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[1] Many structural and dynamical features of the ionized and neutral upper atmosphere
are strongly organized by the geomagnetic field, and several magnetic coordinate
systems have been developed to exploit this organization. Quasi‐Dipole coordinates are
appropriate for calculations involving horizontally stratified phenomena like height‐
integrated currents, electron densities, and thermospheric winds;Modified Apex coordinates
are appropriate for calculations involving electric fields and magnetic field‐aligned
currents. The calculation of these coordinates requires computationally expensive tracing
of magnetic field lines to their apexes. Interpolation on a precomputed grid provides
faster coordinate conversions, but requires the overhead of a sufficiently fine grid, as
well as finite differencing to obtain coordinate base vectors. In this paper, we develop a
compact and robust representation of the transformation from geodetic to Quasi‐Dipole
(QD), Apex, and Modified Apex coordinates, by fitting the QD coordinates to spherical
harmonics in geodetic longitude and latitude. With this representation, base vectors may
be calculated directly from the expansion coefficients. For an expansion truncated at
order 6, the fitted coordinates deviate from the actual coordinates by a maximum of 0.4°,
and typically by 0.1°. The largest errors occur in the equatorial Atlantic region.
Compared to interpolation on a pre‐computed grid, the spherical harmonic representation
is much more compact and produces smooth base vectors. An algorithm for efficiently
and concurrently computing scalar and vector spherical harmonic functions is provided in
the appendix. Computer code for producing the expansion coefficients and evaluating the
fitted coordinates and base vectors is included in the auxiliary material.
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1. Introduction

[2] Many structural and dynamical features of the ionized
and neutral upper atmosphere are strongly organized by the
geomagnetic field, and several magnetic coordinate systems
have been developed to exploit this organization. The simplest
are centered dipole coordinates, which consist of a simple
rotation of geocentric coordinates (geocentric coordinates
originate at the center of the Earth, with the z axis toward
the north rotational pole [Vallado, 2001]). Centered dipole
colatitude (p/2 − ld, where ld is centered dipole latitude) is
measured from the magnetic south pole, which is located in
the geocentric northern hemisphere. Centered dipole longi-
tude, �d, is measured eastward from the meridian (in the
geocentric western hemisphere) that connects the geocentric
and centered dipole poles.

[3] Eccentric dipole coordinates additionally include a
translation of the origin of the magnetic coordinate system.
Fraser‐Smith [1987] reviewed centered and eccentric dipole
coordinates and described how to compute their transfor-
mation parameters from the Gauss coefficients of the
International Geomagnetic Reference Field (IGRF).
[4] Hultqvist [1958a, 1958b] computed parameterized

departures of geomagnetic field lines from a pure dipole, for
36 discrete longitudes at 10° intervals. These computationswere
used in the development of Corrected Geomagnetic (CGM)
coordinates [Mayaud, 1960;Hakura, 1965;Gustafsson et al.,
1992]. CGM coordinates are computed by tracing a field line
from the point of interest up to its intersection with the dipole
equator, and then back down along the dipole field line to the
original geocentric radius. The dipole latitude and longitude
of that point constitute the CGM coordinates of the original
point. At low latitudes, there are regions where the field line
never intersects the dipole equatorial plane, and interpolation
is used to compute CGM coordinates in these regions.
Papitashvili et al. [1992, 1997] extended the CGM approach
to magnetospheric heights, taking into account field distor-
tions produced by magnetospheric currents.
[5] The location of a field line’s apex is the basis of three

magnetic coordinate systems: Magnetic Apex [VanZandt
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et al., 1972], Modified Apex [Richmond, 1995], and Quasi‐
Dipole [Richmond, 1995] coordinates. Their definition is
motivated by the field line equation for a dipole field: If the
geomagnetic field were exactly dipolar, then the radius r of a
field line would be

r ¼ r0 cos
2 �d ð1Þ

at centered dipole latitude ld, where r0 is the apex radius.

[6] Apex longitude, �A, is defined as the centered dipole
longitude of the apex location. Apex latitude is defined by

�A � � cos
�1

Req

Req þ hA

� �1=2

ð2Þ

where hA is the geodetic height of the apex above the ref-
erence ellipsoid, Req = 6378.137 km is the equatorial radius
of the ellipsoid [National Imagery and Mapping Agency
(NIMA), 2000], and cos−1 denotes the arccosine function.
The sign of Apex latitude is determined by the sign of the
vertical component of the magnetic field. Modified Apex
coordinates use a slightly different definition for latitude,
but the longitude is the same:

�m � � cos
�1

RE þ hR

RE þ hA

� �1=2

�m � �A

ð3Þ

where RE = 6371.009 km is the mean radius of Earth [NIMA,
2000] and hR is a specified constant reference height. Except
for the change in latitude sign at the magnetic equator, Apex
and Modified Apex coordinates are constant along a geomag-
netic field line. In contrast, Quasi‐Dipole (QD) coordinates
vary along a field line, but are only weakly dependent on
height. QD coordinates are given by

�q � � cos
�1

RE þ h

RE þ hA

� �1=2

�q � �A

ð4Þ

where h is geodetic height, the third QD coordinate.
[7] Finally, two latitudinal coordinates commonly used in

ionospheric physics are invariant latitude [O’Brien et al.,
1962] and dip latitude [e.g., Yoshida et al.,1960]. Invariant
latitude is defined by

