

possibly other receptive field such that the receptive field responses of

the original image and the transformed image can be matched

Fig. 7 Spatial receptive fields formed by affine Gaussian kernels and

directional derivatives of these, here using three different covariance

matrices Σ1, Σ2, and Σ3 corresponding to the directions θ1 = π/6,

θ2 = π/3, and θ3 = 2π/3 of the major eigendirection of the covariance

matrix and with first- and second-order directional derivatives com-

puted in the corresponding orthogonal directions ϕ1, ϕ2, and ϕ3. The

corresponding family of receptive fields is closed under general affine

transformations of the spatial domain, including translations, rotations,

scaling transformations, and perspective foreshortening (although this

figure only illustrates variabilities in the orientation of the filter, thereby

disregarding variations in both size and degree of elongation)
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ḡx1x1(x1; s) = (x2
1 − s)

s2
ḡ(x1; s) = (x2

1 − s)√
2πs5/2

e−x2
1/2s .

(62)

Such Gaussian functions have been previously used for mod-

elling biological vision by Young (1987), who has shown

that there are receptive fields in the striate cortex that can be

well modelled by Gaussian derivatives up to order four. More

generally, these Gaussian derivative operators or approxima-

tions thereof can be used as a general basis for expressing

image operations such as feature detection, feature classi-

fication, surface shape, image matching, and image-based

recognition (Iijima 1962; Witkin 1983; Koenderink 1984;

Koenderink and Doorn 1992; Lindeberg 1994a,b, 1998a,b,

2008; Florack 1997; Schiele and Crowley 1996, 2000; Lowe

1999, 2004; Chomat et al. 2000; ter Haar Romeny 2003;

Linde and Lindeberg 2004, 2012; Bay et al. 2008). Specif-

ically, this receptive field model makes it possible to com-

pute scale-invariant image features and image descriptors

(Crowley 1981; Crowley and Stern 1984; Lindeberg 1998a,b,

1999, 2013; Lowe 1999, 2004; Schiele and Crowley 2000;

Chomat et al. 2000; Bay et al. 2008). Other necessity results

concerning Gaussian and Gaussian derivative kernels have

been presented by Iijima (1962), Koenderink (1984), Koen-

derink and Doorn (1992), Babaud et al. (1986), Yuille and

Poggio (1986), Lindeberg (1990, 1994b, 1996), and Florack

and Haar Romeny (1992).

3.2 Affine-adapted Gaussian receptive fields

If we relax the requirement of rotational symmetry into a

requirement of mirror symmetry through the origin, then it

follows that the convolution kernels must instead be affine

Gaussian kernels

T (x; s) = g(x; Σ) = 1

2π
√

det Σ
e−xT Σ−1x/2 (63)

where Σ denotes any symmetric positive semi-definite 2×2

matrix. This affine scale-space concept is closed under affine

transformations, meaning that if we for two affine-related

images

fL(ξ) = fR(η) where η = A ξ + b (64)

define corresponding scale-space representations according

to

L(·; ΣL) = g(·; ΣL) ∗ fL(·)
R(·; ΣR) = g(·; ΣR) ∗ fR(·), (65)

then these scale-space representations will be related accord-

ing to (Lindeberg 1994b; Lindeberg and Gårding 1997)

L(x; ΣL) = R(y; ΣR) (66)

where

ΣR = A ΣL AT and y = A x + b. (67)

In other words, given that an image fL is affine transformed

into an image fR , it will always be possible to find a trans-

formation between the scale parameters sL and sR in the two

domains that make it possible to match the corresponding

derived internal representations L(·; sL) and R(·; sR).

Figure 7 shows a few examples of such kernels in dif-

ferent directions with the covariance matrix parameterized

according to

Σ =
(

λ1 cos2 θ + λ2 sin2 θ (λ1 − λ2) cos θ sin θ

(λ1 − λ2) cos θ sin θ λ1 sin2 θ + λ2 cos2 θ

)

(68)

with λ1 and λ2 denoting the eigenvalues and θ the orienta-

tion. Directional derivatives of these kernels can in turn be

obtained from linear combinations of partial derivative oper-

ators according to

∂ϕm L = (cos ϕ ∂x1 + sin ϕ ∂x2)
m L

=
m

∑

k=0

(

m

k

)

cosk ϕ sinm−k ϕ L
xk

1 xm−k
2

. (69)

This “steerability” property is a basic consequence of the

definition of directional derivatives and has been popularized

for image processing applications by Freeman and Adelson

(1991).

With respect to biological vision, the affine Gaussian ker-

nels as well as directional derivatives of these can be used

for modelling receptive fields that are oriented in the spatial

domain, as will be described in connection with Eq. (111) in

Sect. 6. For computational vision, they can be used for com-

puting affine invariant image features and image descriptors

for, e.g., cues to surface shape, image-based matching, and

recognition (Lindeberg 1994b; Lindeberg and Gårding 1997;

Baumberg 2000; Mikolajczyk and Schmid 2004; Tuytelaars

and Gool 2004; Lazebnik et al. 2005; Rothganger et al.

2006).

Figure 8 shows the distributions of affine receptive fields

of different orientations and degrees of orientation as they

arise from local linearizations of a perspective projection

model if we assume that the set of surface directions in the

world is on average uniformly distributed in the world and if

the distributions of the local surface patterns on these object

surfaces are in turn without dominant directional bias and

uncoupled to the orientations of the local surface patches.

In our idealized model of receptive fields, all these receptive

fields can be thought of as being present at every position in

image space and corresponding to a uniform distribution on a

hemisphere.
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Fig. 8 Distributions of affine Gaussian receptive fields corresponding

to a uniform distribution on a hemisphere regarding (top) zero-order

smoothing kernels and (bottom) first-order derivatives. In the most ide-

alized version of the theory, one can think of all affine receptive fields

as being present at any position in the image domain. When restricted to

a limited number of receptive fields in an actual implementation, there

is also an issue of distributing a fixed number of receptive fields over

the spatial coordinates x and the filter parameters Σ

3.3 Necessity of derived receptive fields in terms

of derivatives

Due to the linearity of the differential equation (57), which

has been derived by necessity from the structural require-

ments, it follows that also the result of applying a linear

operator D to the solution L will satisfy the differential equa-

tion, however, with a different initial condition

lim
s↓0

(DL)(·; s) = D f. (70)

The result of applying a linear operator D to the scale-space

representation L will therefore satisfy the above-mentioned

structural requirements of linearity, shift invariance, the

weaker form of rotational invariance at the group level11

and non-enhancement of local extrema, with the semigroup

structure (8) replaced by the cascade property

(DL)(·; s2) = T (·; s2 − s1) ∗ (DL)(·; s1). (71)

Then, one may ask whether any linear operator D would be

reasonable? From the requirement of scale invariance, how-

ever, if follows that the operator D must not be allowed to

have non-infinitesimal support, since a non-infinitesimal sup-

port s0 > 0 would violate the requirement of self-similarity

over scale (10) and it would not be possible to perform image

measurements at a scale level lower than s0. Thus, any recep-

tive field operator derived from the scale-space representation

in a manner compatible with the structural arguments must

correspond to local derivatives. In the illustrations above,

partial derivatives and directional derivatives up to order two

have been shown.

For directional derivatives that have been derived from

elongated kernels whose underlying zero-order convolution

kernels are not rotationally symmetric, it should be noted that

we have aligned the directions of the directional derivative

operators to the orientations of the underlying kernels. A

structural motivation for making such an alignment can be

obtained from a requirement of a weaker form of rotational

symmetry at the group level. If we would like the family of

receptive fields to be rotationally symmetric as a group, then

it is natural to require the directional derivative operators to

be transformed in a similar way as the underlying kernels.

4 Spatial domain with color information

To define a corresponding scale-space concept for color

images, the simplest approach would be by computing a

Gaussian scale-space representation for each color channel

individually. Since the values of the color channels will usu-

ally by highly correlated, it is, however, preferable to decor-

relate the dependencies by computing a color-opponent rep-

resentation. Such a representation is also in good agreement

with human vision, where a separation into red/green and

yellow/blue color-opponent channels takes place at an early

stage in the visual pathways.

11 With “rotational invariance at the group level” meaning that although

a set of receptive fields may not be rotationally symmetric as individuals,

a collection or a group of such receptive fields may nevertheless make

it possible to generate rotationally invariant responses, for example if

all orientations are explicitly represented or if the receptive fields of

different orientations can be related by linear combinations.
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4.1 Gaussian color-opponent receptive fields

Given three RGB channels obtained from a color sensor, con-

sider a color-opponent transformation of the form (Hall et al.

2000)

⎛

⎝

f

c(1)

c(2)

⎞

⎠ =

⎛

⎜

⎝

1
3

1
3

1
3

1
2

− 1
2

0

1
2

1
2

−1

⎞

⎟

⎠

⎛

⎝

R

G

B

⎞

⎠ (72)

where yellow is approximated by the average of the R and G

channels Y = (R +G)/2 and f = (R +G + B)/3 is defined

as a channel of pure intensity information. Then, a Gaussian

color-opponent scale-space representation (C (1), C (2)) can

be defined by applying Gaussian convolution to the color-

opponent channels (c(1), c(2))T :

C (1)(·, ·; t) = g(·, ·; t) ∗ c(1)(·), (73)

C (2)(·, ·; t) = g(·, ·; t) ∗ c(2)(·). (74)

Figure 9 shows equivalent spatio-chromatic receptive fields

corresponding to the application of Gaussian derivative oper-

ators according to (59) to such color-opponent channels. Fig-

ure 10 shows examples of applying corresponding directional

derivatives according to (69).

In Hall et al. (2000), Linde and Lindeberg (2004, 2012),

and Sande et al. (2010), it is shown how such spatio-

chromatic receptive fields in combination with regular spa-

tial receptive fields can constitute an effective basis for object

recognition.

Another type of Gaussian color model has been proposed

by Koenderink and later used by Geusebroek and his co-

workers (Burghouts and Geusebroek 2009) with receptive

fields defined over the spectrum of wavelengths in the color

spectrum, corresponding to zero-, first-, and second-order

derivatives with respect to wavelength.

5 Spatio-temporal image data

5.1 Non-causal spatio-temporal receptive fields

Let us first apply a similar way of reasoning as in Sect. 3 with

space x ∈ R
2 replaced by space–time (x, t)T ∈ R

2 × R and

disregarding temporal causality, thereby allowing unlimited

access to information over both space and time. Given image

data f : R
2 × R → R defined over a 2+1D spatio-temporal

domain, let us therefore again assume that the first stage of

visual processing as represented by the operator Ts should be

(i) linear, (ii) shift invariant, and (iii) obey a semigroup struc-

ture over both spatial and temporal scales s, where we also

assume (iv) certain regularity properties of the semigroup

Fig. 9 Spatio-chromatic receptive fields corresponding to the applica-

tion of Gaussian derivative operators up to order two to red/green, and

yellow/blue color-opponent channels, respectively

Fig. 10 Spatio-chromatic receptive fields corresponding to the appli-

cation of Gaussian directional derivatives up to order two along the

direction ϕ = π/6 to red/green and yellow/blue color-opponent chan-

nels, respectively
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Fig. 11 Parameterization of the spatio-temporal covariance matrix for the Gaussian spatio-temporal scale space in terms of the spatial eigenvalues

λ1 and λ2 with the associated orientation θ for the purely spatial covariance matrix, the image velocity v = (v1, v2)
T , and the amount of temporal

smoothing λt

Ts over scale s in terms of Sobolev norms12 to guarantee

sufficient differentiability properties with respect to space

x , time t and spatio-temporal scales s. Let us furthermore

require (iv) non-enhancement of local extrema to hold for

any smooth image function f ∈ C∞(R2 ×R)∩ L1(R2 ×R)

and for any positive scale direction s.

Then, it follows from Lindeberg (2011, Theorem 5,

page 42) that the scale-space representation over a 2+1D

spatio-temporal domain must satisfy

∂s L = 1

2
∇T

(x,t)

(

Σ0∇(x,t)L
)

− δT
0 ∇(x,t)L (75)

for some 3 × 3 covariance matrix Σ0 and some 3D vector δ0

with ∇(x,t) = (∂x1 , ∂x2 , ∂t )
T .

