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Abstract

Computational models are essential to engineer predictable biological systems and

to scale up this process for complex systems. Computational modelling often requires

expert knowledge and data to build models. Clearly, manual creation of models is not

scalable for large designs. Despite several automated model construction approaches,

computational methodologies to bridge knowledge in design repositories and the process

of creating computational models has still not been established. This paper describes

a workflow for automatic generation of computational models of genetic circuits from

data stored in design repositories using existing standards. This workflow leverages

the software tool SBOLDesigner to build structural models that are then enriched
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by the Virtual Parts Repository API using Systems Biology Open Language (SBOL)

data fetched from the SynBioHub design repository. The iBioSim software tool is then

utilized to convert this SBOL description into a computational model encoding using

the Systems Biology Markup Language (SBML). Finally, this SBML model can be

simulated using a variety of methods. This workflow provides synthetic biologists with

easy to use tools to create predictable biological systems, hiding away the complexity of

building computational models. This approach can further be incorporated into other

computational workflows for design automation.
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A substantial amount of information is being produced about biological parts that can

be used to implement complex designs. However, this information is usually only available

for human interpretation and is often solely at the DNA sequence level. Computational

modeling in silico is often exercised manually in order to predict the behavior of designs

that can be implemented in vivo or in vitro. In these models, functional relationships and

design constraints between parts in a design are captured in a formal modeling language for

simulation. Although this approach may be sufficient for small designs and part libraries,

automation of the model generation process is necessary to evaluate larger combinatorial

design spaces.

Model-based design approaches are particularly useful to derive physical systems through

computational simulations. Several tools reviewed in1–3 have been developed to understand

and optimize the behavior of genetic designs. Some of these tools also offer graphical user

interfaces (GUIs), such as iBioSim.4 iBioSim allows users to create genetic circuits and

specify interactions between biological components manually. The user of the tool provides

the necessary knowledge through the GUI for the creation of genetic circuits. iBioSim allows

the specification of mathematical models for genetic circuits using reaction-based networks.
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These models can then be simulated using a variety of deterministic (ODE) and stochastic

(SSA) simulators. However, creating models from scratch every time can be difficult, time

consuming, and error prone.

There is also research with an emphasis on utilizing existing models. The Virtual Parts

Repository5 (VPR) has been developed to provide reusable and modular models of biological

parts. These models are further annotated with metadata to facilitate model composition.

The data in the repository is accessible computationally. In a manual design process using

the VPR, a user is expected to provide genetic circuit specifications in terms of constituting

biological parts. The repository is also ideal to explore large design spaces of biological

systems through heuristic evolutionary computing and artificial intelligence-based automated

approaches,6 in which information about biological components and functional relationships

are used to optimize existing, or create new designs, until solutions are found. The use of

the VPR for such automated approaches is particularly suitable for tool developers wishing

to automate model design.

In order to construct a genetic circuit design, sequence editing tools such as SBOLDe-

signer7 provide a GUI and assume no programming experience, simplifying the process of

designing biological systems. In SBOLDesigner, basic DNA-based biological components

are represented with standard glyphs from the SBOL Visual (SBOLv) standard8 that can

then be layed out sequentially along a DNA strand. Often challenges arise in the design pro-

cess due to a lack of curated information. SBOLDesigner connects to the online design

repository SynBioHub9 to retrieve linked information for genetic parts. An alternative ap-

proach to genetic circuit construction is to use domain specific languages,10–15 which can be

particularly efficient and easier to use in a scripting environment. One important example is

the tool Cello,16 which applied electronic design automation principles to synthetic biology

to automate the design of synthetic genetic circuits encoded as Boolean logic formula in the

Verilog language.

Although these constructions methods are efficient to construct genetic circuits struc-
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turally at the DNA-level, mathematical and simulatable models are necessary to explore

and further understand the behavior of these circuits. For example, while Cello demon-

strates that engineering principles can be applied to build robust multilevel circuits, the

circuit performance is primarily focused on the steady-state function of the circuit. The

ability to describe biological networks’ behavior over time, represents an important step

towards building robust genetic circuits.17 Models constructed for well-established circuits,

like the ones studied in Cello, can be simulated to better understand their time-series behav-

ior. Therefore, it is desirable to reuse existing synthetic biology tooling to construct these

models.

One way to re-utilize existing research efforts, and to integrate design and modeling

tools, is to develop workflows. Workflows have already been acknowledged in synthetic

biology, and applications and infrastructures to facilitate computational workflows have been

demonstrated.6,18–21 Synthetic biologists would greatly benefit from workflows that are not

just for tool developers, but also directly for end users. These workflows can simplify the

design and modeling of genetic circuits using adopted data standards.

Data standards are particularly important to facilitate design automation, and to pass

information between different computational tools when implementing complex workflows.