L � cos
�1

1

L

� �1=2

ð5Þ

where L is the magnetic shell parameter [McIlwain, 1961].
Dip latitude is defined in terms of the local magnetic field:

�dip � tan
�1

1

2
tan I

� �

¼ tan
�1

Z

2H

� �

ð6Þ

where I is the downward magnetic dip angle, defined by the
downward (Z) and horizontal (H) components of the field.
This definition is motivated by the components of a dipole
field; if the geomagnetic field were exactly dipolar (and
Earth exactly spherical) then Z and H would be given by:

Z ¼ 2jM j
r3

sin�d

H ¼ jM
r3

cos�d j
ð7Þ

where M is the dipole moment.
[8] Figure 1 shows comparisons, at a height of 110 km,

between QD coordinates and some of the other coordinates
described above. Centered dipole latitude follows the main

Figure 1. Comparison of Quasi‐Dipole coordinates (blue)
with other magnetic coordinate systems (red) at epoch
2005.0 and height 110 km.

EMMERT ET AL.: TECHNIQUES A08322A08322

2 of 13



pattern of QD latitude, but does not capture the differing
offsets of the north and south magnetic poles, nor the dis-
tortions seen at low latitudes. Eccentric dipole coordinates
represent the differing offsets fairly well, but do not resolve
the low‐latitude pattern. Dip latitude is very similar to QD
latitude at low latitudes (and identical along the dip equator),
but is severely distorted at mid and high latitudes. CGM
coordinates are very similar to QD coordinates everywhere
but the low‐latitude Atlantic sector, where CGM coordinates
are not well defined. This similarity extends to higher alti-
tudes (not shown); both CGM and QD coordinates relax to
centered dipole coordinates with increasing height.
[9] Except for eccentric dipole coordinates, all the

coordinates systems mentioned above can be viewed as
“geocentric,” so it is worth pausing here to consider nomen-
clature. Following Vallado [2001], “geocentric” herein refers
to the coordinate system defined by the reference ellipsoid,
with the positive z axis along the northern semiminor axis
and the x axis pointing to the reference meridian (0° longi-
tude). “Geocentric latitude, longitude, and radius” refer to the
spherical polar form of geocentric coordinates. “Geodetic
latitude” is the angle between the equatorial plane and the
normal to the surface of the ellipsoid, and “geodetic height” or
“height” is the distance, along this normal, between the sur-
face and the point of interest. “Geodetic longitude” is the same
as geocentric longitude. “Magnetic coordinates” collectively
refers to coordinate systems based on the geomagnetic field.
[10] The calculation of apex‐based and CGM coordinates

consists of tracing magnetic field lines either to their apexes
or to the dipole equator. To reduce the computational expense
of this operation, discrete coordinate grids are usually pre-
computed; magnetic coordinates at desired locations can
subsequently be calculated by interpolation. This approach
requires the overhead of storing large interpolation grids, and
interpolation near the poles demands special treatment. Fur-
thermore, the only existing algorithm for computing base
vectors involves finite differencing on the gridded values,
which gives slightly discontinuous base vectors.
[11] To provide a smooth and efficient representation of

CGM coordinates, Baker and Wing [1989] expanded the
rectangular components of CGM coordinates in terms of
scalar spherical harmonics. Hein and Bhavnani [1996]
extended that approach to higher altitudes (up to 7200 km)
and improved the representation of CGM coordinates in the
South Atlantic Anomaly region.
[12] In this paper we apply Baker and Wing’s [1989]

spherical harmonic fitting method to apex‐based coordinates
(QD, Apex, and Modified Apex coordinates), with three
significant enhancements. First, we retrieve the magnetic
latitude from all three fitted rectangular coordinates, rather
than just the z‐coordinate; this gives more robust results near
the magnetic poles. Second, we incorporate the height
dependence of the coordinates into the parameterization,
thereby removing the need for interpolation among gridded
heights. Third, we relate the magnetic coordinate base vec-
tors to vector spherical harmonic (VSH) functions, so that
the base vectors can be computed directly from the coeffi-
cients of the spherical harmonic fit.
[13] In the next section we develop the spherical har-

monic representation of QD coordinates, from which Apex
and Modified Apex coordinates are readily calculated. In
section 3 we describe how the QD and Modified Apex base

vectors can be retrieved directly from the spherical harmonic
coefficients. In section 4 we present the results of the spher-
ical harmonic fits and assess their precision and robustness. In
section 5 we describe the inverse transformation. Section 6
provides a scientific application of the technique, and
section 7 summarizes our results. The appendix describes an
efficient algorithm for computing the associated Legendre
functions andVSH functions needed to evaluate the fitted QD
coordinates and base vectors.