In terms of convolution kernels, the zero-order receptive

fields will then be spatio-temporal Gaussian kernels

g(p; Σs, δs) = 1

(2π)3/2
√

detΣs

e−(p−δs )
T Σ−1

s (p−δs )/2s

(76)

with p = (x, t)T = (x1, x2, t)T ,

Σs = {3 × 3 matrix as shown in Fig. 11} (77)

δs =

⎛

⎝

v1t

v2t

δ

⎞

⎠ (78)

where (i) λ1, λ2, and θ determine the spatial extent, (ii) λt

determines the temporal extent, (iii) v = (v1, v2)
T denotes

the image velocity and (iv) δ represents a temporal delay and

corresponding to a coupling between the spatial and temporal

dimensions of the form

g(x, t; s, τ ; Σ, v) = g(x − vt; s; Σ) ḡ(t; τ, δ) (79)

12 To ensure sufficient differentiability properties such that an infin-

itesimal generator exists and the resulting multi-scale representation

obtained by convolution with the semigroup of convolution kernels can

be differentiated with respect to both space–time and spatio-temporal

scales such that the requirement of non-enhancement of local extrema

can be applied, we do formally for an N + 1-dimensional space–

time require the semigroup Ts to be C1-continuous in the sense that

limh↓0

∥

∥

∥

1
h

∫ h

s=0 T (s) f ds − f

∥

∥

∥

H k (RN ×R)
= 0 should hold for some

k > (N + 1)/2 and for all smooth functions f ∈ L1(RN × R) ∩
C∞(RN × R) with ‖ · ‖H k (R2×R) denoting the L2-based Sobolev norm

‖u‖H k (RN ×R) =
(

∫

ω∈RN ×R

(

1 + |ω|2
)k |û(ω)|2dω

)1/2
and û denoting

the Fourier transform of u over R
N ×R; see Lindeberg (2011, Sect. 3.2

and “Appendix A”) regarding details.

where ḡ(t; τ, δ) denotes a one-dimensional Gaussian kernel

over time with temporal extent τ and temporal delay δ. From

the corresponding Gaussian spatio-temporal scale space

L(x, t; Σspace, v, τ )=(g(·, ·; Σspace, v, τ ) ∗ f (·, ·))(x, t)

(80)

spatio-temporal derivatives can then be defined according to

Lxα tβ (x, t; Σspace, v, τ ) = (∂xα tβ L)(x, t; Σspace, v, τ )

(81)

with corresponding velocity-adapted temporal derivatives

∂t̄ = vT ∇x + ∂t = v1 ∂x1 + v2 ∂x2 + ∂t (82)

as illustrated in Figs. 12 and 13 for the case of a 1+1D space–

time. Motivated by the requirement of Galilean covariance,

it is natural to align the directions v in space–time for which

these velocity-adapted spatio-temporal derivatives are com-

puted to the velocity values used in the underlying zero-order

spatio-temporal kernels, since the resulting velocity-adapted

spatio-temporal derivatives will then be Galilean covariant.

Such receptive fields or approximations thereof can be used

for modelling spatio-temporal receptive fields in biological

vision (Lindeberg 1997, 2001, 2011; Young et al. 2001;

Young RA, Lesperance 2001) and for computing spatio-

temporal image features and image descriptors for spatio-

temporal recognition in computer vision (Zelnik-Manor and

Irani 2001; Laptev and Lindeberg 2003, 2004a,b; Laptev et

al. 2007; Willems et al. 2008).

Transformation property under Galilean transformations

Under a Galilean transformation of space–time (27), in

matrix form written

p′ = Gv p (83)

corresponding to

⎛

⎝

x ′
1

x ′
2

t ′

⎞

⎠ =

⎛

⎝

1 0 v1

0 1 v2

0 0 1

⎞

⎠

⎛

⎝

x1

x2

t

⎞

⎠ , (84)

the corresponding Gaussian spatio-temporal representations

are related in an algebraically similar way (64)–(66) as the

affine Gaussian scale space with the affine transformation

matrix A replaced by a Galilean transformation matrix Gv .

In other words, if two spatio-temporal image patterns fL and
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Fig. 12 Space–time separable kernels gxα tγ (x, t; s, τ, δ) up to order

two obtained from the Gaussian spatio-temporal scale-space in the case

of a 1+1-D space–time (s = 1, τ = 1, δ = 2) (horizontal axis: space

x , vertical axis: time t)

Fig. 13 Velocity-adapted spatio-temporal kernels

gx̄α t̄γ (x, t; s, τ, v, δ) up to order two obtained from the Gaussian

spatio-temporal scale space in the case of a 1+1D space–time (s = 1,

τ = 1, v = 0.75, δ = 2) (horizontal axis: space x , vertical axis: time t)

fR are related by a Galilean transformation encompassing a

translation �p = (�x1,�x2,�t)T in space–time

fL(ξ) = fR(η) where η = Gv ξ + �p (85)

and if corresponding spatio-temporal scale-space represen-

tations are defined according to

L(·; ΣL) = g(·; ΣL) ∗ fL(·) (86)

R(·; ΣR) = g(·; ΣR) ∗ fR(·) (87)

for general spatio-temporal covariance matrices ΣL and ΣR

of the form (77), then these spatio-temporal scale-space rep-

resentations will be related according to

L(x; ΣL) = R(y; ΣR) (88)

where

ΣR = Gv ΣL GT
v (89)

and

y = Gv x + �p. (90)

5.2 Time-causal spatio-temporal receptive fields

If we on the other hand with regard to real-time biological

vision want to respect both temporal causality and temporal

recursivity, we obtain different families of receptive fields.

Specifically, two different families of time-causal receptive

fields can be derived depending on whether we require (i) a

continuous semigroup structure over a continuum of tempo-

ral scales or (ii) fixate the temporal scale levels to be discrete

a priori.

Time-causal semigroup Given the requirements of (i) linear-

ity and (ii) spatial and temporal shift invariance, we require

the scale-space kernels to be (iii) time-causal and require the

visual front end to be (iv) time recursive in the sense that the

internal image representations L(x, t; s, τ ) at different spa-

tial scales s and temporal scales τ do also constitute a suffi-

cient internal temporal memory M(x, t) of the past, without

any further need for temporal buffering. To adapt the con-

volution semigroup structure to a time-recursive setting, we

require the spatio-temporal scale-space concept

L(·, t; s, ·) = Ts,t L(·, 0; 0, ·) (91)

to be generated by a (v) two-parameter semigroup over spa-

tial scales s and time t

Ts1,t1 Ts2,t2 = Ts1+s2,t1+t2 . (92)

Then, it can be shown (Lindeberg 2011, Theorem 17, page

78) that provided we impose (vi) certain regularity properties

on the semigroup in terms of Sobolev norms to ensure differ-
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entiability (Lindeberg 2011, Appendix E), then (vii) the time-

recursive formulation of non-enhancement of local extrema

in Eq. (34) with respect to a continuum of both spatial and

temporal scale levels implies that the semigroup must satisfy

the following system of diffusion equations

∂s L = 1

2
∇T

x (Σ∇x L), (93)

∂t L = −vT ∇x L + 1

2
∂ττ L . (94)

In terms of receptive fields, this spatio-temporal scale space

can be computed by convolution kernels of the form

h(x, t; s, τ ; Σ, v) = g(x − vt; s; Σ)φ(t; τ)

= 1

2πs
√

det Σ
e−(x−vt)T Σ−1(x−vt)/2s

× 1√
2π t3/2

τ e−τ 2/2t (95)

where

– g(x−vt; s; Σ) is a velocity-adapted 2D affine Gaussian

kernel with spatial covariance matrix Σ and

– φ(t; τ) is a time-causal smoothing kernel over time

with temporal scale parameter τ , which is related to the

regular one-dimensional Gaussian kernel according to

φ(t; τ) = −∂τ g(τ ; t). (Please note the shift of the

order of the arguments between φ and g.)

From these kernels, spatio-temporal partial derivatives

and velocity-adapted derivatives can be computed in a cor-

responding manner (81) and (82) as for the Gaussian spatio-

temporal scale-space concept. Figures 14 and 15 show exam-

ples of such time-causal spatio-temporal kernels with their

partial spatio-temporal derivatives in the space–time separa-

ble case with v = 0

(∂xα tβ h)(x, t; s, τ ; Σ, 0)=(∂xα g)(x; s; Σ) (∂tβ φ)(t; τ)

(96)

and for the velocity-adapted case with v �= 0

(∂xα t̄β h)(x, t; s, τ ; Σ, v)

= (∂xα g)(x − vt; s; Σ) (∂tβ φ)(t; τ). (97)

The time-causal smoothing kernel φ(t; τ) has been pre-

viously used for modelling heat conduction in solids by

Carslaw and Jaeger (1959, section 14.2) and also been

derived by Fagerström (2005) as one member in a family

of self-similar kernels obtained from the assumption of scale

invariance.

Truncated exponential kernels/first-order integrators If we

on the other hand fixate the temporal scale levels to be dis-

crete a priori, then an alternative model for time-causal and

Fig. 14 Space–time separable kernels hxα tγ (x, t; s, τ, v) up to order

two obtained from the time-causal spatio-temporal scale space in the

case of a 1+1D space–time (s = 1, τ = 2) (horizontal axis: space x ,

vertical axis: time t)

Fig. 15 Velocity-adapted spatio-temporal kernels h
x̄α t̄ ′

γ (x, t; s, τ, v)

up to order two obtained from the time-causal spatio-temporal scale

space in the case of a 1+1D space–time (s = 1, τ = 2, v = 0.75)

(horizontal axis: space x , vertical axis: time t)
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time-recursive receptive fields can be obtained by perform-

ing the temporal smoothing using convolution with truncated

exponential functions

hexp(t; µi ) =
{ 1

µi
e−t/µi t ≥ 0

0 t < 0
(98)

with the composition of k such kernels

hcomposed(t; µ) = ∗k
i=1hexp(t; µi ) (99)

having a Laplace transform of the form

Hcomposed(q; µ) =
∞

∫

t=−∞

(∗k
i=1hexp(t; µi )) e−qt dt

=
k

∏

i=1

1

1 + µi q
, (100)

mean value (temporal delay)

δk = M(hcomposed(·; µ)) =
k

∑

t=1

µi (101)

and variance (temporal extent)

τk = V (hcomposed(·; µ)) =
k

∑

t=1

µ2
i . (102)

When treated as one-dimensional functions over time only,

such temporal smoothing kernels do also obey basic scale-

space properties in the sense of guaranteeing non-creation

of new local extrema or zero-crossings with increasing scale

(Lindeberg 1990; Lindeberg and Fagerström 1996). More-

over, they are inherently time recursive and obey a temporal

update rule between adjacent temporal scale levels tk−1 and

τk of the following form:

∂t L(t; τk) = 1

µk

(L(t; τk−1) − L(t; τk)) . (103)

Such first-order integrators over time can also be used as

an idealized computational model for temporal processing

in biological neurons [see Fig. 18 for an illustration and also

Koch (1999, Chaps. 11–12) regarding physical modelling of

the information transfer in dendrites of neurons].

In the absence of further information, it is natural to dis-

tribute the temporal scale levels according to a geometric

series, corresponding to a uniform distribution in units of

effective temporal scale τeff = log τ :

τk = γ k−1 τmin where γ =
(

τmax

τmin

) 1
K−1

(104)

for k = 1 . . . K which by the additive property of variances

between adjacent scales

τk+1 = τk + µ2
k (105)

Fig. 16 Space–time separable kernels gxα tγ (x, t; s, τ )up to order two

corresponding to the combination of a cascade of k = 7 time-causal

and time-recursive first-order integrators over the temporal domain with

a Gaussian scale space over the spatial domain in the case of a 1+1D

space–time (s = 1, τ = 1) and using a self-similar distribution of the

scale levels according to Eqs. (104) and (106) (horizontal axis: space

x , vertical axis: time t)

Fig. 17 Velocity-adapted spatio-temporal kernels gx̄α t̄γ (x, t; s, τ, v)

up to order two obtained by combining a cascade of k = 7 time-causal

and time-recursive first-order integrators over the temporal domain with

a Gaussian scale space over the spatial domain in the case of a 1+1D

space–time (s = 1, τ = 1, v = 0.75) and using a self-similar distrib-

ution of the scale levels according to Eqs. (104) and (106) (horizontal

axis: space x , vertical axis: time t)
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.

.

.

.

tuo_fni_f

Fig. 18 Electric wiring diagram consisting of a set of resistors and

capacitors that emulate a series of first-order integrators coupled in cas-

cade, if we regard the time-varying voltage fin as representing the time-

varying input signal and the resulting output voltage fout as representing

the time-varying output signal at a coarser temporal scale. According to

the theory of temporal scale-space kernels for one-dimensional signals

(Lindeberg 1990; Lindeberg and Fagerström 1996), the corresponding

equivalent truncated exponential kernels are the only primitive tempo-

ral smoothing kernels that guarantee both temporal causality and non-

creation of local extrema (alternatively zero-crossings) with increasing

temporal scale

implies that the time constants of the individual temporal

smoothing stages should be chosen according to

µk =
√

τmin (γ − 1) γ (k−1)/2. (106)

If we combine these purely temporal smoothing kernels

with the general form of spatio-temporal kernels

Tspace−time(x, t; s, τ ; Σ, v)

= g(x − vt; s; Σ) Ttime(t; τ) (107)

as obtained from a principled axiomatic treatment over the

joint space–time domain for the two other spatio-temporal

scale-space concepts according to Eqs. (79) and (95), we

obtain an additional class of time-causal and time-recursive

spatio-temporal receptive fields with the complementary

restriction that the temporal scale parameter has to be dis-

cretized already in the theory and that temporal covariance

cannot hold exactly for temporal scale levels that have been

determined beforehand (see Figs. 16 and 17 for illustrations

in the case of a 1 + 1D space–time). In contrast to the time-

causal smoothing kernel φ(t; τ), these kernels do therefore

not allow for a continuous semigroup structure over temporal

scales.