The Synthetic Biology Open Language (SBOL)19,22,23 has emerged as an international stan-

dard to exchange genetic circuit designs. This standard is useful to specify designs in terms

of constituent components. Using SBOL, the order and sequences of biological components

in a design can be captured, and these designs can be hierarchically reused in more complex

designs. Importantly, SBOL supports capturing molecular interactions between these com-

ponents. This information is invaluable when creating computational models that can be

encoded using different languages such as the Systems Biology Markup Language (SBML)24

and CellML.25 SBML, in particular, has been adopted by more than 280 software tools.

SBML allows embedding external information in the form of annotations. Once these mod-

els are annotated, they can be used to derive physical systems that can encode the behavior in
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models.26,27 Models can also be derived directly from SBOL documents. The latter approach

has been demonstrated by providing information about molecular interactions manually.28

To ease the burden on genetic designers, it is desirable to automate the process of model

construction in the workflow. There are already different data repositories emerging for

synthetic biology. Data from these repositories can be used to create models. The iGEM

Registry of Standard Biological parts hosts a large repository of parts collected from partic-

ipants of the International Genetically Engineered Machine (iGEM) competition, including

free-text characterization data and usage experience. JBEI-ICE29 also allows information

about parts to be uploaded, and has been used to publish designs accompanying papers in

the ACS Synthetic Biology journal.30 SynBioHub9,31 recently emerged as a repository to

upload information about both biological parts and their interactions. This information is

machine-accessible in the form of SBOL documents. The SynBioHub database is backed-by

a graph database, in the form of a Resource Description Framework (RDF) triplestore, and

allows uploading, downloading SBOL documents and querying the underlying data using

SPARQL. Data can be programmatically accessed by a higher-level API.

Building upon these promising efforts, this paper presents a data integration based ap-

proach, enabled by data standards, to facilitate the automated creation of computational

models from simple definitions of genetic circuits. These definitions may include information

that is necessary for DNA synthesis to allow models to be implemented directly as DNA in

the laboratory. Computational models are then constructed by extracting knowledge about

these DNA components and other interacting entities such as proteins, small molecules,

complexes and so on. The developments presented here bridge the gap between designing

circuits and gaining insights into their behavior.
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Results and Discussion

This paper illustrates a workflow for the automated generation of models of genetic designs.

Information about the biological components necessary for their modeling is extracted from

remote data sources. This information can be derived through manual curation processes

or through data mining approaches, and can be deposited in repositories for computational

access. An example workflow is proposed to illustrate these standardized automated pro-

cedures shown in Figure 1. This paper then presents how data mining approaches can be

used to create information that is necessary to generate models. This approach is illustrated

by creating two datasets from publicly available information. In order to automate the exe-

cution of model generation workflows, both the syntax to represent data and the semantics

to define the meaning of data should be standardized. To facilitate this process, this pa-

per describes a semantics-based approach in order to capture information about biological

interactions in a standard manner using the SBOL syntax.

Genetic Circuit Construction

The process to construct genetic circuits in our workflow is independent of the design tools

used, and designs can be created either manually or computationally, as depicted in Figure 2.

The example workflow begins by using a design tool that supports the SBOL data standard

and can connect to the SynBioHub repositories to query information about biological parts.

Users can then use these parts that they have fetched from SynBioHub to construct their

own genetic designs within their software tool. Both the SBOLDesigner7 and Cello16 tools

support this genetic circuit construction methodology. Furthermore, both of these tools also

support the uploading of their final genetic designs to a SynBioHub repository to allow

them to be shared publicly and reused.

Initially, a DNA-level design constructed using one of these tools is annotated with DNA-

level parts that have been fetched from the available datasets stored in various SynBioHub
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Figure 1: This figure illustrates how model generation is used within our workflow. A. The
workflow starts off by a user creating a generic design of a transcriptional unit using the
SBOLDesigner tool supported within iBioSim as a plugin. B. This DNA-level design is
annotated with DNA parts fetched from datasets, such as the BacillOndex or Cello datasets,
available in SynBioHub repositories. C. When the DNA-level design has been completely
annotated, the design is sent to the VPR API to perform the enriching process. D. This
process adds to the DNA-level design any proteins and complexes that affect the behavior
of the circuit. This process also adds interactions to connect these proteins and complexes
to the DNA-level design. E. iBioSim takes the design with the newly added component
and converts the design into an SBML model. Genetic circuits expressed as SBML models
allow further simulation and other in silico analysis and verification.
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Figure 2: This figure illustrates how a CAD tool can be used to support a workflow for
VPR model generation. As mentioned previously, this workflow has been incorporated in
SBOLDesigner and Cello. Designs constructed within one of these tools are capable of
fetching parts from a SynBioHub repository instance. Annotating a tool’s design with parts
taken from SynBioHub allows the VPR API to process additional interactions that are
needed for modeling. The output design produced from the VPR API is then transformed
into the SBML modeling format that allows a user to perform reaction-level simulation and
analysis to verify the behavior of their design using a software tool such as iBioSim.
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repositories. Bacillus subtilis and Cello parts are example datasets of curated DNA parts,

proteins, complexes, and their interactions. Desired DNA-level designs can then be selected

for submission to the VPR API. In the enriching process, the VPR API looks at the

individual DNA-level designs and communicates with the SynBioHub design repositories

using standard graph query languages, such as SPARQL. SPARQL allow users to fetch

proteins and complexes that interact with the DNA components within the designs. Any

components and interactions found are then added to the corresponding DNA level designs.