2. Spherical Harmonic Representation

[14] We chose QD coordinates, rather than other coordi-
nate systems, for our empirical fit because QD coordinates
are well defined for all locations and positive heights, and
because QD latitude and longitude do not depend strongly
on height. Apex coordinates and Modified Apex coordinates
are easily computed from QD coordinates, as shown at the
end of this section.
[15] Directly fitting QD latitude and longitude as a func-

tion of geodetic latitude and longitude is not practical, due to
fact that the longitude varies rapidly near the poles. Instead,
the Cartesian coordinates

xq � cos�q cos�q

yq � cos�q sin�q

zq � sin�q

ð8Þ

are a convenient choice for representing QD latitude and
longitude in terms of spherical harmonics of geodetic
coordinates. In equation (8), three Cartesian coordinates
represent two spherical coordinates on a unit sphere.
Although there is some redundancy in this choice, it removes
all singularities and ambiguities, which are otherwise very
awkward to manage.
[16] QD latitude and longitude vary somewhat with

height, relaxing to dipole coordinates with increasing height.
To represent the height dependence, we use a polynomial
expansion in the following reduced height parameter:

� � RE

RE þ h
ð9Þ

This parameter ranges from 1 at the surface to 0 at infinity.
Of course, magnetic coordinates based on the geomagnetic
main field are not very useful beyond several Earth radii.
However, r provides an expedient way to represent QD
coordinates as a perturbation to centered dipole coordinates,
as shown below.
[17] To represent QD coordinates in terms of geodetic

coordinates, we construct the following truncated expansion:

x fitq �g; �g; �
� �

�
X

L

l¼0

X

M

m¼0

X

N

n¼m

�l~P
m

n �g
� �

almnc cosm�g þ almns sinm�g

� �

y fitq �g; �g; �
� �

�
X

L

l¼0

X

M

m¼0

X

N

n¼m

�l~P
m

n �g
� �

blmnc cosm�g þ blmns sinm�g

� �

z fitq �g; �g; �
� �

�
X

L

l¼0

X

M

m¼0

X

N

n¼m

�l~P
m

n �g
� �

clmnc cosm�g þ clmns sinm�g

� �

ð10Þ
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where {lg, �g} are geodetic latitude and longitude, �g = p/2 −
lg, ~Pn

m are the associated Legendre functions normalized
as described in the appendix, {L, M, N} are the maximum
orders of the expansion, and {a, b, c} are the arrays of
coefficients. In equation (10) and subsequent equations, we

abbreviate ~Pn
m(cos �g) as ~Pn

m(�g).
[18] The utility of this choice of expansion becomes clear

when we consider the transformation from geocentric co-
ordinates {lgc, �gc} to centered dipole coordinates {ld, �d}:

cos�d cos�d

cos�d sin�d

sin�d

2

6

4

3

7

5
¼

sin�P
gc cos�

P
gc sin �P

gc sin�
P
gc � cos�P

gc

� sin�P
gc cos�P

gc 0

cos�P
gc cos�

P
gc cos�P

gc sin�
P
gc sin�P

gc

2

6

6

4

3

7

7

5

�
cos�gc cos�gc

cos�gc sin�gc

sin�gc

2

6

4

3

7

5

¼ R

P1

1
�gc
� �

cos�gc

P1

1
�gc
� �

sin�gc

P0

1
�gc
� �

2

6

6

4

3

7

7

5

ð11Þ

Here, {lgc
P , �gc

P } are the geocentric coordinates of the north
pole of the centered dipole system, which define R, the
rotation matrix that constitutes the transformation. Centered
dipole coordinates (in Cartesian form) are thus both a
rotation of geocentric coordinates and a linear combination of
the n = 1 geocentric spherical harmonics. In equation (10),
the l = 0, n = 1 terms have the same form as equation (11),
and since {lq, �q}→ {ld, �d} as r→ 0, we can specify the
l = 0 coefficients as

a0mnc ; a0mns ; b0mnc ; b0mns ; c0mnc ; c0mns ¼ 0 8 n 6¼ 1

a011c a011s a001c

b011c b011s b001c

c011c c011s c001c

2

6

4

3

7

5

¼ 2
ffiffiffi

3
p

sin�P
gc cos�

P
gc sin�P

gc sin�
P
gc � cos�P

gc=
ffiffiffi

2
p

� sin�P
gc cos�P

gc 0

cos�P
gc cos�

P
gc cos�P

gc sin�
P
gc sin�P

gc=
ffiffiffi

2
p

2

6

6

4

3

7

7

5

ð12Þ

where the numerical factors account for the normalization
used for ~Pn

m. With this specification, equation (10) extends
the transformation of equation (11) to higher‐order spher-
ical harmonics, allows it to vary with height, and treats
QD coordinates as a perturbation of centered dipole coor-
dinates. With increasing height, geocentric latitude approaches
geodetic latitude, r → 0, and equation (10) approaches
equation (11).
[19] From the fitted Cartesian coordinates, QD latitude

and longitude may be retrieved as follows:

� fit
q � tan

�1
z fitq

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x
fit
q

	 
2

þ y
fit
q

	 
2

r

2

6

6

4

3

7

7

5

� fit
q � tan

�1
y fitq

x
fit
q

 !