5.3 Distributions of spatio-temporal receptive fields

Figures 19 and 20 show distributions of velocity-adapted

receptive fields over image velocities, in Fig. 19 for a 1+1D

space–time showing both the spatial and the temporal dimen-

sions and in Fig. 20 for a 2 + 1D space–time showing only

the spatial dimensions.

5.4 Geometric covariance properties

The time-causal spatio-temporal scale-space concept given

by (95) is closed under (i) rescalings of the spatial and tempo-

ral dimensions, (ii) Galilean transformations of space–time,

and (iii) affine transformations in the spatial domain. Hence,

Fig. 19 Spatio-temporal receptive fields corresponding to a self-

similar distribution of velocity values v for a 1 + 1D space–time for a

fixed spatial scale s and a fixed temporal scale τ . In the most idealized

version of the theory, one can think of spatio-temporal receptive fields

corresponding to all velocity values v being present at any image posi-

tion x . When implementing this receptive field model using a limited

number of receptive fields, an additional issue arises of how to distribute

the receptive fields over the spatial positions x and the filter parameters

s, τ , and v (horizontal dimension: space x , vertical dimension: time t)

Fig. 20 Spatio-temporal receptive fields corresponding to a uniform

distribution of motion directions and a self-similar distribution over

spatial scales s for a 2 + 1D space–time with the temporal dimension

suppressed. In the most idealized version of the theory, one can think of

spatio-temporal receptive fields corresponding to all velocity vectors v,

spatial scales s, and temporal scales τ as being present at any image posi-

tion x = (x1, x2)
T . If the spatial components of these receptive fields

are additionally allowed to have different spatial shapes, the variability

over image velocities should also be extended with a variability over

spatial covariance matrices Σ . When implementing this receptive field

model using a limited number of receptive fields, an additional issue

arises of how to distribute the receptive fields over the spatial positions

x and the filter parameters s, τ , v, and Σ (horizontal dimension: spatial

coordinate x1, vertical dimension: spatial coordinate x2)

it satisfies the natural transformation properties that allow it

to handle:

– image data acquired with different spatial and/or tempo-

ral sampling rates,

– image structures of different spatial and/or temporal

extent,
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– objects at different distances from the camera,

– the linear component of relative motions between objects

in the world and the observer, and

– the linear component of perspective deformations.

Similar covariance properties hold also for the Gaussian

spatio-temporal scale space. The covariance properties of

the time-causal scale-space based on first-order integrators

coupled in cascade are somewhat weaker over the temporal

domain because of the restriction to discrete temporal scale

levels.

6 Computational modelling of biological receptive fields

In two comprehensive reviews, DeAngelis et al. (1995),

DeAngelis and Anzai (2004) present overviews of spatial and

temporal response properties of (classical) receptive fields in

the central visual pathways. Specifically, the authors point

out the limitations of defining receptive fields in the spatial

domain only and emphasize the need to characterize recep-

tive fields in the joint space–time domain, to describe how a

neuron processes the visual image. Conway and Livingstone

(2006) show the result of a corresponding investigation con-

cerning color receptive fields.

In the following, we will describe how the above-

mentioned spatial and spatio-temporal scale-space concepts

can be used for modelling the spatial, spatio-chromatic, and

spatio-temporal response properties of biological receptive

fields. Indeed, it will be shown that the Gaussian and time-

causal scale-space concepts lead to predictions of receptive

field profiles that are qualitatively very similar to all the

receptive field types presented in DeAngelis et al. (1995),

DeAngelis and Anzai (2004), and schematic simplifications

of most of the receptive fields shown in Conway and Living-

stone (2006).

6.1 LGN neurons

In the lateral geniculate nucleus (LGN), most neurons

(DeAngelis et al. 1995; DeAngelis and Anzai 2004)

– have approximately circular center-surround organiza-

tion in the spatial domain (see Fig. 21a) and

– most of the receptive fields are separable in space–time

(Fig. 22).

There are two main classes of temporal responses for such

cells:

– a “non-lagged cell” is defined as a cell for which the first

temporal lobe is the largest one (Fig. 23a), whereas

– a “lagged cell” is defined as a cell for which the second

lobe dominates (Fig. 23b).

Such temporal response properties are typical for first- and

second-order temporal derivatives of a time-causal temporal

scale-space representation. For the first-order temporal deriv-

ative of a time-causal temporal scale-space kernel, the first

peak is strongest, whereas the second peak is the most dom-

inant one for second-order temporal derivatives. The spatial

response, on the other hand, shows a high similarity to a

Laplacian of a Gaussian.

Within the above-mentioned spatio-temporal scale-space

theory, we can approximate the qualitative shape of these

circular center-surround receptive fields in the LGN with the

following idealized model:

hLGN(x1, x2, t; s, τ )

= ±(∂x1x1 + ∂x2x2) g(x1, x2; s) ∂t ′n h(t; τ) (108)

where

– ± determines the polarity (on-center/off-surround versus

off-center/on-surround),

– ∂x1x1 + ∂x2x2 denotes the spatial Laplacian operator,

– g(x1, x2; s) denotes a rotationally symmetric spatial

Gaussian,

– ∂t ′ denotes a temporal derivative operator with respect

to a possibly self-similar transformation of time t ′ = tα

or t ′ = log t such that ∂t ′ = tκ ∂t for some constant

κ ∈ [0, 1] ( Lindeberg 2011, Sect. 5.1, pages 59–61)13,

– h(t; τ) is a temporal smoothing kernel over time corre-

sponding to the time-causal smoothing kernel φ(t; τ) =
1√

2π t3/2
τ e−τ 2/2t in (95), a non-causal time-shifted

Gaussian kernel g(t; τ, δ) = 1√
2πτ

e−(t−δ)2/2τ accord-

ing to (76) or a time-causal kernel corresponding to a

set of first-order integrators over time coupled in cas-

cade having a Laplace transform Hcomposed(q; µ) =
∏k

i=1
1

1+µi q
according to (99),

– n is the order of temporal differentiation,

– s is the spatial scale parameter and

– τ is the temporal scale parameter.

Figure 22a shows an illustration of the spatial response prop-

erties of such a receptive field. This model can also be

used for modelling on-center/off-surround and off-center/on-

surround receptive fields in the retina.

Regarding the spatial domain, the model in terms of spa-

tial Laplacians of Gaussians (∂x1x1 + ∂x2x2) g(x1, x2; s) is

closely related to differences in Gaussians, which have previ-

ously been shown to constitute a good approximation of the

13 It can be shown that this definition is compatible with spatio-temporal

scale invariance for scale selection based on local extrema over tempo-

ral scales of scale-normalized derivatives (manuscript in preparation).

Specifically, the value κ = 1/2 can be motivated both from theoretical

considerations and agreement with biological receptive fields.
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Fig. 21 Examples of receptive

field profiles in the spatial

domain as reported by

DeAngelis et al. (1995),

DeAngelis and Anzai (2004). a

Receptive fields in the LGN

have approximately circular

center-surround responses in the

spatial domain. In terms of

Gaussian derivatives, this spatial

response profile can be

modelled by the Laplacian of

the Gaussian ∇2g(x; t) (see

Fig. 22a). b Simple cells in the

cerebral cortex do usually have

strong directional preference in

the spatial domain. In terms of

Gaussian derivatives, this spatial

response can be modelled as a

directional derivative of an

elongated affine Gaussian kernel

(see Fig. 22b). c Complex cells

are nonlinear and do not obey

the superposition principle

Fig. 22 Idealized models of receptive fields over the spatial domain:

(left) The Laplacian of an isotropic two-dimensional Gaussian smooth-

ing kernel over a spatial domain ∇2g(x, y; s) = (x2 + y2 −
2s)/(2πs3) exp(−(x2 + y2)/2s) (here with s = 0.4) can be used as

a model for the circular center-surround responses in the LGN illus-

trated in Fig. 21a. More generally, this Laplacian of Gaussian with a

rather wide range of scales can be used as a model for retinal or LGN

receptive fields of wide size ranges, depending on the scale level and

the distance from the fovea (see also Sect. 7). (right) First-order direc-

tional derivatives of anisotropic affine Gaussian kernels (here aligned

to the coordinate directions ∂x g(x, y; Σ) = ∂x g(x, y; λx , λy) =
− x

λx
1/(2π

√

λxλy) exp(−x2/2mλx − y2/2λy) and with λx = 0.2 and

λy = 2) can be used as a model for simple cells with a strong directional

preference as illustrated in Fig. 21b. More generally, elongated recep-

tive fields can also have different degrees of elongation as described in

Sect. 6.3.1 and illustrated in Fig. 8
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spatial variation of receptive fields in the retina and the LGN

(Rodieck 1965). This property follows from the fact that the

rotationally symmetric Gaussian satisfies the isotropic diffu-

sion equation

1

2
∇2 L(x; t) = ∂t L(x; t) ≈ L(x; t + �t) − L(x; t)

�t

= DOG(x; t,�t)

�t
(109)

which implies that differences in Gaussians can be inter-

preted as approximations of derivatives over scale and hence

to Laplacian responses. Conceptually, this implies very good

agreement with the spatial component of the LGN model

(108) in terms of Laplacians of Gaussians. More recently,

Bonin et al. (2005) have found that LGN responses in cats

are well described by difference in Gaussians and temporal

smoothing complemented by a nonlinear contrast gain con-

trol mechanism (not modelled here).

Concerning the application of the Laplacian of Gaussian

model for on-center/off-surround and off-center/on-surround

receptive fields in the retina, it should be emphasized that the

retina also contains other types of receptive fields that are not

modelled here, such as brisk transient (Y) ganglion cells that

respond to rapid transients and directional selective ganglion

cells that respond to visual motion (Wässle 2004).

Figure 24 shows the spatio-temporal response properties

of space–time separable receptive field over a 1+1D spatio-

temporal domain according to the model in Eq. (108) for a

first-order temporal derivative in combination with a second-

order spatial derivative in the left column and a second-order

temporal derivative in combination with a second-order spa-

tial derivative in the right column. These kernels were chosen

to mimic the qualitative behaviour of the biological receptive

fields shown in Fig. 23.

Note: In all illustrations in Sect. 6, where spatial and

spatio-temporal derivative expressions are aligned to biologi-

cal data, the unit for the spatial scale parameter s corresponds

to [degrees2] of visual angle and the units for the tempo-

ral scale parameter τ in the Gaussian spatio-temporal scale-

space representation are [milliseconds2], whereas the units

for the temporal scale parameter τ in the time-causal spatio-

temporal scale-space representation are [
√

milliseconds]. For

image velocities v of velocity-adapted filters, the units are

[degrees/millisecond]. The reason why the units are dif-

ferent for the three types of spatio-temporal scale spaces

is that the dimensionality of the temporal scale parame-

ter is different in each of these spatio-temporal scale-space

concepts.

6.2 Double-opponent spatio-chromatic cells

In a study of spatio-chromatic response properties of V1 neu-

rons in the alert macaque monkey, Conway and Livingstone

(2006) describe receptive fields with approximately circular

red/green and yellow/blue color-opponent response proper-

ties over the spatio-chromatic domain, see Fig. 25. Such cells

are referred to as double-opponent cells, since they simul-

taneously compute both spatial and chromatic opponency.

According to Conway and Livingstone (2006), this cell type

can be regarded as the first layer of spatially opponent color

computations.

If we, motivated by the previous application of Lapla-

cian of Gaussian functions to model rotationally symmetric

on-center/off-surround and off-center/on-surround receptive

fields in the LGN (108), apply the Laplacian of the Gaussian

operator to red/green and yellow/blue color-opponent chan-

nels, respectively, we obtain equivalent spatio-chromatic

receptive fields corresponding to red-center/green-surround,

green-center/red-surround, yellow-center/blue-surround, or

blue-center/yellow-surround, respectively, as shown in

Fig. 26 and corresponding to the following spatial receptive

field model applied to the RGB channels

hdouble−opponent(x1, x2; s)

= ±(∂x1x1 + ∂x2x2) g(x1, x2; s)

(

1
2

− 1
2

0
1
2

1
2

−1

)

. (110)

Hence, these spatio-chromatic receptive fields can be used as

an idealized model for the spatio-chromatic response prop-

erties for double-opponent cells.

6.3 Simple cells

In V1, the receptive fields are generally different from the

receptive fields in the LGN in the sense that they are (DeAn-

gelis et al. 1995; DeAngelis and Anzai 2004):

– oriented in the spatial domain and

– sensitive to specific stimulus velocities.

Cells (i) for which there are precisely localized “on” and “off”

subregions with (ii) spatial summation within each subre-

gion, (iii) spatial antagonism between on- and off-subregions,

and (iv) whose visual responses to stationary or moving spots

can be predicted from the spatial subregions are referred to

as simple cells (Hubel and Wiesel 1959, 1962).