Once the enriching process is complete, the new designs are returned from the VPR API.

iBioSim takes these new designs to update its knowledge with the new contents. The

interaction information that is added, allows dynamic models to be derived to verify the

behavior of the genetic designs using iBioSim’s SBOL to SBML converter.28 Having genetic

circuits represented in SBML enables genetic circuit designers to test their designs through

in silico simulation and analysis under a variety of environments, parameters, initial values,

and stimuli.

Deriving Dynamic Models

SBOL, by design, does not include all of the information needed for dynamic simulations.

Therefore, expressing a model in SBML is necessary to verify the behavior of a design. Once

the enriching process is complete, the VPR API returns to iBioSim an SBOLDocument that

has a list of SBOL ModuleDefinitions. Each SBOL ModuleDefinition represents either a

genetic design containing the added protein , complex, and small molecule components and

their interactions with the DNA components, or a composition of such ModuleDefinitions.

This new information is utilized by iBioSim’s SBOL to SBML conversion utility28 to derive a

dynamic model in the SBML format. This conversion procedure maps specific SBOL objects

to SBML elements and adds extra information necessary to create a dynamic model. More

information about the SBOL to SBML conversion process is discussed within the methods

section.
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Workflow Example

This section demonstrates our proposed workflow using the Rule 30 example from.16 The

Rule 30 example is inspired by an update function for a cellular automaton that is capable of

producing complex patterns that display chaotic behavior.32 The Rule 30 example is one of

the genetic circuits that was designed by Cello software in16 using parts from the Cello library.

These parts have been deposited into the Living Computing Project (LCP) SynBioHub

repository . As shown in Figure 3A, the data for these parts include not only the DNA parts

and their sequences, but also the proteins, complexes, and small molecules that interact

with these DNA parts. In addition to the description of these components, the repository

also includes all the interactions between them such as inhibition of promoters, encoding of

proteins by coding sequences (CDS), complex formation reactions, and degradation reactions.

Figure 3: A. The Cello components and their interactions utilized in this example. B. An
electronic schematic representation of the Rule 30 example. C. Nine DNA-level designs con-
structed with Cello parts that can be constructed using either SBOLDesigner or Cello.
These nine DNA-level designs represent parts created for the three input sensors for the LacI,
TetR, and AraC proteins, the two NOT gates for production of SrpR and BetI proteins, the
three NOR gates for production of HlyllR, AmtR, and PhlF proteins, and a YFP reporter
for the production of YFP.

As shown in 3B, the Rule 30 example is composed of NOT and NOR gates linked to an

OR gate. The OR gate represents the output reporter that drives the expression of YFP.
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The inputs to the Rule 30 example are driven by input sensors for three small molecules,

IPTG, aTC, and Ara. The genetic circuit that can be constructed for this design using either

Cello or SBOLDesigner is composed of nine DNA-level circuits as shown in Figure 3C.

The first three DNA-level circuits are the input sensors that produce constitutively the LacI,

TetR, and AraC proteins, respectively. The next five circuits are used to construct the Rule

30 example are composed of two NOT gates and three NOR gates. An OR gate is attached

to the end of the Rule 30 example to represent the output sensor. Each of these DNA-level

circuit designs is expressed in SBOL as ComponentDefinitions, with Components that refer

to definitions of DNA parts found in the LCP SynBioHub repository.

The DNA-level circuit designs are now sent to the VPR API as a single SBOL document,

so that the design can be enriched with additional SBOL data. The result of this process is

shown in Figure 4. The VPR API creates SBOL ModuleDefinitions for each DNA-level

design. It also adds to the DNA-level design any proteins that interact with the correspond-

ing DNA-level design. In this example, nine SBOL ModuleDefinitions are created with

SBOL Components and SBOL Interactions. These interactions include one stimulation

interaction, nine genetic production interactions, and ten inhibition interactions. A tenth

SBOL ModuleDefinition is created by the VPR API enriching process to instantiate the

other nine Modules to construct the full Rule 30 example. In this top-level module, the

biochemical interactions are added, including three complex-formation reactions and twelve

degradation reactions.