ð13Þ

where tan−1 denotes the arctangent function; in computa-
tional practice, the use of the two‐argument arctangent
function avoids singularities and resolves the hemispheric
ambiguity of �q

fit. Although the fitted QD latitude could be
computed using lq

fit = sin−1zq
fit [e.g., Baker and Wing, 1989],

we found that this introduces numerical noise near the
magnetic poles, due to the difficulty of computer represen-
tation of very small differences from +1 or −1. In contrast,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x
fit
q

	 
2

þ y
fit
q

	 
2

r

is zero at the poles, so small differences

are better represented numerically. On the other hand,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x
fit
q

	 
2

þ y
fit
q

	 
2

r

differs very little from 1 near the mag-

netic equator, and suffers from a hemispheric ambiguity. In
effect, xq

fit and yq
fitdetermine the magnitude of lq

fit near the
poles, while zq

fit provides the sign. At the equator, zq
fit

determines both the sign and magnitude. The use of the
arctangent function thereby provides a robust global rep-
resentation, as demonstrated in section 4.
[20] From the fitted QD coordinates, Apex and Modified

Apex coordinates can be computed, via equations (2)–(4),
using

h
fit
A � RE þ h

cos2 � fit
q

� RE

� fit
A � � cos

�1
Req

Req þ h
fit
A

 !1=2

� fit
A � � fit

q

ð14Þ

� fit
m � � cos

�1
RE þ hR

RE þ h

� �1=2

cos� fit
q

" #

� fit
m � � fit

q

ð15Þ

where the sign of the latitude coordinates is the same as that
of lq

fit.

3. Calculation of Base Vectors

[21] In this section we derive expressions for the base
vectors {d1, d2, d3}, {e1, e2, e3}, and {f1, f2}, described by
Richmond [1995], in terms of the expansion coefficients
given in equation (10). We first derive the base vectors in
terms of gradients of QD latitude and longitude. The east-
ward and northward base vectors {f1, f2} of QD coordinates
are given by Richmond [1995] as

f1 � � RE þ hð Þk �r�q

f2 � RE þ hð Þ cos�qk �r�q

ð16Þ

where k is the upward unit vector. Because QD coordinates
are not a simple rotation of geocentric coordinates, f1 and f2
are in general neither orthogonal nor of unit length
[Richmond, 1995], but they are nonetheless very useful. A
divergence‐free vector field retains its divergence‐free char-
acter when transformed to QD coordinates if it is expressed
in terms of the f1 and f2 base vectors, as in equation (7.8)
of Richmond [1995]. A vector field with zero vertical
curl retains this character if expressed in terms of k × f1
and k × f2, as in equation (7.11) of Richmond [1995].
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Unfortunately, there is no single set of base vectors that
preserves both the divergence and curl properties of the
field.
[22] The base vectors d1 and d2 of Modified Apex

coordinates are oriented perpendicular to the magnetic field,
in the magnetic eastward and downward/equatorward
directions, respectively. For equipotential geomagnetic field
lines, they vary along these lines in the same manner as the
electric field. The base vector d3 is oriented along the mag-
netic field. Like the QD base vectors {f1, f2}, {d1, d2, d3} are
generally neither mutually orthogonal nor of unit length.
They are defined by Richmond [1995] as

d1 � RE þ hRð Þ cos�mr�m

d2 � � cos
2 �m cos ImrhA ¼ � RE þ hRð Þ sin Imr�m

d3 �
d1 � d2

kd1 � d2k2

ð17Þ

where

cos Im � cos�m 4� 3 cos
2 �mð Þ�1=2

sin Im � 2 sin�m 4� 3 cos
2 �mð Þ�1=2

ð18Þ

From equations (3) and (4), we find

r�m ¼ r�q ð19Þ

and

cos�m ¼ RE þ h

RE þ hR

� ��1=2

cos�q

) sin�mr�m ¼ RE þ h

RE þ hR

� ��1=2

sin�qr�q þ
1

2

RE þ h

RE þ hR

� ��3=2

cos�q

rh

RE þ hR

ð20Þ

so that

d1 ¼ �1=2 RE þ hRð Þ cos�qr�q

d2 ¼ � 2 RE þ hRð Þ sin�qr�q þ � cos�qk
� �

4=�� 3 cos
2 �q

� ��1=2

d3 ¼
d1 � d2

k d1 � d2 k2
ð21Þ

where a ≡ (RE + hR)/(RE + h).
[23] Like d1 and d2, the e1 and e2 base vectors are also

perpendicular to the geomagnetic field and point generally
eastward and downward/equatorward, but e1 and e2 are not
necessarily parallel to their respective counterparts d1 and
d2, and in contrast to d1 and d2, e1 and e2 vary along equi-
potential geomagnetic field lines in the same manner as the
E × B/B2 drift velocity instead of as the electric field. They
and the field‐aligned base vector e3 can be straightforwardly
calculated from their defining equations [Richmond, 1995]:

e1 � d2 � d3

e2 � d3 � d1

e3 � d1 � d2

ð22Þ

Next, using equation (8), we express the gradients of QD
latitude and longitude in terms of the gradients of the
corresponding Cartesian coordinates, as follows:

rxq ¼ � cos�q sin�qr�q � sin�q cos�qr�q

ryq ¼ � sin�q sin�qr�q þ cos�q cos�qr�q

rzq ¼ cos�qr�q

ð23Þ

Manipulating to isolate r�q and rlq gives

cos�qr�q ¼ � sin�qrxq þ cos�qryq

r�q ¼ � cos�qrxq þ sin�qryq
� �

zq þ cos�qrzq

ð24Þ

Equations (16), (21), (22), and (24) thus prescribe all three
sets of base vectors in terms of QD coordinates {�q, lq} and
the gradients {rxq, ryq, rzq} of their corresponding Car-
tesian coordinates. To evaluate the geodetic components of
the gradients of the fitted QD coordinates, we first consider
the gradient of a general variable y in geodetic coordinates
{�g, �g, h}:

ry ¼
e�g

r

@y

@�g

þ
e�g

J

@y

@�g
� k�2

RE

@y

@�
ð25Þ

where e�g
, e�g, and k are unit vectors in the eastward, south-

ward, and upward directions, respectively; r is the distance
from Earth’s axis; �g = p/2 − lg; and J is the Jacobian to
transfer between {�g, h} and {s, r} coordinates, s being the
northward distance from Earth’s equatorial plane:

s ¼ hþ 1� e2ð ÞReq

1� e2 cos2 �g
� �1=2

" #

cos �g

r ¼ hþ Req

1� e2 cos2 �g
� �1=2

" #

sin �g

J ¼ @r

@�g
cos �g �

@s

@�g
sin �g ¼ hþ 1� e2ð ÞReq

1� e2 cos2 �g
� �3=2

ð26Þ

where e = 0.08181919 is the eccentricity of Earth’s meridi-
onal ellipse, related to the flatness " = 1/298.2572 [NIMA,
2000] by

e2 ¼ 2"� "2 ð27Þ

Applying equation (25) to equation (10), we obtain the
components of rxq

fit:

rx fit
q � e�g

¼ sin �g
r

X

L

l¼0

X

M

m¼0

X

N

n¼m

�l ~W
m

n �g
� �

�almnc sinm�g þ almns cosm�g

� �

rx fit
q � e�g ¼

1

J

X

L

l¼0

X

M

m¼0

X

N

n¼m

�l ~V
m

n �g
� �

almnc cosm�g þ almns sinm�g

� �

rx fit
q � k ¼ � �2

RE

X

L

l¼1

X

M

m¼0

X

N

n¼m

l�l�1~P
m

n �g
� �

almnc cosm�g þ almns sinm�g

� �

ð28Þ
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where ~V n
m(�g) ≡ ∂~Pn

m(�g)/∂�g and ~W n
m(�g) ≡ m~Pn

m(�g)/sin �g.
The functions ~V and ~W are the latitude‐dependent portions of
VSH functions; an efficient method for computing them is
given in the appendix. The expressions for the gradients of
yq
fit and zq

fit are the same as equation (28), except for the
labeling of the expansion coefficients. The gradients {rxq

fit,
ryq

fit, rzq
fit} can thereby be computed directly from the

expansion coefficients.

4. Results

[24] We computed QD coordinates on a geodetic grid with
2° latitude spacing and 2.4° longitude spacing, and at
29 heights (evenly spaced values of r from 1.0 to 0.067) and
ten epochs (every 5 years from 1965 to 2010). We computed
least squares fits of the QD coordinates using the expansions
given in equation (10) and the constraints of equation (12),
and weighting by cos lg to compensate for the greater
density of grid points with increasing latitude. We deter-
mined the expansion coefficients for the three Cartesian
coordinates independently, except for the l = 0 coefficients,
which we constrained per equation (12). Although it is
possible to mutually constrain the parameters such that
(xq

fit)2 + (yq
fit)2 + (zq

fit)2 = 1, thereby removing the redun-
dancy mentioned in section 2, this nonlinear constraint
would be more difficult to implement, and would not be
expected to significantly affect lq

fit or �q
fit.

[25] To determine an appropriate resolution for the fits,
we varied the truncation orders L and N, setting M = N. For
each fit, we computed the maximum and root‐mean square
(RMS) angular separation between {lq, �q} and {lq

fit, �q
fit}.

The angular separation is given by:

� ¼ cos
�1

sin�q sin �
fit
q þ cos�q cos�

fit
q cos �q � � fit

q

	 
	 


ð29Þ

[26] Figure 2 (left) shows the maximum and RMS error as
a function of N, for fits at epoch 2005.0. Results are shown
at the surface (h = 0, r = 1), where errors are largest, for
L values from 2 to 4. For L = 3, the maximum error decreases
from 2.2° to 0.3° as N increases from 3 to 8. There is rel-
atively little improvement in the fit for N > 6, and very little
difference between the L = 3 and L = 4 fits, so henceforth we
will focus on results using {L, M, N} = {3, 6, 6}. If a tol-
erance less than 0.4° is required, then higher values of N can
be used; values of L greater than 3 are only warranted in
conjunction with an increase in N.
[27] Figure 2 (right) shows the errors of N = 6 fits as a

function of r. The error decreases with increasing height, as
expected; above 1000 km, the maximum and RMS errors
are less than half what they are at the surface.
[28] Figure 3 shows the actual and fitted QD coordinates

and base vectors at 110 km and epoch 2005.0. The differ-
ences are generally imperceptible on this scale, so Figure 4
shows the angular error as a function of latitude and lon-
gitude. The largest errors (up to 0.4°) occur in the equatorial
Atlantic sector; outside this region, the errors are less than
0.2°, and usually less than 0.1°. To put the Atlantic sector
errors in perspective, we note that the magnetic equator in
the Atlantic sector has moved northward by about 1.5° per
decade over the past century [Rangarajan, 1994].
[29] Figure 5 shows the actual and fitted QD coordinates

as a function of r, for selected geodetic latitudes along the
�g = 180° meridian. These plots confirm that L = 3 provides
sufficient flexibility to capture the height dependence of QD
coordinates. The differences seen in the QD longitude at
lg = 0° and 30° are due to the horizontal resolution, not
the vertical resolution.
[30] Near the QD poles, ∣zq