6.3.1 Spatial dependencies

We can express an idealized scale-space model for the spatial

component of this orientation dependency according to

hspace(x1, x2; s) = (cos ϕ ∂x1 + sin ϕ ∂x2)
m g(x1, x2; Σ)

(111)

where
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Fig. 23 Examples of space–time separable receptive field profiles in

the LGN as reported by DeAngelis et al. (1995), DeAngelis and Anzai

(2004). There are two main categories of such cells; a for a non-lagged

cell, the first temporal lobe dominates, while b for a lagged cell the sec-

ond temporal lobe is strongest. In terms of the spatio-temporal receptive

field model presented in this paper, non-lagged cells can be modelled by

first-order temporal derivatives, while the shape of lagged cells resem-

bles second-order temporal derivatives (see Fig. 24) (horizontal dimen-

sion: space x , vertical dimension: time t)

Fig. 24 Idealized models of space–time separable receptive fields as

obtained from the spatio-temporal scale-space concepts with v = 0:

(upper left) Gaussian spatio-temporal kernel gxxt (x, t; s, τ, δ) =
gxx (x; s) gt (t; τ, δ) with s = 0.4, τ = 302, δ = 60. (upper right)

Gaussian spatio-temporal kernel gxxtt (x, t; s, τ, δ) = gxx (x; s) gt t

(t; τ, δ) with s = 0.3, τ = 352, δ = 120. (lower left) Time-causal

spatio-temporal kernel hxxt ′ h(x, t; s, τ ) = gxx (x; s) φt ′ (t; τ, δ) with

s = 0.4, τ = 17. (lower right) Time-causal spatio-temporal kernel

hxxt ′t ′ h(x, t; s, τ ) = gxx (x; s) φt ′t ′ (t; τ, δ) with s = 0.4, τ = 25.

For the time-causal kernels, the temporal derivatives have been com-

puted using the transformed temporal derivative operator ∂t ′ ∼ tκ ∂t ,

here with κ = 1/2. Compare the qualitative shapes of these kernels

with the kernels in with Fig. 23 (horizontal dimension: space x , vertical

dimension: time t)

– ∂ϕ = cos ϕ ∂x1 +sin ϕ ∂x2 is a directional derivative oper-

ator,

– m is the order of spatial differentiation, and

– g(x1, x2; Σ) is an affine Gaussian kernel with spatial

covariance matrix Σ as can be parameterized according

to (68)
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Fig. 25 Spatio-chromatic receptive field response of a double-

opponent neuron as reported by Conway and Livingstone (2006, Fig. 2,

page 10831) with the color channels L, M and S essentially cor-

responding to red, green, and blue, respectively (from these L, M,

and S color channels, corresponding red/green and yellow/blue color-

opponent channels can be formed from the differences between L to M

and between L + M to S)

Fig. 26 Idealized models of spatio-chromatic receptive fields over the

spatial domain corresponding to the application of the Laplacian oper-

ator to positive and negative red/green and yellow/blue color-opponent

channels, respectively

where the direction ϕ of the directional derivative operator

should preferably be aligned to the orientation θ of one of

the eigenvectors of Σ .

In the specific case when the covariance matrix is propor-

tional to a unit matrix Σ = s I , with s denoting the spatial

scale parameter, these directional derivatives correspond to

regular Gaussian derivatives as proposed as a model for spa-

tial receptive fields by Koenderink and Doorn (1987, 1992).

The use of non-isotropic covariance matrices does on the

other hand allow for a higher degree of orientation selectiv-

ity and does additionally allow for closedness under affine

transformations (affine covariance).

This idealized model can also be extended to recurrent

intracortical feedback mechanisms as formulated by Somers

et al. (1995) and Sompolinsky and Shapley (1997) by starting

from the equivalent formulation in terms of the non-isotropic

diffusion equation

∂s L = 1

2
∇T

x (Σ0∇x L) (112)

with the covariance matrix Σ0 locally adapted14 to the sta-

tistics of image data in a neighborhood of each image point;

see Weickert (1998) and Almansa and Lindeberg (2000) for

the applications of this idea for enhancing local directional

image structures in computer vision.

Relations to Gabor functions Based on the work by Marcelja

(1980), Gabor functions

G(x; s, ω) = e−iωx g(x; s) (113)

have been frequently used for modelling spatial receptive

fields (Jones and Palmer 1987a,b; Ringach 2002) motivated

by their property of minimizing the uncertainty relation.

This motivation can, however, be questioned on both the-

oretical and empirical grounds. Stork and Wilson (1990)

argue that (i) only complex-valued Gabor functions that can-

not describe single receptive field minimize the uncertainty

relation, (ii) the real functions that minimize this relation

are Gaussian derivatives rather than Gabor functions, and

(iii) comparisons among Gabor and alternative fits to both

psychophysical and physiological data have shown that in

many cases, other functions (including Gaussian derivatives)

provide better fits than Gabor functions do.

Conceptually, the ripples of the Gabor functions, which

are given by complex sine waves, are related to the ripples of

Gaussian derivatives, which are given by Hermite functions.

A Gabor function, however, requires the specification of a

scale parameter and a spatial frequency, whereas a Gaussian

14 By the use of locally adapted feedback, the resulting evolution equa-

tion does not obey the original linearity and shift invariance (homo-

geneity) requirements used for deriving the idealized affine Gaussian

receptive field model, if the covariance matrices Σ0 are determined from

properties of the image data that are determined in a nonlinear way. For

a fixed set of covariance matrices Σ0 at any image point, the evolution

equation will still be linear and will specifically obey non-enhancement

of local extrema. In this respect, the resulting model could be regarded

as a simplest form of nonlinear extension of the linear receptive field

model.
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Fig. 27 (left) Orientation maps

from the striate cortex using a

color coding of the orientation

preference with red

corresponding to horizontal and

green to vertical. (right)

Selective maps with bright

values corresponding to high

orientation selectivity and dark

values corresponding to low

orientation selectivity (from

Blasdel 1992)

derivative requires a scale parameter and the order of differ-

entiation (per spatial dimension). With the Gaussian deriva-

tive model, receptive fields of different orders can be mutu-

ally related by derivative operations and be computed from

each other by nearest-neighbor operations. The zero-order

receptive fields as well as the derivative-based receptive fields

can be modelled by diffusion equations and can therefore be

implemented by computations between neighboring compu-

tational units.

In relation to invariance properties, the family of affine

Gaussian kernels is closed under affine image deformations,

whereas the family of Gabor functions obtained by multiply-

ing rotationally symmetric Gaussians with sine and cosine

waves is not closed under affine image deformations. This

means that it is not possible to compute truly affine invariant

image representations from such Gabor functions. Instead,

given a pair of images that are related by a non-uniform image

deformation, the lack of affine covariance implies that there

will be a systematic bias in the image representations derived

from such Gabor functions, corresponding to the difference

between the backprojected Gabor functions in the two image

domains. If using receptive profiles defined from directional

derivatives of affine Gaussian kernels, it will on the other

hand be possible to compute provably affine invariant image

representations.

With regard to invariance to multiplicative illumination

variations, the even cosine component of a Gabor func-

tion does in general not have its integral equal to zero,

which means that the illumination invariant properties under

multiplicative illumination variations or exposure control

mechanisms described in Sect. 2.3 do not hold for Gabor

functions.

In this respect, the Gaussian derivative model is simpler, it

can be related to image measurements by differential geom-

etry, be derived axiomatically from symmetry principles, be

computed from a minimal set of connections and allows for

provable invariance properties under locally linearized image

deformations (affine transformations) as well as local multi-

plicative illumination variations and exposure control mech-

anisms. Young (1987) has more generally shown how spatial

receptive fields in cats and monkeys can be well modelled by

Gaussian derivatives up to order four.

In the area of computer vision, a multi-scale differential

geometric framework in terms of Gaussian derivatives and

closely related operators has become an accepted and de facto

standard for defining image features for feature detection,

feature classification, stereo matching, motion estimation,

object recognition, spatio-temporal recognition, shape analy-

sis, and image enhancement. Specifically, the formulation of

image primitives in terms of scale-space derivatives makes it

possible to use tools from differential geometry for deriving

relationships between image features and physical properties

of objects in the environment, allowing for computationally

operational and theoretically well-founded modelling of pos-

sibilities or constraints for visual perception.

Orientation maps Optical imaging techniques have shown

that orientation selective cells that respond best to one orien-
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tation form are grouped together in highly ordered patches

and that these iso-orientation patches are organized around

“orientation centers” that produce characteristic pinwheel-

like patterns (Bonhoeffer and Grinvald 1991). Measurements

have also shown that the degree of orientation selectivity

varies regularly over the cortex and can be different near

versus further away from the center of a pinwheel (Blas-

del 1992). Specifically, the orientation selectivity has been

reported to be lowest at the positions of the centers of the

pinwheels (see Fig. 27).

Given the model (111) of orientation selective receptive

fields as depending on a spatial covariance matrix Σ , this

property is in good qualitative agreement with a distribution

of receptive fields over a population over covariance matri-

ces with different preferred orientations as determined from

the eigenvectors of the covariance matrix and different ratios

between the scale parameters along the preferred orienta-

tions as determined by the square root of the ratio between

the eigenvalues of the covariance matrix. Specifically, the

property of the orientation selectivity of being lowest at the

positions of the centers of the pinwheels would be compatible

with the covariance matrix there being close to alternatively

closer to a unit matrix, implying that the orientations of the

eigenvectors being sensitive to minor perturbations of the

covariance matrix, thus causing the ratio between the eigen-

values being close to alternatively closer to one at the center

of the pinwheel.

6.3.2 Spatio-temporal dependencies

In the joint space–time domain, the spatio-temporal response

properties of receptive fields in the striate cortex range from

separable (Fig. 28) to strongly inseparable (Fig. 30), where a

majority exhibit marked space–time inseparability. The tem-

poral profile is reported to be typically biphasic, although

some cells are reported to have monophasic or triphasic

responses (DeAngelis et al. 1995; DeAngelis and Anzai

2004) (Fig. 29, 31).

In terms of temporal derivatives, a biphasic behavior arises

from first-order derivatives, a monophasic behavior from

zero-order derivatives, and a triphasic behavior from second-

order derivatives. Concerning the oriented spatial response

characteristics, there is a high similarity with directional

derivatives of Gaussian kernels (Young 1987).

We can state scale-space models of simple cells in V1 with

similar properties using either:

– non-causal Gaussian spatio-temporal derivative kernels

hGaussian(x1, x2, t; s, τ, v, δ)

= ∂m1
ϕ ∂

m2
⊥ϕ ∂t̄n g(x1, x2, t; s, τ, v, δ) (114)

– time-causal spatio-temporal derivative kernels

htime−causal(x1, x2, t; s, τ, v)

= (∂x̄1
α1 x̄2

α2 ∂t̄β h)(x1, x2, t; s, τ, v) (115)

with the non-causal Gaussian spatio-temporal kernels accord-

ing to (76), the time-causal spatio-temporal kernels accord-

ing to (95) alternatively of the form (107) with the temporal

smoothing based on a cascade of first-order integrators

according to (99), and spatio-temporal derivatives or

velocity-adapted derivatives of these spatio-temporal kernels

in turn defined according to (81) and (82).

For a general orientation of receptive fields with respect

to the spatial coordinate systems, these idealized receptive

field models can be jointly described in the form

hsimplecell(x1, x2, t; s, τ, v,Σ)

= (cos ϕ ∂x1 + sin ϕ ∂x2)
α1(sin ϕ ∂x1 − cos ϕ ∂x2)

α2

× (v1 ∂x1 + v2 ∂x2 + ∂t )
n

× g(x1 − v1t, x2 − v2t; s Σ) h(t; τ) (116)

where

– ∂ϕ = cos ϕ ∂x1 +sin ϕ ∂x2 and ∂⊥ϕ = sin ϕ ∂x1 −cos ϕ ∂x2

denote spatial directional derivative operators according

to (69) in two orthogonal directions ϕ and ⊥ϕ,

– m1 ≥ 0 and m2 ≥ 0 denote the orders of differen-

tiation in the two orthogonal directions in the spatial

domain with the overall spatial order of differentiation

m = m1 + m2,

– v1 ∂x1 + v2 ∂x2 + ∂t denotes a velocity-adapted temporal

derivative operator,

– v = (v1, v2)
T denotes the image velocity,

– n denotes the order of temporal differentiation,

– g(x1−v1t, x2−v2t; Σ) denotes a spatial affine Gaussian

kernel according to (63) that moves with image velocity

v = (v1, v2)
T in space–time,

– Σ denotes a spatial covariance matrix that can be parame-

terized by two eigenvalues λ1 and λ2 as well as a spatial

orientation θ of the form (68),

– h(t; τ) is a temporal smoothing kernel over time corre-

sponding to the time-causal smoothing kernel φ(t; τ) =
1√

2π t3/2
τ e−τ 2/2t in (95), a non-causal time-shifted

Gaussian kernel g(t; τ, δ) = 1√
2πτ

e−(t−δ)2/2τ accord-

ing to (76) or a time-causal kernel corresponding to a

set of first-order integrators over time coupled in cas-

cade having a Laplace transform Hcomposed(q; µ) =
∏k

i=1
1

1+µi q
according to (99),

– s denotes the spatial scale and

– τ denotes the temporal scale.