The final step of the model generation workflow takes the enriched SBOL description into

the iBioSim software and converts it into an SBML model shown in Figure 5. This process

converts the ten SBOL ModuleDefinitions into ten SBML ModelDefinitions. Each SBOL

component is converted into an SBML species. The interactions are converted into a

SBML reactions. SBO terms are assigned to the species and reactions to preserve

the information about the types of these elements. Finally, the SBOL MapsTo objects are

converted to SBML ports and SBML replacements to connect the SBML models to build
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Figure 4: The enriching process takes the nine transcriptional units built from Figure 3C
and adds in the proteins and interactions that were curated from the LCP SynBioHub in-
stance for the Cello dataset. Nine of the transcriptional unit designs created in Figure 3C
are stored within ModuleDefinitions. For each transcriptional unit that are found in a
ModuleDefinition, interactions have been created. Three of the input sensors have pro-
ductions interactions. Two of the NOT gates have a total of one activation interaction, one
inhibition interaction, and two production interactions. The three NOR gates have one ac-
tivation interaction, five inhibition interactions, and three production interactions. The last
OR gate for the YFP reporter has one inhibition interaction and one production interaction.
The VPR API also adds to the output designs a top level ModuleDefinition to connect
the nine transcriptional units together and form an entire Rule 30 example circuit. This top
level design also contains twelve degradations interactions and three complex interactions
that are formed between the input signals represented as small molecules binding to three
input sensors.
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the full model of the Rule 30 example.

Once the model generation workflow has concluded, the resulting model can then be

tested in silico. To do this, however, a testing environment, similar to one shown in Figure 6,

must be constructed in SBML. This testing environment is used to apply different stimulus

to the design and to observe how the generated model responds to the different input signals.

An ODE simulation for our Rule 30 example is depicted in Figure 6, which demonstrates

the circuit performing as originally specified above. Namely, YFP is produced when either

IPTG or aTc is provided but not Ara, or only Ara is provided.

Data Integration

The workflow just described requires data to be integrated from a wide variety of sources.

While a substantial amount of biological information has been produced, this data are often

available in different formats and the meaning of the data varies between different databases.

To make the most of this data in synthetic biology, it is important that these heterogeneous

datasets are integrated so that they can be used easily both by humans and software tools.

SyBiOntKB33 is an integrated dataset for synthetic biology applications and has initially

been populated with an integrated Bacillus subtilis dataset.34 SyBiOntKB is represented in

RDF and the semantics of entities are defined using the SyBiOnt ontology.

As part of this work, SyBiOntKB has been mined for genetic parts. The knowledge

base contains information about thousands of biological concepts and relationships between

them, regarding gene regulatory networks, metabolic pathways, proteins, RNA molecules and

annotations. Gene products are represented based on different biological roles they may have,

such as acting as a protein, RNA, enzyme, transcription factor (TF), etc. DNA-based entities

such as promoters, CDSs, terminators and so on are annotated with Sequence Ontology

(SO)35 terms. In addition, information about genetic parts from the Cello framework16,36

was used to create another SBOL dataset. This Cello library contains biological parts that

are used to construct Boolean logic gates.

13



Figure 5: The updated DNA-level designs from Figure 4 are converted into ten SBML
models. Each of these models contain interactions that have been enriched by the VPR

API thus allowing reaction based models to be created. The small white boxes represent
reactions. Arrows that point to the reaction can act as a modifier. Arrows pointing away
from the reaction acts as a product. In this Rule 30 example, the three input sensors for
LacI, TetR, and AraC have a total of three interactions representing modifiers for the pConst
promoter and three interactions for production of LacI, TetR, and AraC proteins. The two
NOT gates that represent the production of SrpR and BetI proteins have two modifiers,
one activation, one inhibition, and two production interactions. The three NOR gates that
represent the production of HlyllR, AmtR, and PhlF proteins are enriched with six modifiers,
two activation interactions, five inhibition interactions, and three production interactions.
The single NOR gate that represents the production of YFP proteins has two modifiers, two
inhibition interactions, and one production interaction. The top-level SBML model is the
same model that was converted from the SBOL top level design generated from the VPR
API. In this model, two new interactions are included. As shown in the top level model,
there are a total of twelve degradation interactions and three complex interactions that are
created.

14



Figure 6: A testing environment to verify the behavior for the Rule 30 example. A. In this
environment, an instantiated model of the Rule 30 example is created from Figure 5 top-level
model. The inputs in the testing environment are connected to the example model so that
alternating stimuli are applied by changing the amounts of the three small molecules, IPTG,
aTc, and Ara. The alternating states can be observed as the changes in the amounts of YFP
proteins produced. B. A simulation representing the Rule 30 example producing YFP when
different inputs are applied. Here we observe that Rule 30 example only produce a HIGH
output state when either IPTG or aTc are HIGH and Ara is LOW, or only Ara is HIGH.
This simulation environment produces the precise behavior that we expect to have based on
the results reported for Cello16
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In this work, SBOL is used to represent the relationships between gene products and

DNA-based entities. SBOL definitions of genetic parts and interactions are created according

to these rules and stored in a single SBOL document:

• A transcriptional stimulation interaction is created between a gene product (such as

a protein or TF) and a promoter, if the gene product binds to a positively regulated

operator that is part of a promoter.