fit
∣ may be greater than one, and

in such regions it is not possible to retrieve lq
fit from zq

fit

alone. Constraining the sum of the squared Cartesian
coordinates, as described at the beginning of this section,
would ensure that −1 ≤ zq

fit
≤ 1, but would not alleviate the

weak variation of zq near the poles. Fortunately, the use of
equation (13) to retrieve lq

fit circumvents both problems
without the need for a nonlinear constraint. This is demon-
strated in Figure 6. The left panel shows fitted QD
coordinates retrieved using equation (13). In the right panel,
the QD latitude was retrieved using lq

fit = sin−1 zq
fit. The

shaded area indicates the region where zq
fit > 1 (the max-

imum value is 1.00055). In the right panel, this region causes
the QD latitude contours to be skewed away from the pole
(and undefined in the shaded region). The use of equation (13)
in the left panel produces latitude contours that are centered
on the pole and compatible with the fitted longitudes.
[31] Compared to interpolation on a pre‐computed grid, the

spherical harmonic representation of QD coordinates greatly
reduces the size of the stored arrays that describe the trans-

Figure 2. (top) Maximum and (bottom) root‐mean square
angular errors for spherical harmonic fits of QD coordinates
at epoch 2005.0. (left) Errors at height 0 km as a function of
the maximum latitudinal degree, N, of the expansion; the
maximum longitudinal order M equals N. (right) Errors of
the N = M = 6 fit as a function of the reduced height param-
eter r. Results are shown for three different maximum ver-
tical polynomial orders: L = 2 (green), L = 3 (blue), and L =
4 (orange).
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Figure 3. (top) Quasi‐Dipole coordinates, (middle) east base vectors, and (bottom) north base vectors
at height 110 km and epoch 2005.0. Actual QD values are shown in red; fitted values at a resolution of
{L, M, N} = {3, 6, 6} are superimposed in blue.
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formation. Using {L, M, N} = {3, 6, 6} and the constraints
of equation (12) requires specification of approximately
450 terms for each epoch, whereas gridded interpolation
requires storage of hundreds of thousands of values. On the
other hand, the spherical harmonic representation requires
computation of 140 spherical harmonic and VSH functions,
whereas gridded interpolation requires only a search to locate
the correct cell for interpolation in addition to the inter-
polation itself. In speed tests, we found that the processing
time required for the spherical harmonic method is only
1.5–2 times that of the interpolation method. The spherical
harmonic approach thus appears to be a favorable alternative
to the computational expense of the full QD calculation and
to the storage overhead associated with interpolation on a
pre‐computed grid.

5. Inverse Transformation

[32] For the QD to geodetic transformation, we expanded
the rectangular geodetic coordinates in terms of spherical
harmonics of QD latitude and longitude. The expansion is
essentially the same as equation (10), but with the g and q
subscripts interchanged. Following Baker and Wing [1989]
and Hein and Bhavnani [1996], we used the fitted QD co-
ordinates when fitting the inverse transformation, rather than
the actual QD coordinates, in order to reverse the fitted
geodetic‐to‐QD transformation as precisely as possible. In
computing the coefficients for the inverse transformation,
we applied the same weights and constraints used in fitting
the forward transformation.
[33] Because the expansion is truncated, the inverse

transformation will not exactly recover the original geodetic
coordinates (e.g., xg

fit
≠ cos lg cos �g). At epoch 2005.0 and

h = 0 km, with {L, M, N} = {3, 6, 6}, the maximum and
RMS angular errors are respectively 0.81° and 0.26°. If
greater precision is needed, the gradients of the coordinates

can be used in conjunction with iterative computation of the
forward transformation.

6. Scientific Application

[34] Apex‐based magnetic coordinate systems are very
useful for organizing upper atmospheric data and for
simulations of electrodynamic phenomenon. Richmond
et al. [2003] used QD coordinates to study the response of
high‐latitude neutral and ion convection patterns to changes
in the interplanetary magnetic field. In the most recent
version of the empirical Horizontal Wind Model, HWM07
[Drob et al., 2008; Emmert et al., 2008], QD coordinates are
used to model geomagnetic storm effects on thermospheric
winds. One shortcoming of HWM07 is that quiet time high‐
latitude thermospheric winds, which are similar to ion
convection patterns, are not well represented by the geodetic
VSH expansion used in the model. In this section we
demonstrate that QD coordinates enable more reliable syn-
thesis and interpretation of quiet time high‐latitude wind
data (which are generally very sparse).
[35] Figure 7 shows winds near a height of 250 km sim-

ulated by the Thermosphere Ionosphere Mesosphere Elec-
trodynamics General CirculationModel (TIME‐GCM) [Roble
and Ridley, 1994; Crowley et al., 2006]. The results are for a
geomagnetically quiet day (21 June 2004, daily Kp = 1),
and were selected from the continuous four‐year simulation
described by Drob et al. [2008]. The left‐hand panels show
the raw output from the model over the northern polar cap at
three different universal times (UT), as a function of geodetic
latitude and local solar time (LST). The wind pattern is
dominated by antisunward flow over most of the region, and
it includes a well‐defined dusk‐side convection cell.
[36] We fit the TIME‐GCM winds to the spatial portion of

the HWM07 formulation, which consists of VSH terms in
geodetic latitude (up to degree 8), LST (up to order 3), and