Figures 24, 29, and 31 show a few examples of separable

and inseparable kernels obtained in this way for a 1+1-
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Fig. 28 Examples of space–time separable receptive field profiles in

the striate cortex as reported by DeAngelis et al. (1995), DeAngelis

and Anzai (2004): a a non-lagged cell reminiscent of a first-order tem-

poral derivative in time and a first-order derivative in space (compare

with Fig. 29a) b a non-lagged cell reminiscent of a first-order temporal

derivative in time and a second-order derivative in space (compare with

Fig. 29b) (horizontal dimension: space x , vertical dimension: time t)

Fig. 29 Idealized models of space–time separable receptive fields as

obtained from the spatio-temporal scale-space concepts with v = 0:

(upper left) Gaussian spatio-temporal kernel gxt (x, t; s, τ, δ) =
gx (x; s) gt (t; τ, δ) with s = 0.3, τ = 402, δ = 100. (upper right)

Gaussian spatio-temporal kernel gxxt (x, t; s, τ, δ) = gxx (x; s)

gt (t; τ, δ) with s = 0.3, τ = 602, δ = 150. (lower left) Time-causal

spatio-temporal kernel hxt ′ (x, t; s, τ ) = gx (x; s) φt ′ (t; τ, δ) with

s = 0.4, τ = 17. (lower right) Time-causal spatio-temporal kernel

hxxt ′ (x, t; s, τ ) = gxx (x; s) φt ′ (t; τ, δ) with s = 0.4, τ = 22. For

the time-causal kernels, the temporal derivatives have been computed

using the transformed temporal derivative operator ∂t ′ ∼ tκ∂t , here

with κ = 1/2. Compare the qualitative shapes of these kernels with the

kernels in Fig. 28 (horizontal dimension: space x , vertical dimension:

time t)

dimensional space–time. In fact, using this model, it is

possible to generate spatio-temporal receptive fields that are

qualitatively similar to all the linear receptive field types

reported from cell recordings in LGN and V1 by DeAngelis

et al. (1995), DeAngelis and Anzai (2004).

Young et al. (2001) and Young RA, Lesperance (2001)

have also shown how spatio-temporal receptive fields can

be modelled by Gaussian derivatives over a spatio-temporal

domain, corresponding to the Gaussian spatio-temporal con-

cept described here, although with a different type of para-
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Fig. 30 Examples of non-separable receptive field profiles in the stri-

ate cortex as reported by DeAngelis et al. (1995), DeAngelis and Anzai

(2004): a a receptive field reminiscent of a second-order derivative in

tilted space–time (compare with the left column in Fig. 31) b a receptive

field reminiscent of a third-order derivative in tilted space–time (com-

pare with the right column in Fig. 31) (horizontal dimension: space x ,

vertical dimension: time t)

Fig. 31 Idealized models of non-separable spatio-temporal recep-

tive obtained by applying velocity-adapted second- and third-order

derivative operations in space–time to spatio-temporal smoothing ker-

nels generated by the spatio-temporal scale-space concept. (middle

left) Gaussian spatio-temporal kernel gxx (x, t; s, τ, v, δ) with s =
0.5 deg2, τ = 502 ms2, v = 0.007 deg/ms, δ = 100 ms. (mid-

dle right) Gaussian spatio-temporal kernel gxxx (x, t; s, τ, v, δ) with

s = 0.5 deg2, τ = 602 ms2, v = 0.004 deg/ms, δ = 130 ms. (lower

left) Time-causal spatio-temporal kernel hxx (x, t; s, τ, v) with s =
0.4 deg2, τ = 15 ms1/2, v = 0.007 deg/ms. (lower right) Time-causal

spatio-temporal kernel hxxx (x, t; s, τ, v) with s = 0.4 deg2, τ =

15 ms1/2, v = 0.004 deg/ms (horizontal dimension: space x , vertical

dimension: time t). Compare the qualitative shapes of these kernels with

the kernels in Fig. 30 (horizontal dimension: space x , vertical dimen-

sion: time t). To handle objects or events with different relative motions

between the object/event and the observer, it is natural to consider fam-

ilies of spatio-temporal receptive fields that are tuned to different image

velocities and motion direction in image space, thus leading to a set of

velocity-adapted fields tuned to different motion directions and image

velocities at every image point (see Figs. 19 and 20 for schematic illus-

trations)

meterization; see also Lindeberg (1997, 2001) for closely

related earlier work. These scale-space models can therefore

be regarded as idealized functional and phenomenological

models of receptive fields, whose actual realization can then

be implemented in different ways depending on available

hardware or wetware.
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Fig. 32 Spatio-temporal response properties of a blue/yellow double-

opponent cell as reported by Conway and Livingstone Conway and

Livingstone (2006, Fig. 15, page 10842) with an L+M ON-center and

S suppression character, with the color channels L, M, and S essentially

corresponding to red, green, and blue, respectively. An idealized model

for the spatio-chrom-temporal response properties of this cell can be

obtained by combining the spatio-chromatic color-opponent Laplacian

receptive fields in Fig. 26 over the spatio-chromatic domain with a

space–time separable temporal smoothing filter h(t; τ) over the tem-

poral domain

Relations to approaches for learning receptive fields from

natural image statistics Work has also been performed on

learning receptive field properties and visual models from the

statistics of natural image data (Field 1987; van der Schaaf

and van Hateren 1996; Olshausen and Field 1996; Rao and

Ballard 1998; Simoncelli and Olshausen 2001; Geisler 2008;

Hyvärinen et al. 2009; Lörincz et al. 2012) and been shown

to lead to the formation of similar receptive fields as found in

biological vision. The proposed theory of receptive fields can

be seen as describing basic physical constraints under which

a learning-based method for the development of receptive

fields will operate and the solutions to which an optimal adap-

tive system may converge to, if exposed to a sufficiently large

and representative set of natural image data. Field (1987) as

well as Doi and Lewicki (2005) have described how ”nat-

ural images are not random, instead they exhibit statistical

regularities” and have used such statistical regularities for

constraining the properties of receptive fields. The theory

presented in this paper can be seen as a theory at a higher level

of abstraction, in terms of basic principles that reflect prop-

erties of the environment that in turn determine properties

of the image data, without need for explicitly constructing

specific statistical models for the image statistics. Specifi-

cally, the proposed theory can be used for explaining why

the above-mentioned statistical models lead to qualitatively

similar types of receptive fields as the idealized receptive

fields obtained from our theory.

An interesting observation that can be made from the simi-

larities between the receptive field families derived by neces-

sity from the assumptions and receptive profiles found by cell

recordings in biological vision is that receptive fields in the

retina, LGN, and V1 of higher mammals are very close to

ideal in view of the stated structural requirements/symmetry

properties. In this sense, biological vision can be seen as hav-

ing adapted very well to the transformation properties of the

surrounding world and the transformations that occur when

a three-dimensional world is projected to a two-dimensional

image domain.
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Fig. 33 Response profile of a complex cell in the joint space–time

domain as reported by DeAngelis et al. (1995), DeAngelis and Anzai

(2004). Within the framework of the spatio-temporal scale-space frame-

work presented in this paper, such a response property can be obtained

by a quasi-quadrature combination of first- and second-order receptive

fields; see Fig. 34 (horizontal dimension: space x , vertical dimension:

time t)

Fig. 34 Idealized models of

complex cells illustrated in

terms of the response of

different spatio-temporal

quasi-quadrature measures to a

delta function. (left) Computed

for a spatio-temporal Gaussian

g(x, t; s, τ, δ) according to

(top) Q1 g = s g2
x + τg2

t +
C (s2g2

xx + 2sτg2
xt + τ 2g2

t t )

(middle) Q2
2 g =

(s g2
x + s2g2

xx )(τg2
t + C τ 2g2

t t )

(bottom)

Q3 g = (sτg2
xt + C s2τg2

xxt +
C sτ 2τg2

xtt + C2 s2τ 2g2
xxtt )

with s = 1.2, τ = 252, δ =
90, C = e/4. (right) Computed

for the time-causal kernel

h(x, t; s, τ ) according to (top)

Q1 h = s h2
x + τh2

t ′ +
C (s2h2

xx + 2sτh2
xt ′ + τ 2h2

t ′t ′ )

(middle) Q2
2 h =

(sh2
x + s2h2

xx )(τh2
t ′ + C τ 2h2

t ′t ′ )

(bottom)

Q3 h = (sτh2
xt ′ + C s2τh2

xxt ′ +
C sτ2h2

xt ′t ′ + C2 s2τ 2h2
xxt ′t ′ )

with s = 1.2, τ = 252, δ =
90, C = e/4 (horizontal

dimension: space x , vertical

dimension: time t)
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6.4 Spatio-chrom-temporal receptive fields

By extending the spatial derivative operators to spatio-

chromatic derivates over color-opponent channels, the color-

opponent Laplacian operators in Eq. (110) can in com-

bination with a temporal response function over time be

used for modelling the spatio-chrom-temporal response of

double-opponent neurons reported in Conway and Living-

stone (2006, Fig. 15) and shown in Fig. 32

hdouble−opponent(x1, x2, t; s, τ )

= ±(∂x1x1 + ∂x2x2) g(x1, x2; s)

×∂t ′n h(t; τ)

(

1
2

− 1
2

0
1
2

1
2

−1

)

(117)

corresponding to an extension of (110) from purely spatio-

chromatic image data to spatio-chrom-temporal image data.

In the receptive fields measured by cell recordings, the rota-

tional symmetry over the spatial domain is, however, not

as fully developed for the spatio-chrom-temporal receptive

fields as for the purely intensity-based spatial receptive fields.

6.5 Motion selectivity

Concerning motion selectivity, DeAngelis et al. (1995),

DeAngelis and Anzai (2004) report that most cortical neurons

are quite sensitive to stimulus velocity and the speed tuning

is more narrow than for LGN cells. Simple cells with insepa-

rable receptive fields have directional preference while cells

with space–time separable receptive fields do not. Moreover,

the preferred direction of motion corresponds to the orienta-

tion of the filter in space–time.

This structure is nicely compatible with velocity adapta-

tion, as described in Sects. 5.1 and 5.2. Within the above-

mentioned terminology,

– space–time separable receptive fields correspond to

spatio-temporal scale-space kernels without velocity

adaptation, whereas

– inseparable receptive fields correspond to kernels that

are explicitly adapted to nonzero velocities.

The directional preference of the cells in the spatial domain

can, in turn, be controlled by the covariance matrix of the

affine Gaussian scale-space concept as outlined in Sect. 3.2.

We obtain receptive fields without directional preference in

the spatial domain if we set the covariance matrix Σ = s I

proportional to the unit matrix, and space–time separable

receptive fields if we in addition choose the velocity adapta-

tion vector v equal to zero. Assuming that the influence of Σ

and v can be neglected (e.g., by setting Σ proportional to the

unit matrix and v to zero), the filter shape will then be deter-

mined solely by the spatial scale s and the temporal scale λ.

Conversely, we can construct inseparable kernels with strong

directional preference by appropriate combinations of the

covariance matrix Σ and the velocity adaptation vector v.

The above-mentioned fact that a majority of the cells are

inseparable in space–time is indeed nicely compatible with a

description in terms of a multi-parameter scale space as out-

lined in Sect. 2.1.3. If the vision system is to give a reasonable

coverage of a set of filter parameters Σ and v, then the set of

filters corresponding to space–time separable receptive fields

(corresponding to the filter parameters v = 0) will be much

smaller than the set of filters allowing for nonzero values of

the mixed parameters Σ and v over space and time.

6.6 Complex cells

Besides the above-mentioned linear receptive fields, there is

a large number of early nonlinear receptive fields that do not

obey the superposition principle and whose response prop-

erties are rather insensitive to the phase of the visual stimuli.

The response profile of such a cell in the spatial domain is

typically of the form illustrated in Fig. 21c. Such cells for

which the response properties are independent of the polar-

ity of the stimuli are referred to as complex cells (Hubel and

Wiesel 1959, 1962).