• A transcriptional inhibition interaction is created between a gene product and a pro-

moter, if the gene product binds to negatively regulated operator that is part of a

promoter.

• A phosphorylation interaction is created if a gene product is phosphorylated by an-

other, or the gene product is activated by a protein, which is annotated with the Gene

Ontology’s37 response regulator molecular function term.

• A genetic component definition is created for concepts representing promoter, CDS,

RBS, operator, terminator, spacer sequence parts with known nucleotide sequences.

• A genetic component definition is created for proteins that have the encoded by rela-

tionship to CDS concepts.

• Part-subpart relationships are created using SBOL’s hierarchical representation of ge-

netic parts. For example if a promoter contains an operator part, the operator is

represented as a subcomponent of the promoter in the SBOL representation, with

start and end locations.

• A reusable module definition is created for a genetic construct, which is defined together

with interactions such as transcriptional activations or inhibitions. Genetic components

and interactions are converted into the SBOL format as defined above.
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Provenance about this data mining process is also documented as part of the same SBOL

document. As an RDF/XML based language, SBOL facilitates embedding useful information

that may not be directly captured by the data model. Here, the PROV-O ontology is used

to create a data mining activity, and SBOL definitions of genetic parts are linked to this

activity.

The resulting SBOL document, containing information about B. subtilis gene regu-

latory networks, has been uploaded to a publicly shared SynBioHub instance (https:

//synbiohub.org). SynBioHub is used to group definitions of genetic parts and interac-

tions as the Bacillus subtilis collection. Related publications are associated with the

collection. The data are available both manually through the Web interface, and computa-

tionally.

Data from the Cello project have been deposited into the LCP SynBioHub repository

(https://synbiohub.programmingbiology.org) to allow the synthetic biology community

easy access to the parts, interactions, and additional functional information to characterize

the Boolean logic gates designed in the Cello framework. In this interconversion process,

Cello’s parts and gate parts collections including information about genetic parts, and

the gate parts collection containing information about transcriptional genetic constructs

are mapped to SBOL entities as defined below. The other collections are added into the

SynBioHub repository as JSON file attachments.

Enriching SBOL Designs

This section defines a common semantics to unify the representation of biological interactions

using the SBOL syntax. This defined semantics is used in the workflow by the VPR API to

examine the DNA-level information provided by Cello and SBOLDesigner and enrich

it with biological details using data found in the SynBioHub repositories. Typically, in

a manual design, this information is provided by a domain expert who knows the order of

biological components and intricate constraints about how these components work together
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to achieve a desired function. In our workflow, biological complexity is hidden from the user

as much as possible. Initially, users decide which components to include using metadata

in SynBioHub, and users may not know all the interactions of these selected components.

Especially for large designs, it becomes more difficult to analyze every component and add

relevant molecular interactions to analyze the behavior of a resulting circuit manually. In this

project, simple definitions of biological designs are expanded to complex networks including

as much information as possible in order to create predictive models.

This work extends the VPR5 API to create these networks. As shown in Figure 7, sim-

ple networks that only contain information about DNA-level components are enriched with

additional nodes that represent other biological components such proteins, protein com-

plexes, small molecules, etc. Information regarding interactions between these biological

components are also incorporated in the form of edges. Examples include genetic produc-

tion of proteins, transcriptional activation or inhibition of promoters, formation of protein

complexes, post-translational modification of proteins, etc.

Figure 7: An example depicting the derivation of a network-based representation of the
biological design components. Information about DNA-based biological design components
is used to create an enriched network that includes further details about other biological
components that may affect the behavior of genetic circuits.

SBOL is both used to represent genetic circuits and these complex networks. The VPR

API accepts SBOL documents that only contain information about the type and order of
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biological components, and returns back the same information together with the network

representation of the biological details. In SBOL, genetic circuits are described in terms

of how they are composed of individual DNA-based components. Interaction entities then

provide a generic syntax to represent molecular interactions. Each interaction may have

participants with defined roles, and these participants can either be individual design com-

ponents or genetic circuit designs themselves. This flexibility requires an agreed semantics

with regards to the representation of these interactions for machine interoperability.

In order to provide machine interoperability in computational workflows, the VPR API

uses the Systems Biology Ontology (SBO)38 terms when providing types of interactions,

and roles of participants in each interaction23 (Figure 8). These terms make the resulting

SBOL documents further machine tractable and facilitate deriving models. Figure 8 depicts

the representation for (A) stimulation, (B) inhibition, (C) genetic production, and (D) non-

covalent binding (or complex formation).

Figure 8: Example formal representations of molecular interactions using SBOL and es-
tablished ontologies. A. Transcription activation of a promoter by a TF. B. Transcription
repression of a promoter by a TF. C. Genetic production (transcription and translation) of
a protein. D. Formation of complexes by non-covalent binding. The final complex has the
product role and other participants have the reactant role. Dimerization and formation of
tetramers also follow this rule.