Figure 4. Angular difference between actual and fitted QD coordinates at height 110 km and epoch
2005.0. The fit was computed at a resolution of {L, M, N} = {3, 6, 6}. The contour interval is 0.1°.
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longitude (up to order 2) [Drob et al., 2008]. The middle
column of plots shows the results of this fit. The fit
represents the antisunward flow fairly well, but the longi-
tude terms (which are not coupled to the local time terms) do
not provide sufficient flexibility to capture the dusk con-
vection cell.
[37] The right‐hand panels show a fit of the TIME‐GCM

winds to VSH terms in QD latitude (up to degree 8) and QD
local time (up to order 3), where QD local time is defined
here as the difference between the QD longitude of a loca-
tion and the QD longitude of the anti‐solar point at the same
height (Richmond et al. [2003] used the centered dipole
longitude of the anti‐solar point). We expressed the winds in

terms of the f1 and f2 base vectors prior to computing the fit;
the results in Figure 7 are shown in geodetic coordinates.
This fit, which does not include explicit dependence on UT
or longitude, captures the dusk cell much better than the fit
to the HWM07 formulation, including the migration of the
cell with UT and the cell’s change of shape from 0900 UT to
1800 UT. The fit consists of 99 parameters, compared to
160 for the HWM07 formulation, but the root‐mean square
residual wind speed for latitudes above 60°N is considerably
smaller (44 m/s versus 65 m/s). This demonstrates that the
high‐latitude winds are better organized in QD coordinates
than in geodetic coordinates, even under geomagnetically
quiet conditions. We note that TIME‐GCM uses Modified
Apex coordinates for representing the high‐latitude electric
potential that drives ion convection, so that the TIME‐GCM
convection pattern is organized by Modified Apex
coordinates. We would therefore expect a VSH fit of the
TIME‐GCM winds (which are driven in part by ion con-
vection) in QD coordinates to work better than, say, a fit
in centered dipole or even eccentric dipole coordinates.
Presumably, the TIME‐GCM winds are realistic in this
regard.

7. Summary

[38] We developed a parameterized representation of
Quasi‐Dipole (QD) latitude and longitude as a function of
geodetic latitude, longitude, and height. The representation
consists of an expansion of the QD rectangular coordinates
in terms of geodetic spherical harmonics, with a polynomial
representation of the height dependence. By retrieving the
fitted QD latitude via the arctangent expression involving all
three rectangular coordinates, we avoided numerical pro-
blems and ambiguities near the poles. From the fitted QD
coordinates, Apex and Modified Apex coordinates are easily
computed. We also derived expressions for calculating,
directly from the expansion coefficients, the base vectors
associated with QD and Modified Apex coordinates.
[39] Our spherical harmonic representation of apex‐based

coordinates provides a favorable alternative to interpolation
on a pre‐computed grid, which requires storage of large data
arrays. It is much faster than a full computation of QD co-
ordinates via field‐line tracing. At a modest model resolu-
tion, the fitted QD coordinates typically deviate from the
actual QD coordinates by 0.1°, and maximally by 0.4°.
[40] Fortran‐90 code for producing the expansion coeffi-

cients and evaluating the fitted coordinates and base vectors
is included in the auxiliary material.1 Updated versions of
the code will be made available through the CEDAR Data
System at http://cedarweb.hao.ucar.edu/.

Appendix A

[41] The computation of the fitted QD coordinates and
base vectors requires the evaluation of both scalar and vector
spherical harmonic functions. We developed an efficient
algorithm for concurrently computing the three latitude‐

Figure 5. Actual (red circles) and fitted (blue line) (left)
QD latitude and (right) longitude as a function the reduced
height parameter r. Results are shown for epoch 2005.0,
geodetic longitude 180°, and the geodetic latitudes indicated
on the right of the panels.

1Auxiliary materials are available in the HTML. doi:10.1029/
2010JA015326.
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dependent portions P, V, and W. We begin by defining these
functions and their normalization:

Pm
n �ð Þ � 1

2nn!
sin �ð Þm dmþn

dxmþn
x2 � 1
� �n

; x ¼ cos � ðA1Þ

~P
m

n �ð Þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2nþ 1ð Þ n� mð Þ!
2 nþ mð Þ!

s

Pm
n �ð Þ ðA2Þ

~V
m

n �ð Þ � d~P
m

n �ð Þ
d�

ðA3Þ

~W
m

n �ð Þ � m

sin �
~P
m

n �ð Þ ðA4Þ

where � is colatitude, Pn
m(�) are the unnormalized associated

Legendre functions, and the normalization for ~Pn
m(�) is the

same as that used by Swarztrauber [1993, equation (4.20)].
The definition of Pn

m in equation (A1) is commonly used in
geophysics; mathematicians use a definition that differs by a
factor of (−1)m.
[42] We adapt the standard forward column recursion meth-

ods outlined by Holmes and Featherstone [2002, section 2.1].
Our strategy is to first compute

~W
m

n �ð Þ �
~P
m

n �ð Þ
sin �

ðA5Þ

from which ~Pn
m can be computed with multiplication by

sin �, ~W n
m can be computed with multiplication by m, and ~V n

m

can be computed with the recursion relation given in equation
(A8) below. The recursion relations are:

~W
m

m ¼ ~cm~P
m�1

m�1
ðA6Þ

~W
m

n ¼ ~amn cos � ~W
m

n�1
� ~b

m

n
~W
m

n�2
ðA7Þ

~V
m

n ¼ n cos � ~W
m

n � ~d
m

n
~W
m

n�1
ðA8Þ

~P
m

n ¼ sin � ~W
m

n ðA9Þ

~W
m

n ¼ m~W
m

n ðA10Þ

~P
0

n ¼ ~a0n cos �
~P
0

n�1
� ~b

0

n
~P
0

n�2
ðA11Þ

~V
0

n ¼ �~en~P
1

n ðA12Þ

where

~amn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2n� 1ð Þ 2nþ 1ð Þ
n� mð Þ nþ mð Þ

s

ðA13Þ

~b
m

n ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2nþ 1ð Þ nþ m� 1ð Þ n� m� 1ð Þ
n� mð Þ nþ mð Þ 2n� 3ð Þ

s

ðA14Þ

Figure 6. Fitted QD coordinates in the vicinity of the north magnetic pole, at height 110 km and epoch
2005.0. The fit was computed at a resolution of {L, M, N} = {3, 6, 6}. (left) the fitted QD latitude was
retrieved using equation (13). (right) The fitted QD latitude was retrieved from zq

fit alone. The shaded area
indicates the region where zq

fit > 1. The red cross marks the location of the actual QD pole. The QD
latitude contour interval is 0.5°, and the QD longitude contour interval is 10°.
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Figure 7. (left) TIME‐GCM winds at a height of 250 km, computed for day 173 of 2004 (a geomag-
netically quiet day). Winds over the Northern Hemisphere are shown as a function of geodetic latitude
and local solar time, at the universal time indicated at the far right. (middle) A fit of the TIME‐GCM
winds to the HWM07 formulation, which consists of vector spherical harmonics in geodetic latitude
(up to degree 8), local time (up to order 3), and longitude (up to order 2). (right) A vector spherical har-
monic fit of the TIME‐GCM winds (in terms of the f1 and f2 base vectors) as a function QD latitude (up to
degree 8) and QD magnetic local time (up to order 3); results are shown in geodetic coordinates.
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~cm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2mþ 1ð Þ
2m

r

ðA15Þ

~d
m

n ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

nþ mð Þ n� mð Þ 2nþ 1ð Þ
2n� 1ð Þ

s

ðA16Þ

~en ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n nþ 1ð Þ
p

ðA17Þ

The recursion relations given in equations (A6), (A7), (A8),
and (A12) are adapted fromHolmes and Featherstone [2002,
equations (13), (11), (15), and (21)]. The recursion coeffi-
cients are largely the same as those given in Holmes and
Featherstone [2002]; we have relabeled their f as d, and
named a new coefficient c. Note that the normalization for
Pn
m used by Holmes and Featherstone [2002, equation 8] is

slightly different from our equation (A2), by a factor of
ffiffiffi

2
p

for m = 0 and a factor of 2 for m > 0.
[43] In this approach, we treat m = 0 separately fromm > 0,

since ~W n
0 = 0 and ~Wn

0 is undefined at the poles. Figure A1
illustrates the path of computations we use in our algo-
rithm, starting from a single seed value of ~P0

0 = 1/
ffiffiffi

2
p

. The
algorithm is designed to minimize the number of operations
needed to populate the P, V, and W matrices. After com-
puting the recursion coefficients, a maximum of only nine
multiplication and two addition operations are required to
get ~Pn

m, ~V n
m, and ~W n

m for each combination of n and m.
[44] The normalization of ~V n

m and ~W n
m is appropriate for

evaluating equation (28), which contains straightforward
derivatives of the scalar spherical harmonics. However, when
fitting a vector field to vector spherical harmonics, additional
normalization of ~V n

m and ~W n
m is called for [e.g., Swarztrauber,

1993; Killeen et al., 1987], so we define another set of vari-
ables with the modified normalization:

P
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The recursion coefficients for this normalization are:
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n� 1ð Þ= nþ 1ð Þ
p

; m > 0

~amn ; m ¼ 0

8

<

:

ðA22Þ

b
m

n ¼
~b
m

n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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n� 1ð Þ= nþ 1ð Þ
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en ¼ ~en ðA26Þ

The recursion relations are the same as equations (A6)–
(A12) except that equations (A9) and (A12) respectively
become:

P
m

n ¼ en sin � W
m

n ðA27Þ

V
0

n ¼ �P
1

n ðA28Þ

[45] Fortran‐90 code for computing ~Pn
m, ~V n

m, and ~W n
m

using this algorithm is provided in the auxiliary material.
We validated the code, up to (n = 72, m = 72), against
independent code that uses the Fourier method, which in-
volves the solution of a tridiagonal system of equations
[Swarztrauber, 1993]. With double‐precision computation,
the maximum difference between the output of the two
codes was 2 × 10−12, and our code was approximately three
times faster. Holmes and Featherstone [2002] noted that the
standard forward column method, applied at double preci-
sion, will produce numerical underflow for m > 1900; we
therefore expect that our algorithm will produce reliable
output for orders considerably higher than m = 72. However,
as the order increases, our method will likely have less of an
advantage in speed over the Fourier method.
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