In their study of spatio-temporal receptive field proper-

ties, DeAngelis et al. (1995), DeAngelis and Anzai (2004)

also report a large number of complex cells with nonlin-

ear response profiles in the joint space–time domain; see

Fig. 33 for an example. Within the framework of the pre-

sented spatio-temporal scale-space concept, it is interest-

ing to note that nonlinear receptive fields with qualitatively

similar properties can be constructed by squaring first- and

second-order derivative responses and summing up these

components (Koenderink and Doorn 1990). Provided that

the filters are appropriately normalized, we can then con-

struct a quasi-quadrature measure over a one-dimensional

either spatial or temporal domain as (Lindeberg 1997)

QL = L2
ξ + C L2

ξξ = sL2
x + C s2L2

xx (118)

where ∂ξ = √
s ∂x denotes scale-normalized derivatives with

respect to scale-normalized coordinates ξ = x/
√

s (Linde-

berg 1998b) and where the constant C can be determined

either to minimize the amount of ripples in the operator

response (C = 2/3 ≈ 0.667) or from scale selection prop-

erties (C = e/4 ≈ 0.670). Within this model, the first- and

second-order Gaussian derivative approximations constitute

an approximation of a Hilbert pair within the Gaussian deriv-

ative framework.

To extend this notion to a 1+1D space–time with recep-

tive fields based on the Gaussian spatio-temporal scale-space

concept, let us introduce normalized derivatives over scale-

normalized time λ = t/
√

τ according to ∂λ = √
τ ∂t or

more generally ∂λ = τ γ /2 ∂t . Let us then define the follow-

ing spatio-temporal generalizations of the quasi-quadrature
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measure

Q1L = L2
ξ +L2

λ+C (L2
ξξ +2L2

ξλ+L2
λλ)

=sL2
x +τ L2

t +C (s2L2
xx +2sτ L2

xt +τ 2 L2
t t ) (119)

(Q2L)2 = (L2
ξ + C L2

ξξ )(L2
λ + C L2

λλ)

= (sL2
x + C s2L2

xx )(τ L2
t + C τ 2L2

t t ) (120)

Q3L = L2
ξλ+C L2

ξξλ+C L2
ξλλ+C2 L2

ξξλλ

=sτ L2
xt +C s2τ L2

xxt +C sτ 2 L2
xtt +C2 s2τ 2L2

xxtt .

(121)

For the time-causal scale-space, corresponding scale-norma-

lized operators can be expressed as

Q1L = L2
ξ + L2

λ′ + C (L2
ξξ + 2L2

ξλ′ + L2
λ′λ′)

= sL2
x + τ L2

t ′ + C (s2L2
xx + 2sτ L2

xt ′ + τ 2L2
t ′t ′)

(122)

(Q2 L)2 = (L2
ξ + C L2

ξξ )(L2
λ′ + C L2

λ′λ′)

= (sL2
x + C s2L2

xx )(τ L2
t ′ + C τ 2L2

t ′t ′) (123)

Q3L = L2
ξλ′ +C L2

ξξλ′ +C L2
ξλ′λ′ +C2 L2

ξξλ′λ′

= sτ L2
xt ′ +C s2τ L2

xxt ′ +C sτ 2L2
xt ′t ′ +C2 s2τ 2L2

xxt ′t ′

(124)

where the temporal derivatives ∂t ′ with respect to self-

similarly transformed time are related to derivatives with

respect to regular time according to ∂t ′ ∼ tκ∂t and the

exponent κ should be in the interval [0, 1] (Lindeberg 2011,

Sect. 5.2).

Figure 34 shows the result of computing the response of

these quasi-quadrature measures to a delta function over a

1+1D space–time (without additional integration smooth-

ing). Note that this type of computational structure is nicely

compatible with results by Valois et al. (2000), who show

that first- and second-order receptive fields typically occur in

pairs that can be modelled as approximate Hilbert pairs. This

model can therefore be interpreted as a Gaussian derivative-

based analogue of the energy model for complex cells pro-

posed by (Adelson and Bergen 1985; Heeger 1992).

As a complement to the above pointwise computation

quasi-quadrature entities, we can apply a second-stage

smoothing step

(Q′L)(x, t; Σder,Σint)

=
∫

(u,v)∈R2×R

(QL)(x−u, t−v; Σder) h(u, v; Σint) du dv

(125)

with convolution kernel hint(·, ·; Σint) over space or space–

time with integration scale Σint and with Σder denoting

the regular local scale parameter for computing derivatives.

For the quasi-quadrature entities derived from the Gaussian

spatio-temporal scale-space, we should of course choose

a non-causal Gaussian spatio-temporal kernel, whereas we

should for the corresponding entities derived from the

time-causal spatio-temporal scale-space choose a time-

causal spatio-temporal kernel for the second-stage inte-

gration smoothing. Computationally, such a second-stage

smoothing step can be performed with similar diffusion

mechanisms as used for performing the first stage of spatial

and/or temporal scale-space smoothing. With such an addi-

tional post-smoothing stage, the response properties of these

quasi-quadrature cells will be rather insensitive to the phase

of the visual input and do in this respect agree with the

approximate phase invariance of complex cells noted by

Hubel and Wiesel (1959, 1962).

In a detailed study of the response properties of complex

cells, Touryan et al. (2002) observed an additive interaction

between the eigenvectors of a quadratic nonlinear model sup-

porting the energy model (Adelson and Bergen 1985; Heeger

1992). In a more recent study, Rust et al. (2005) found that

complex cell responses are better described by more linear

filters than the one or two used in previous models. The

above-mentioned quasi-quadrature models are in qualitative

agreement with such computational structures. Specifically,

the second-stage smoothing (125) of the pointwise quasi-

quadrature measure is in good agreement with the model of

complex cell responses in Rust et al. (2005, Fig. 8, page 953)

based on weighted averaging of a set of quadrature pairs.

Cell recordings have indicated that receptive fields may

also be affected from stimuli outside the support region of

the classical receptive field (Cavanaugh et al. 2001a,b) and

that non-optimal stimuli, e.g., of different orientations than

the tuning of the cell, may lead to a suppressive influence

on the response properties of complex cells (Ringach et al.

2002; Rust et al. 2005; Felsen et al. 2005). Such suppressive

influence can be obtained by (i) complementing the quasi-

quadrature model with divisive normalization ( Heeger 1992;

Schwartz and Simoncelli 2001) with respect to an ensem-

ble of different nonlinear feature detectors Qi L with their

respective weights wi according to

r = QL
∑

i wi Qi L + c2
. (126)

With the quasi-quadrature entities Qi L defined from spatio-

temporal receptive fields with directional tuning in the spatial

domain given by a spatial covariance matrix Σi , an image

velocity vi and a temporal scale τi

(Qi L)(x, t) = (Qi L)(x, t; Σi , vi , τi ) (127)

an ensemble of such nonlinear receptive fields would then

correspond to a population coding over different spatial ori-

entations, motion directions, and temporal scales.

If we assume that the feature detector F0 at the center x0

of the receptive field is tuned to a special orientation θ0 as
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determined by a covariance matrix Σ0 in space, to an image

velocity v0 in space–time, and to a temporal scale τ0, then the

stimulation of another feature detector Fi at a neighboring

spatial position xi tuned to an orientation θi as determined

by a covariance matrix Σi in space, image velocity vi , and

temporal scale τi may suppress the output of F0 depending

on the relationships between Σi , Σ0, vi , v0, τi , and τ0. An

interesting question concerns whether the weights wi can be

determined from these entities based on geometric relation-

ships

wi = F(xi , x0,Σi ,Σ0, vi , v0, τi , τ0) (128)

or whether some other nonlinear model would be preferable.

To investigate this issue, more experimental data would be

needed.

Suppressive influence can also be obtained by allowing for

(ii) nonlinear feedback that alters the conductivities in the dif-

fusion equation (112) alternatively the corresponding spatio-

temporal extension based on local image measurements or

by considering (iii) recurrent feedback from higher levels

that influence the gain control of the feature detectors. With

these extensions, the resulting model corresponds to an inte-

gration of a hierarchical and recurrent models as advocated

by Martinez and Alonso (2003).

In contrast to the previous treatment of linear receptive

field models, which were determined by necessity from first

principles, it should be emphasized that the structure of the

quasi-quadrature model is not at all determined by necessity.

Instead, it is presented as one possible nonlinear extension

that reproduces some of the qualitative properties of complex

cells.

7 Foveated vision

Concerning the assumption of translational invariance over

the spatial domain, it is well known that the retina of humans

and other higher mammals is not translationally invariant.

Instead, finer scale receptive fields are concentrated toward

a fovea in such a way that the spatial extent of the receptive

fields increases essentially linearly with eccentricity (Koen-

derink and Doorn 1978) (see Fig. 35).

There are close similarities between such a behavior and

the distribution of receptive fields that is obtained if we

assume that the visual system has a limited processing capac-

ity that is to be distributed over receptive fields at different

scales. If we assume that the idealized vision system has a

focus-of-attention mechanism that allows it to simulate trans-

lation invariance by changing the viewing direction, then

based on the argument of scale invariance, it is natural to

distribute the limited processing capacity in such a way that

a similar amount of processing capacity is available for all

scales within some scale range [smin, smax]. In other words,

Fig. 35 Results of measurements of the receptive field size as a func-

tion of eccentricity for ganglion cells in the retina from Martin and

Grünert (2004) based on the results by Watanabe and Rodieck (1989).

The parasol cells project to the magnocellular pathway (corresponding

to motion perception), whereas the midget cells project to the parvocel-

lular pathway (corresponding to shape perception)

Fig. 36 Foveal scale-space model as obtained from the complemen-

tary assumptions of (i) a finite processing capacity that is to be uniformly

distributed over scales and (ii) a preferred image point whose location

can be shifted by a focus-of-attention mechanism to simulate full trans-

lational invariance

the vision system should have the same number of receptive

fields at all scales within some finite scale range (see Fig. 36).

Given these assumption, it follows that the minimum

receptive field size will increase linearly with the distance

from the fovea, a distribution that is compatible with neuro-

physiological and psychophysical findings (Lindeberg and

Florack 1992). Given such a spatially varying resolution

limit, internal representations at coarser scales can then be

constructed from these image measurements based on the
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semigroup property or the diffusion equation. Specifically,

with a log-polar retinotopic mapping, the diffusion equation

that governs the evolution properties over scale can equiv-

alently be expressed on a log-polar domain (Lindeberg and

Florack 1994). In all other respects, the receptive field pro-

files will be similar as for a translationally invariant spatial

domain.

This foveal scale-space model has been used for comput-

ing scale-invariant image descriptors for object recognition

by Kokkinos and Yuille (2008). A closely related model for

foveal vision in terms of an inverted pyramid has been pro-

posed by Crowley and his co-workers (1994) with close rela-

tions to the spotlight model for visual attention by Tsotsos

(1995).

A notable property of the receptive field measurements

taken in the retina as shown in Fig. 35 is that the receptive field

sizes are clustered along linear functions, whereas the foveal

scale-space model in Fig. 36 is based on the assumptions that

all receptive field sizes above a linearly increasing minimum

receptive field size should be present. Given the semigroup

property (8), it follows, however, that receptive fields at scales

coarser than those displayed in Fig. 35 can be constructed by

combining receptive fields at finer scales. The distribution

in Fig. 35 would therefore correspond to a sampling of the

outer layer of the inverted cone of receptive field sizes in the

foveal scale-space model shown in Fig. 36. Receptive fields

in the interior of this cone can therefore be constructed from

linear combinations of receptive field responses in the outer

layer.

An interesting question concerns whether the existence

of coarser-scale receptive fields corresponding to the interior

of this cone could be established by cell recording of linear

receptive fields in the LGN or in V1. An alternative possi-

bility could be to investigate whether receptive fields cor-

responding to the outer layer of this cone could be directly

combined into nonlinear receptive fields corresponding to

the interior of this cone, without representing the intermedi-

ate linear receptive fields explicitly in terms of simple cells.

Such investigations could then answer whether and how shift

invariance is explicitly represented at the earliest levels of lin-

ear receptive fields or at higher nonlinear levels in the visual

hierarchy.

8 Extensions

With regard to camera geometry, we have throughout based

the analysis on a planar perspective projection model with a

flat image plane. This choice has been made to simplify the

mathematical treatment, since the translational group prop-

erties and the diffusion equations are much easier to express

for a flat image geometry. To model biological vision more

accurately, it would, however, be more appropriate to express

a corresponding model based on a spherical camera geom-

etry with a spherical image surface, which will lead to a

scale-space concept based on diffusion equations on a sphere.

Such a model would also have attractive theoretical proper-

ties in the sense that geometric distortions toward the periph-

ery, such as vignetting, will disappear, and certain properties

of global motion fields will become simpler. From such a

background, the present model can be regarded as a local

linearization applied in the tangent plane of the spherical

camera model at the center of the visual sensor.

With regard to the logarithmic transformation of the inten-

sity domain, it is also worth emphasizing that if we have

an initial visual sensor that compresses the brightness range

according to a self-similar intensity transformation I ′ = I γ

with γ < 1, then the result of applying a logarithmic trans-

formation to this output

f (x) = log I γ (x) = γ log I (x) (129)

will be of a similar form as of applying a corresponding trans-

formation to the original data, with the only difference that the

range of variations for the corresponding receptive fields will

be compressed by a uniform factor γ < 1 (gamma compres-

sion). In this respect, the presented model might find interest-

ing applications when constructing computational models of

human vision for evaluating the perceptual quality of image

displays.