As shown in Figure 9, the VPR API uses the gene centric abstraction when represent-

ing molecular interactions in order to support iBioSim’s model creation process. In this

approach, genetic circuit designs are represented in terms of transcriptional units which

contain a set of biological components such as promoters, RBSs, CDSs and terminators.

Molecular interactions are delegated to these transcriptional units to simplify the repre-
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sentation of modeling of complex applications. These transcriptional units replace single

DNA-based components in interactions. For example, genetic production of a protein is rep-

resented using the protein and the transcriptional unit that contains the CDS component.

Similarly, transcriptional activation of a promoter is represented between the TF and the

transcriptional unit that contains the promoter component. Transcriptional units can be

concatenated or may include composite devices. The latter approach is particularly useful

to incorporate Cello designs which may be formed of promoters and composite RBS-CDS-

terminator designs.

Figure 9: Transcriptional unit-based abstraction for representing interactions. In the figure, a
simple negative-autoregulatory circuit is shown. Interactions of DNA-based components with
other components are captured using the transcriptional units in which these components are
included. As shown in the second part of the figure, transcriptional units may also include
composite parts.

Genetic circuit designs are enriched using the SBOL syntax, agreed semantics as described

above, and the gene centric abstraction. The following rules are applied for this process:

• A single SBOL ModuleDefinition entity is created for a given transcriptional unit

design, which may be formed of promoters, RBSs, CDSs, and terminators. This entity

is used to encapsulate molecular interactions between biological components.
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• Biological molecules interacting with any of the DNA-based components are added to

the ModuleDefinition.

• Interactions of proteins (excluding protein-DNA interactions) produced by the tran-

scriptional unit are also included in the ModuleDefinition.

• If a biological molecule is not produced by any entities in the enriched SBOL design,

then the corresponding SBOL FunctionalComponent is marked as an input. Other-

wise, the corresponding FunctionalComponent is marked as both input and output.

These inputs and outputs are used when creating hierarchical designs.

Discussion

The standard enabled design workflow presented here is important to abstract details of

genetic circuit design processes. Particularly, this workflow simplifies the complexity of

designing computational models of complex biological systems. These models are of value

in the creation of predictable biological systems but can be challenging to create for every

possible biological solution. Using this workflow, users can initially design simple DNA

constructs and, in return, they are presented with information about how these designs may

behave. Functional information about the relationships between DNA and elements, such as

proteins that can be produced by these DNA constructs, together with mathematical models

that can be simulated to gain detailed insights into the intended biological systems are then

presented. These models can further be expanded to include other proteins, small molecules,

and so on that interact with the designed system. As demonstrated here, simplifying the

design process using a tools such as Cello and SBOLDesigner has significant benefits.

Designs can relatively easily be created by users who can design circuits using DNA parts

and still benefit from computational simulations.

Moreover, this approach presented here facilitates automation and exploring large de-

sign spaces of biological systems. As information for biological components becomes more
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available from online repositories, automation will help speed up the process of building and

modeling a genetic design in silico. Building and modeling genetic designs in silico mini-

mizes the time and errors that could occur when implementing these designs in vivo or in

vitro and thus increasing the rate of having a successful working circuit that meets the goal

of the design specification.

So far, a variety of genetic design software tools and biological data repositories have

been introduced, such as SBOLDesigner, Cello, iBioSim, and SynBioHub. However,

existing software tools often deal with all aspects of specifying genetic circuits and creating

models to understand the behavior of these circuits. The automated workflow approach

presented here utilizes existing resources where possible, for example, by computationally

constructing genetic circuits from biological components, for which curated data are avail-

able in online design repositories. This proposed workflow provides insights on how genetic

software tools can incorporate this automated procedure into their tool.

The standards SBOL and SBML are critical since they serve as domain specific languages

that seamlessly connect all the tools within this workflow. The workflow described in this

paper uses SBOL to capture the initial user designs, which are then enriched using annota-

tions and biological constraints about biological design components. Resulting data contains

enough information to create computational models in the form of SBML. Like all data con-

versions, it is important to enforce the integrity of the data by ensuring that information

remains consistent when data are translated between differing formats. Loss of data limits

the ability to reproduce designs and models. Currently, SBOL objects and SBML elements

are directly mapped with a one-to-one correspondence.

Mapping between an SBML modeling entity and a design component in SBOL is often

facilitated by ontological terms. In this work, SBO terms are particularly used to map

functional relationships in the form of biochemical reactions. Currently, we support a subset

of reactions that are commonly used in genetic circuits. These include genetic production,

transcriptional regulation, degradation, binding of molecules, etc. We envisage that VPR
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and other software components can add new information and other software components

will still continue working with the set of data that they understand. As the VPR API

obtains access to more curated interaction, protein, and small molecule data, we will need

to update the type of SBO terms used in the conversion to represent the growing amount

of information that is added to the VPR API enriching process. Ideally, if the VPR API

expands the types of interactions that are added during this process, then the SBOL to

SBML conversion should reflect this change. Currently, in simulations we use nominal rate

parameters. Our goal is to update the software components in the workflow to provide

annotations in SBOL files and to reflect these values in SBML models. For instance, the

Cello dataset has characterization data that are not yet supported in this workflow. Such

information is useful to evaluate the quality of the generated genetic designs. We are looking

into how characterization data can be incorporated into this workflow and how metrics can

be applied to score the quality of constructed designs.