9 Relations to previous work

9.1 Biological vision

The notion of receptive field was originally defined by Sher-

rington (1906) to describe the somatosensory area of a body

surface where a stimulus could cause a reflex. Hartline (1938)

extended this notion to light stimuli and defined a visual

receptive field as the area of the retina that must receive illu-

mination in order to cause a discharge in a particular ganglion

cell or nerve fiber. Kuffler (1953) studied the substructure

of retinal receptive fields and found that they are concen-

tric with specific “on” or “off” zones. He also coined the

term “on–off” receptive fields. The Nobel laurates Hubel and

Wiesel (1959, 1962, 2005) investigated and characterized the

response properties of cells in the primary visual cortex (V1),

discovered their orientation tuning, and proposed a taxonomy

in terms of simple or complex cells based on how the cells

respond to the polarity of visual stimuli. In the first wave of

studies, specific stimuli such as points, bars, or sine wave

gratings were used as stimuli for probing the visual cells.

Later, a new methodology for receptive field mappings

was developed based on white noise stimuli, which allow

for a complete characterization of the response properties of

visual neurons if they can be assumed to be linear. Based
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on this technique, DeAngelis et al. (1995) were able to

derive more detailed maps of receptive fields, including

their response properties in the joint space–time domain; see

DeAngelis and Anzai (2004) for a comprehensive overview

of these developments. Conway and Livingstone (2006) per-

formed a corresponding investigation of spatio-chromatic

and spatio-chrom-temporal response properties of receptive

fields in the macaque monkey. Ringach et al. (2002) showed

how receptive field profiles of neurons can be derived using

natural image sequences as stimuli. Felsen et al. (2005) have

presented comparisons between response properties of neu-

rons to natural image features versus noise stimuli and found

that in the responses of complex cells, but not of simple cells,

the sensitivity is markedly higher for natural image data than

for random stimuli.

Adelson and Bergen (1985) developed a spatio-temporal

energy model for motion perception based on oriented filters

in the space–time domain. The quasi-quadrature approach

in (118) and (119) in combination with a multi-parameter

scale space can be seen as an analogue and extension of

such a representation within the Gaussian derivative frame-

work. More recently, Young et al. (2001) showed how spatio-

temporal receptive fields can be modelled by Gaussian deriv-

atives over a spatio-temporal domain, corresponding to the

Gaussian spatio-temporal concept described here, although

with a different type of parameterization.

The scale-space models described in this article and our

earlier work (Lindeberg 1997, 2001, 2011) unify these treat-

ments into a joint framework and do also comprise new exten-

sions in the following ways: (i) a new continuous time-causal

scale-space model that respects forbidden access to future

information, (ii) a time recursive update mechanism based

on a limited temporal buffer, (iii) a better parameterization

of the spatio-temporal filters with respect to image velocities

and image deformations, and (iv) necessity results showing

how these scale-space models can be uniquely determined

from a small set of structural assumptions regarding an ide-

alized vision system.

It should be emphasized, however, that the theoretical

necessity results presented in this paper concern linear recep-

tive fields. Characterizing nonlinear receptive fields is a much

more complex issue, see Ringach (2004) for an overview of

different approaches for mapping receptive fields. Nonlinear

gain control mechanisms in the retina have been modelled

and related to biological cell recordings by Schwartz et al.

(2002). Nonlinear receptive fields in V1 have been investi-

gated and modelled in more detail by Mechler and Ringach

(2002), Touryan et al. (2002), Priebe et al. (2004), and Rust

et al. (2005). During recent years, there has been some ques-

tioning of whether the taxonomy by Hubel and Wiesel into

simple and complex cells corresponds to distinct classes or

whether V1 cells have response properties along a contin-

uum (Mechler and Ringach 2002). Bardy et al. (2006) have

shown that the response properties of some classes of com-

plex cells can be converted to putative simple cells depending

on influences originating from the classical receptive field.

The experimental results can, however, be strongly depen-

dent on the experimental conditions (Kagan et al. 2002; Mata

and Ringach 2005; Chen et al. 2002) and bimodal distribu-

tions have been found by Kagan et al. (2002), Ibbitson et

al. (2005), and Chen et al. (2002). Moreover, Martinez and

Alonso (2003) argue that a large body of neurophysiological

evidence indicates that simple cells are a separate population

from the total of cortical cells in cat visual cortex. In relation

to the classification of complex cells, Kagan et al. (2002)

have suggested that distinctions in the classification of com-

plex cells should be made on whether the cells are domi-

nated by magnocellular or parvocellular input. Martinez and

Alonso (2003) have suggested that complex cells should be

divided into first-order complex cells that receive direct input

from the LGN and second-order complex cells that receive

input from simple cells. More recently, Williams and Shap-

ley (2007) have found spatial phase-sensitive detectors in V1

that respond to contrast boundaries of one sign but not the

opposite. Our knowledge about nonlinear cells in area V1

is therefore far from complete (Olshausen and Field 2004;

Carandini et al. 2005).

The notion of a logarithmic brightness scale goes back to

the Greek astronomer Hipparchus, who constructed a sub-

jective scale for the brightness of stars in six steps labelled

“1 …6,” where the brightest stars were said to be of the first

magnitude (m = 1) while the faintest stars near the limits of

human perception were of the sixth magnitude. Later, when

quantitative physical measurements were made possible of

the intensities of different stars, it was noted that Hipparchus

subjective scale did indeed correspond to a logarithmic scale.

In astronomy today, the apparent brightness of stars is still

measured on a logarithmic scale, although extended over a

much wider span of intensity values. A logarithmic transfor-

mation of image intensities is also used in the retinex theory

(Land 1974, 1986).

In psychophysics, the Weber-Fechner law attempts to

describe the relationship between the physical magnitude

and the perceived intensity of stimuli. This law states that

the ratio of an increment threshold �I for a just noticeable

difference in relation to the background intensity I is con-

stant over large ranges of magnitude variations (Palmer 1999,

pages 671–672)

�I

I
= k (130)

where the constant k is referred to as the Weber ratio. The

theoretical analysis of invariance properties of a logarith-

mic brightness scale under multiplicative transformations of

the illumination field as well as multiplicative exposure con-
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trol mechanisms is in excellent agreement with these psy-

chophysical findings.

For a strictly positive entity z, there are also information

theoretic arguments to regard log z as a default parameter-

ization (Jaynes 1968). This property is essentially related

to the fact that the ratio dz/z then becomes a dimension-

less integration measure. A general recommendation of care

should, however, be taken when using such reasoning based

on dimensionality arguments, since important phenomena

could be missed, e.g., in the presence of hidden variables.

The physical modelling of the effect on illumination varia-

tion on receptive field measurements in Sect. 2.3 provides a

formal justification for using a logarithmic brightness scale

in this context as well as an additional contribution of show-

ing how the receptive field measurements can be related to

inherent physical properties of object surfaces in the envi-

ronment.

9.2 Computer vision

In the area of computer vision, multi-scale representations

were first constructed by repeated smoothing and subsam-

pling, leading to the notion of pyramids (Burt 1981; Crow-

ley 1981; Burt and Adelson 1983; Crowley and Stern 1984;

Crowley and Parker 1984; Crowley and Sanderson 1987).

Concerning the development of scale-space theory,

Witkin (1983) proposed to treat scale as a continuous

parameter and noted that Gaussian convolution leads to a

decreasing number of zero-crossings or local extrema for

a one-dimensional signal. The first necessity results in the

Western literature concerning the uniqueness of the Gaussian

kernel for generating a linear scale-space representation were

derived by Koenderink (1984) based on the assumption

of causality, which means that iso-surfaces in scale space

should point with their convex side toward coarser scales.

Related uniqueness results were presented by Babaud et al.

(1986) and by Yuille and Poggio (1986).

Lindeberg (1990) showed how a reformulation of Koen-

derink’s causality requirement in terms of non-enhancement

of local extrema in combination with the requirement of a

semigroup structure could be used for deriving a scale-space

theory for discrete signals. Corresponding necessity results

concerning scale-space representations of continuous image

data based were then presented in Lindeberg (1996). A cas-

cade property was also used in the construction of binomial

pyramids by Crowley (1981), Crowley and Stern (1984).

Florack and Haar Romeny (1992) proposed to the use of

scale invariance as a basic scale-space axiom and Pauwels

et al. (1995) showed that in combination with a semigroup

structure, there exists a more general one-parameter family of

(weak) scale-space kernels that obey these axioms, including

the Poisson scale space studied by Felsberg and Sommer

(2004), Duits et al. (2004) have investigated the properties of

these scale spaces in detail and showed that the so-called α-

scale spaces can be modelled by pseudo-partial differential

equations. Except for the Gaussian scale space contained in

this class, these self-similar scale spaces do, however, not

obey non-enhancement of local extrema.

Closely related axiomatic derivations of image processing

operators based on scale invariance have also been given in

the earlier Japanese literature (Iijima 1962; Weickert et al.

1999). Koenderink and Doorn (1992) showed that Gaussian

derivative operators are natural operators to derive from a

scale-space representation, given the assumption of scale

invariance.

The connections between the strong regularizing proper-

ties of Gaussian convolution with Schwartz distribution the-

ory have been pointed out by Florack et al. (1992).

Generalizations of rotationally symmetric smoothing

operations to the affine Gaussian scale-space concept were

introduced in (Lindeberg 1994b) and applied in (Lindeberg

and Gårding 1997) for the computation of affine invari-

ant image descriptors. Specifically, a mechanism of affine

shape adaptation was proposed for reaching affine covari-

ant interest points in affine scale space, and it was shown that

the computation of such affine-adapted image measurements

improved the accuracy of later-stage processes in situations

when there are significant perspective image deformations

outside the similarity group. Baumberg (2000) and Schaffal-

itzky and Zisserman (2001) furthered this approach to wide

baseline image matching. Mikolajczyk and Schmid (2004)

proposed a more efficient algorithm and quantified its per-

formance experimentally. Tuytelaars and Gool (2004) per-

formed corresponding matching of widely separated views

with application to object modelling. Related investigations

of elongated directional filters over the spatial domain have

been presented by Freeman and Adelson (1991); Simoncelli

et al. (1992) and Perona (1992).

Scale-space representations of color information have

been developed by Geusebroek et al. (2001) based on a

Gaussian color model proposed by Koenderink, from which

a set of differential color invariants were defined and by Hall

et al. (2000) who computed first-order partial derivatives of

color-opponent channels and demonstrated the applicability

of such features for object recognition. Linde and Lindeberg

(2004, 2012) extended this idea by showing that highly dis-

criminative image descriptors for object recognition can be

obtained from spatio-chromatic derivatives and differential

invariants up to order two. More recently, Sande et al. (2010)

have presented an evaluation of different color-based image

descriptors for recognition.

Concerning temporal scale spaces, Koenderink (1988)

proposed the first scale-space concept that respects temporal

causality, based on a logarithmic transformation of the time

axis with the present moment as the origin. Such temporal

smoothing filters have been considered in follow-up works
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by Florack (1997) and ter Haar Romeny et al. (2001). These

approaches, however, appear to require infinite memory of

the past and have so far not been developed for computational

applications.

To handle time causality in a manner more suitable for

real-time implementation, Lindeberg and Fagerström (1996)

expressed a strictly time-recursive space–time separable

spatio-temporal scale-space model based on the cascades

of temporal scale-space kernels in terms of either truncated

exponential functions or first-order recursive filters, based

on a characterization of one-dimensional scale-space filters

that guarantee non-creation of local extrema with increasing

scale (Lindeberg 1990). These scale spaces were also time

recursive in the sense that no extensive memory of the past

was needed. Instead, a compact temporal buffer allowed for

efficient computation of the temporal smoothing operation

and temporal derivatives directly from a set of internal rep-

resentations at different temporal scales. A closely related

time-recursive computation of temporal derivatives has been

used by Fleet and Langley (1995).

Lindeberg (1997) proposed a non-separable spatio-temp-

oral scale-space concept comprising the notion of velocity-

adapted derivatives for a continuous model based on a

Gaussian spatio-temporal scale-space and for a semi-discrete

time-causal model; see also Lindeberg (2001) for a more

detailed description of the corresponding spatio-temporal

scale-space theory. Velocity adaptation was applied to optic

flow estimation by Nagel and Gehrke (1998) and was shown

to improve the accuracy in optic flow estimates in a simi-

lar manner as affine shape adaptation improves the accuracy

of image descriptors under perspective image deformations

outside the similarity group. A closely related approach for

optic flow computation with corresponding deformation of

the image filters was developed by Florack et al. (1998). An

extension of non-separable spatio-temporal fields into time-

causal velocity-adapted recursive filters was given in (Lin-

deberg 2002).