Genetic circuit design automation, and the creation of associated models, rely upon the

availability of data. Finding data that is often available in different syntax and semantics,

integrating this data and presenting in standard formats is certainly challenging. SynBio-

Hub offers a platform to build upon for data integration and access. Currently, the VPR

API can pull data from a SynBioHub instance using the SBOL syntax and standard RDF

tooling. We have already populated the publicly available SynBioHub instances with an

information rich B. subtilis and Cello datasets. We plan to extend this approach to other

organisms and make the modeling process easier in general.

Here, we addressed some of the challenges related to the predictability of synthetic ge-

netic circuits. As more information becomes available through characterization, the pre-

sented workflow can further be extended. This workflow supports the separation of data

in different layers. For example, information about orthogonal parts can be defined using

SBOL, which supports capturing provenance information, and hence allows linking orthog-

onal parts. Computational modeling of these parts can then be implemented using this
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workflow.

This paper presents the use of standards such as SBOL and SBML and extends the avail-

able tooling to work in computational workflows to simplify the design of genetic circuits for

end users. As we demonstrated, tools can take advantage of our approach and framework

by delegating the construction of detailed mathematical models, automated approaches to

search for solutions in large biological design spaces can also benefit. Through standard-

ization and the availability of data and APIs, we envisage that other tooling can also be

incorporated to this workflow for genetic design automation. Indeed, since standards are

used throughout this process, any DNA-level design tool, modeling tool, and data repository

that supports these standards can be used in the place of the tools presented here.

Methods

Standards

SBOL and SBML are two data standards that have been adopted by the synthetic biology

community. To facilitate the integration of the resources and approaches presented here

in other workflows, these standards are utilized in this work. SBOL is an example of a

knowledge standard that is used to represent the information about a genetic design. A

genetic design encoded in the SBOL data model is composed of ComponentDefinitions,

ModuleDefinitions, Sequences, and other elements. ComponentDefinitions are used to

represent DNA, small molecules, and proteins, and link to Sequence elements that describe

how they are constructed. ModuleDefinitions are used to group the components together

that make up the parts of a genetic design. ModuleDefinitions also include a description

of the interactions between these components, such as inhibition, stimulation, genetic pro-

duction, etc. An SBOL ModuleDefinition is depicted in Figure 10(A) using SBOLv,8 a

visual standard for genetic designs represented in SBOL.

SBML is an example of a modeling standard that can be used to describe the behavior of
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Figure 10: This figure shows an example of a LacI Inverter using SBOL Visual glyphs to
show SBOL Data objects and SBGN glyphs to show SBML elements. DNA parts (i.e.
pTet and lacI), proteins (i.e. TetR and LacI), small molecules (IPTG), and complexes (i.e.
IPTG-LacI) are represented as ComponentDefinitions in SBOL and Species in SBML. SBOL
Interactions and SBML Reactions are represented as arrows and lines with a straight end
point. The arrows are used to denote inhibition and genetic production. Lines with a straight
end point are used to denote inhibition. The rectangular bounding box represented in both
SBOL visual and SBGN glyphs represent an SBOL ModuleDefinition and an SBML Model.

genetic designs. A genetic design modeled in SBML is composed of core elements: param-

eters, species, reactions, and compartments, among other elements. SBML parameters are

used to describe named constants and variables. Genetic components, such as DNA, pro-

teins, and small molecules, are represented using SBML species. SBML reactions describe

how species transform from one form to another. For example, reactions allow the expres-

sion of protein degradation, complex formation, or regulated genetic production, and many

other processes. SBML compartments are used to group SBML species and SBML reactions.

SBML has further elements that can be used in simulation, such as function definitions, unit

definitions, initial assignments, rules, constraints, and events. SBML also contains package

extensions. One of the packages used by this work is the hierarchical composition package

(comp),39 which is used to compose models of genetic designs composed of multiple tran-

scriptional units. An SBML model is depicted in Figure 10(B) using the Systems Biology

Graphical Notation (SBGN),40 a visual standard for biological models.
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Data Curation

The information about functional relationships about biological components was mined from

SyBiOntKB.33,34 This knowledgebase is encoded using RDF/XML which is ideal to represent

information as graphs in which nodes represent biological entities and edges represent how

these entities relate to each other. In order to extract information, we use the SPARQL41

querying languages. A SPARQL query itself is a graph and is used to find data using pattern

matching. Using this approach, we created several SPARQL queries and identified biological

components that participate in biological reactions. Definitions of these components and

reactions are then encoded using SBOL. ComponentDefinition and ModuleDefinition en-

tities are used respectively to represent information about biological components and their

interactions. This mapping is implemented using libSBOLj,42 an open-source Java library

that has been developed to read and construct SBOL documents. The application to mine

for information is implemented in Java, using Maven.