Laptev and Lindeberg (2004b) investigated the use of

families of velocity-adapted filters for computing Galilean

invariant image descriptors. Given an ensemble of spatio-

temporal scale-space filters with different orientations in

the space–time domain in a manner similar to Adelson and

Bergen (1985), simultaneous adaptation to spatial scales,

temporal scales, and image velocities was performed by a

multi-parameter scale selection mechanism over these para-

meters. Specifically, it was shown that the use of velocity-

adapted filters improved the separability between classes of

spatio-temporal actions in situations when there are unknown

relative motions between the objects and the observer. Gener-

alizations of this approach to the context of Galilean invariant

interest points were then presented in Lindeberg (2004) with

an integrated Galilean invariant spatio-temporal recognition

scheme in (Laptev et al. 2007).

Fagerström (2005) investigated self-similar temporal

scale-space concepts derived from the assumptions of a

semigroup structure combined with scale invariance, with

an extension to the spatio-temporal domain in Fagerström

(2007) that also comprises the notion of velocity-adapted

filters. Lindeberg (2011) gives a unified treatment of the

scale-space axiomatics of linear, affine, and spatio-temporal

scale space for continuous images based on the assumption

of non-enhancement of local extrema over spatial and spatio-

temporal domains, including more explicit statements of the

uniqueness results regarding the Gaussian spatio-temporal

scale space earlier outlined in Lindeberg (2001) and the

application of non-enhancement of local extrema to a con-

tinuous time-causal and time-recursive spatio-temporal scale

space.

10 Summary and conclusions

Neurophysiological recordings have shown that mammalian

vision has developed receptive fields that are tuned to differ-

ent sizes and orientations in the image domain as well as to

different image velocities in space–time. A main message of

this article has been to show that it is possible to derive such

families of receptive field profiles by necessity, given a set of

structural requirements on the first stages of visual processing

as formalized into the notion of an idealized vision system.

These structural requirements reflect structural properties of

the world in terms of scale covariance, affine covariance,

and Galilean covariance, which are natural to adapt to for a

vision system that is to interact with the surrounding world

in a successful manner. In a competition between different

organisms, adaptation to these properties may constitute an

evolutionary advantage.

The presented theoretical model provides a normative the-

ory for deriving functional models of linear receptive fields

based on Gaussian derivatives and closely related operators.

In addition, a set of plausible mechanisms have been pre-

sented of how nonlinear receptive fields can be constructed

from this theory, based on a generalized energy model.

Specifically, the proposed theory can explain the different

shapes of receptive field profiles that are found in biologi-

cal vision from a requirement that the visual system should

be able to compute covariant receptive field responses under

the natural types of image transformations that occur in the

environment, to enable the computation of invariant repre-

sentations for perception at higher levels.

The proposed receptive field model has been related to

Gabor functions, and we have presented several theoreti-

cal arguments for preferring a Gaussian derivative model or

equivalently a formulation in terms of diffusion equations,

with the shapes of the receptive fields parameterized by a

spatial covariance matrix Σ , an image velocity v and a tem-
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poral scale parameter τ , where the spatial covariance matrix

Σ can also encompass the spatial scale parameter s depend-

ing on the choice of parameterization.

In the most idealized version of the theory, one can

see the covariance matrix Σ in the diffusion equation and

the image velocity v as locally constant within the sup-

port region of each receptive field, corresponding to a

pure feed-forward model. More generally, one can consider

covariance matrices and image velocities that are locally

adapted to the local image structures, leading to richer

families of pseudo-linear or nonlinear scale spaces, corre-

sponding to top-down or feedback mechanisms in biological

vision.

When the image data undergo natural image transforma-

tions due to variations in viewing distance, viewing direc-

tion, relative motion between the object and the observer or

illumination variations, we can linearize the possibly non-

linear image transformations locally by derivatives (Jaco-

bians), from which transformation properties in terms of

the filter parameters (scale parameters, covariance matri-

ces, and image velocities) of the receptive fields can be

derived, provided that the family of receptive fields is closed

under the relevant group or subgroup of image transforma-

tions in the tangent space, leading to an algebra of trans-

formation properties of receptive fields. In this article, we

have presented a coherent and unified framework for han-

dling such locally linearized image transformations in terms

of local scaling transformations, local affine transforma-

tions, local Galilean transformations, and local multiplica-

tive intensity transformations, such that the influence of

these image transformations on the receptive field responses

can be well understood. More generally, the formulation of

image primitives in terms of receptive field responses that

are expressed in terms of scale-space derivatives makes it

possible to use tools from differential geometry for deriving

relationships between image features and physical properties

of objects or events in the environment, thus allowing for

computationally operational and theoretically well-founded

modelling of possibilities or constraints for visual percep-

tion.

We have also related the proposed approach to approaches

for learning receptive field profiles from natural image sta-

tistics and argued that the presented model in such a context

provides a normative theory for the solutions that an idealized

learning system may reach if exposed to a sufficient large and

representative set of natural image data. The presented the-

ory can therefore be used for explaining why such learning

approaches lead to qualitatively similar types of receptive

fields.

Several of the theoretically derived receptive field pro-

files presented in this article have been successfully used

in a large number of computer vision applications regard-

ing feature detection, feature classification, stereo matching,

motion estimation, shape analysis, and image-based recogni-

tion. Hence, these receptive field profiles can generally serve

as a basis for expressing a large number of visual operations

and have empirically been shown to lead to robust algo-

rithms. In this respect, a vision system based on these recep-

tive field families allows for sharing of early visual modules

between different higher level vision functionalities, which

for a biological vision system can be motivated by efficiency

of resource utilization.

The linear receptive fields obtained from this theory have

been compared to receptive fields found by cell recordings

in the LGN and simple cells in V1.

The proposed nonlinear quasi-quadrature model has also

been related to qualitatively similar properties observed for

complex cells in V1.

A striking conclusion from the comparisons in Sect. 6

is that the receptive field profiles derived by the axiomatic

theory in Sects. 3–5 are in very good qualitative agreement

with receptive field profiles recorded in biological vision.

Thus, we have a very good match between consequences of

the theory and experimental data.

Furthermore, this indicates that the earliest receptive fields

in higher mammal vision have reached a state that is very

close to ideal in view of the stated structural requirements

or symmetry properties. In this sense, biological vision can

be seen as having adapted very well to the transformation

properties of the surrounding world and the transformations

that occur when a three-dimensional world is projected onto

a two-dimensional image domain.

10.1 Applications to biological vision

The presented theory provides a theoretically well-founded

computational model for early receptive fields. We propose

that this theory could be used as a powerful and general

tool for modelling biological vision, at least in the following

ways:

– The Gaussian and the time-causal receptive field families

with their spatial and spatio-temporal derivative opera-

tors applied to luminance and color-opponent channels

can be used for generating wider and more general fam-

ilies of receptive field profiles beyond those explicitly

shown in the figures in this article. The idealized model

for simple cells (116) comprises receptive fields of differ-

ent orders of spatial and temporal differentiations, where

a subset of combinations of spatial and spatio-temporal

derivative operators has been demonstrated to lead to

receptive field profiles in good qualitative agreement

with receptive field profiles measured by cell record-

ings in biological vision. An interesting question con-

cerns whether the existence of linear receptive fields cor-

responding to other combinations of spatial and spatio-

123



Biol Cybern (2013) 107:589–635 631

temporal derivatives can be demonstrated, in particu-

lar when the receptive fields are measured as functions

over two spatial dimensions and one temporal dimen-

sion and concerning the existence of receptive fields cor-

responding to higher orders of derivatives. Concerning

spatio-chromatic and spatio-chrom-temporal receptive

fields, the models for double-opponent receptive fields

(110) and (117) are both based on rotationally symmet-

ric Laplacians of Gaussians (alternatively differences of

Gaussians) concerning the spatial dependencies. Another

interesting question concerns whether biological vision

implements non-symmetric spatio-chromatic receptive

fields corresponding to, e.g., directional or partial deriv-

atives of color-opponent channels as shown in Fig. 9,

and whether or whether not tighter couplings could be

established between the chromatic and temporal dimen-

sions. Answering these questions would provide cues to

what types of image structure the visual system explicitly

responds to and therefore possibilities as well as limita-

tions for perception.

Hence, this theory may be used for generating predic-

tions about new hitherto unnoticed or unreported recep-

tive fields and for explaining their properties in terms

of differential geometric measurements. This theory can

also be used for raising questions about which animals

have early receptive fields with properties compatible

with general purpose visual operations according to the

notion of an idealized visual front end.

– Concerning orientation maps and population coding over

image orientations and image velocities, the notion of

multi-parameter receptive field families over different

spatial covariance matrices Σ , image velocities v, and

temporal scales τ raises questions of how the recep-

tive fields in V1 are distributed over different orienta-

tions and directional tunings. Since receptive fields have

been found with different degrees of spatial eccentrici-

ties, corresponding to different scale parameters in differ-

ent directions, this raises questions of whether the distri-

bution over different degrees of spatial elongation is such

that it could be explained by a geometric model over spa-

tial covariance matrices Σi corresponding to structural

properties of the environment.

More generally and as we have previously discussed in

Sect. 6.6, given that we have a population of nonlinear

receptive fields that are tuned to different spatial orien-

tations and motion directions that respond according to

an energy model, an interesting question concerns how to

combine the responses of a set of such nonlinear receptive

fields that respond at different spatial locations and tuned

to different orientations and motion directions. Could a

sufficient amount of cell recordings be gathered to answer

the question of how this information should be combined

from a population of such nonlinear detectors, e.g., for

setting the relative weights for divisive normalization or

by changing the conductivities in the diffusion equations

that determine the properties of the underlying receptive

fields.

In connection with the foveal scale-space model in Sect. 7

and the dominance of receptive fields with a linearly

increasing receptive field size as function of eccentric-

ity found by cell recordings of retinal ganglion cells, it

would also as discussed in at the end of Sect. 7 be interest-

ing to know whether and where the existence of coarser-

scale receptive fields corresponding to the interior of the

inverted cone in Fig. 36 could be established.

In these and other ways, the presented mathematical

framework for receptive fields could be used for express-

ing and raising questions about computational mecha-

nisms.

– The theoretical covariance properties of the associated

scale-space concepts allow for explicit handling of invari-

ance properties with respect to scale variations, image

deformations, and relative motions. In computational

models, such as neural networks, explicit incorporation

of such transformation properties may be used for bypass-

ing the need for an explicit training stage to learn corre-

sponding invariance properties.

From a biological standpoint, it appears natural that bio-

logical organisms should develop the possibility of hav-

ing these transformations hard-wired or soft-wired (the

latter notion meaning that a set of initial connections

being trimmed after birth), since these transformations

are universal. In terms of receptive fields, these transfor-

mations will then correspond to certain parameter ranges

of the scale parameters, determined by the statistics of

natural images.

This theory may therefore be more generally used for

reducing or bypassing the need for explicit learning the

spatial, spatio-chromatic, and spatio-temporal response

properties of early receptive fields in computational

models of visual perception. In this respect, the pre-

sented theory could allow for lower needs for training

data and a lower amount of computational resources in

the training stage of computational vision models, by

faster formation of receptive fields given a hard-wired

or soft-wired architecture. The theory may also imply

higher robustness of early receptive fields in computa-

tional models and require less variability in the training

data.

– With regard to a possible biological implementation of

this theory, the evolution properties of the presented

scale-space models are governed by diffusion equations,

which can be implemented by operations over neighbor-

hoods. Hence, the computations can naturally be imple-

mented in terms of connections between different cells.

Diffusion equations are also used in mean field theory
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for approximating the computations that are performed

by populations of neurons (Omurtag et al. 2000; Mattia

and Guidice 2002; Faugeras et al. 2009).

The generalized semigroup property (8) with the corre-

sponding cascade property (9) possibly expressed for a

multi-parameter scale space and the diffusion equations

in terms of infinitesimal generators (13) and (14) describe

how receptive fields corresponding to different possibly

multi-dimensional scale parameters can be related and

hence how receptive fields at coarser scales can be com-

puted from receptive fields at finer scales. In a neural

network implementation, these relations can hence be

used for setting the weights for communications between

different cells. This theory also provides a framework

for modelling and explaining the temporal dynamics of

neural computations between cells at different levels of

processing.

In this respect, the theory naturally leads to a hierarchical

architecture with explicit expressions for how receptive

fields in the fovea can constitute the basis for receptive

fields in the LGN and these in turn can be used for defin-

ing receptive fields in V1 and later stages in the visual

cortex.

It should be emphasized, however, that this model has

not been primarily constructed to accurately reproduce

experimental findings regarding biological vision. Instead,

the focus has been on formulating an idealized theoret-

ical model for the types of computations that are nat-

ural to perform at the earliest stages of visual process-

ing given theoretical properties of the structure of the sur-

rounding world, which are then expressed as fundamental

assumptions about the functionality of the vision system.

If the model should be regarded as biomimetic, that would

then be in a weaker sense of performing similar types of

functions.

In this way, specific properties of specific organisms are

suppressed (and not considered here because of reasons of

scope). The approach is therefore more related to approaches

in theoretical physics, where symmetry properties of the

world are used as fundamentals in the formulation of physi-

cal theories. In the area of scale-space theory, these structural

assumptions are referred as scale-space axioms.
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