Data Repositories

Structural and functional information about biological parts is documented in SBOL and

stored in SynBioHub repositories.9 SynBioHub is an RDF database intended for the dis-

semination of genetic circuit designs and their parts. As well as serving as a database,

SynBioHub provides interoperability between different registries enabled by the canonical-

ization of part data in SBOL. SynBioHub is used as the backend for the VPR, allowing

the VPR to access DNA and protein parts as well as their interactions via the SynBioHub

SPARQL interface, which can in turn be used as a reference for model generation. SynBio-

Hub also allows SBML models to be attached to biological parts as attachments, which can

be used to associate a part with a pre-generated model.
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Data Conversion

Since different types of information can be accessed using different data standards, there exist

data conversion methods to convert between them. SBOL to SBML28 is the modeling conver-

sion used within this workflow to verify the behavior of genetic designs. A simplified mapping

of the SBOL to SBML conversion is shown in Figure 11. In the SBOL to SBML conversion,

SBOL ComponentDefinitions that represent the biological parts are translated to SBML

Species. SBOL Interactions are converted to SBML Reactions and Participants of an

Interaction are translated to SBML Reactants, Products, or Modifiers, depending on

the role of the participant in the interaction. SBOL ModuleDefinitions are converted to

SBML ModelDefinitions. URI annotations are added to SBML elements to reference the

associated SBOL components.43 For example, SBML Species are annotated with a refer-

ence to the SBOL ComponentDefinition that describes that particular biological part. In

addition, SBO terms are used to fine-tune the conversion to more precise translations. The

custom annotations and SBO terms allow for round-trip conversion.

Figure 11: A simplified mapping to show how SBOL objects are converted to SBML elements.
SBOL objects for ComponentDefinitions, ModuleDefinitions, Modules, Interactions,
and MapsTos, are directly mapped to SBML elements for Species, ModelDefinitions,
Submodels, Reactions, and Ports & Replacements, respectively. The conversion process
also adds Compartments, Parameters, and Annotations.

The main purpose when converting from qualitative information to quantitative infor-

mation, such as the SBOL to SBML conversion utilized in this workflow, is to enable the
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simulation of these generated models. To achieve this, the conversion adds default kinetic

laws with default parameter values. These defaults can later be modified within the iBioSim

model editor GUI. The SBML model constructed in this way can be simulated using a vari-

ety of methods, including ordinary differential equations (ODEs) and stochastic simulation

methods.

Cello Tool for Construction of Genetic Boolean Logic Gates

The Cello software enables the construction of combinational Boolean logic genetic gates,

which are then translated to physical designs in DNA using technology mapping. The

Boolean logic genetic gates that were designed for the Cello project have been constructed

and validated experimentally. Information on the available biological parts used to construct

these genetic circuits, and the genetic constraints that are considered while designing the

parts are stored within Cello’s User Constraint file (UCF) files. This information is cate-

gorized in separate collections within the UCF file. For example, the parts collection lists

all the available parts in the Cello library: promoters, ribozymes, ribsome binding sites, ter-

minators and scars. The gate parts collection indicates how the parts in the Cello library

are composed to create gates. The gates collection indicates the regulatory behavior which

is characterized as a response function. This collection also indicates the promoter that is

regulated by the coding sequence present in any specific gate.

In the data conversion process, Cello’s parts and gate parts collections are mapped

to SBOL entities as defined earlier in the transformation rules. All parts stored within

the parts collection of the UCF are converted to individual SBOL ComponentDefinitions.

The information regarding the regulatory interaction between a gate and a promoter in the

gate parts collection is used to construct SBOL ComponentDefinitions for the proteins

produced by the coding sequences which interact with specific promoters. These interactions

are then represented as SBOL ModuleDefinitions. An SBOL Interaction and its SBO

terms are also added to the SBOL ModuleDefinition to indicate if a specific protein acts as
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an activator or inhibitor for any promoter ModuleDefinitions are also created to represent

the production of proteins by coding sequences in each gate. A production interaction is then

added for the protein produced by each gate. Using this data conversion process, Cello’s

UCF is converted to SBOL.

In the model generation step, the circuit design produced by Cello is first converted

to a list of transcriptional units. Each transcriptional unit is then converted to SBOL

ComponentDefinitions using the collection created in the previous step. This list of SBOL

ComponentDefinitions is then enriched with ModuleDefinitions which describe the var-

ious interactions including the production of protein and the regulation of promoters by

proteins. Using the framework mentioned in this paper, this SBOL representation of the

circuit design is then converted to SBML using the VPR API.
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