
This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3099030, IEEE Access

 

VOLUME XX, 2017 1 

Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000. 1 
Digital Object Identifier 10.1109/ACCESS.2017.Doi Number 2 

A computationally efficient approach to 3 

segmentation of the aorta and coronary arteries 4 

using deep learning 5 

Wing Keung Cheung1, Robert Bell2, Arjun Nair3, Leon J. Menezes4, Riyaz Patel5, Simon 6 
Wan4, Kacy Chou1, Jiahang Chen6, Ryo Torii6, Rhodri H. Davies7, James C. Moon7, Daniel 7 
C. Alexander1, and Joseph Jacob1,8 8 
1Centre for Medical Image Computing & Department of Computer Science, University College London, London, UK  9 
2Hatter Cardiovascular Institute, University College London, London, UK  10 
3Department of Radiology, University College London Hospital, London, UK 11 
4Institute of Nuclear Medicine, University College London, London, UK 12 
5Institute of Cardiovascular Science, Faculty of Population Health Sciences, University College London, London, UK 13 
6Department of Mechanical Engineering, University College London, London, UK 14 
7Barts Heart Centre, West Smithfield, London, UK 15 
8Department of Respiratory Medicine, University College London, London, UK 16 
 17 
Corresponding authors: Wing Keung Cheung (e-mail: tony.cheung@ucl.ac.uk) and Joseph Jacob (e-mail: j.jacob@ucl.ac.uk). 18 
Joseph Jacob was supported by a Wellcome Trust Clinical Research Career Development Fellowship (209553/Z/17/Z) and Joseph Jacob and Wing Keung 19 
Cheung were supported by the NIHR BRC at University College London. 20 

ABSTRACT Early detection and diagnosis of coronary artery disease could reduce the risk of developing a 21 
heart attack. The coronary arteries are optimally visualised using computed tomography coronary 22 
angiography (CTCA) imaging. These images are reviewed by specialist radiologists who evaluate the 23 
coronary arteries for potential narrowing. A lack of radiologists in the UK is a constraint to timely diagnosis 24 
of coronary artery disease, particularly in the acute accident and emergency department setting. The 25 
development of automated methods by which coronary artery narrowing can be identified rapidly and 26 
accurately are therefore timely. Such complex computer-based tools also need to be sufficiently 27 
computationally efficient that they can run on servers typically found in hospital settings, where graphical 28 
processing units for example are unavailable. We propose a fully automatic two-dimensional Unet model to 29 
segment the aorta and coronary arteries on CTCA images. Two models are trained to segment two regions 30 
of interest, (1) the aorta and the coronary arteries or (2) the coronary arteries alone. Our method achieves 31 
91.20% and 88.80% dice similarity coefficient accuracy on regions of interest 1 and 2 respectively. 32 
Compared with a semi-automatic segmentation method, our model performs better when segmenting the 33 
coronary arteries alone. The performance of the proposed method is comparable to existing published two-34 
dimensional or three-dimensional deep learning models. Importantly, the algorithmic and graphical 35 
processing unit memory efficiencies are maintained such that the model can be deployed without requiring 36 
graphical processing units, and therefore can be used in a hospital setting. 37 

INDEX TERMS: Aorta, computed tomography coronary angiography, coronary artery, deep learning, 38 
segmentation. 39 
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I. INTRODUCTION 1 
Coronary artery disease (CAD) is one of the leading 2 

causes of death in the UK [1] and worldwide. The 3 
lumen of the coronary arteries can narrow as a result of 4 
build-up of atheromatous plaque within the artery wall. 5 
Reductions in local blood flow as a result of vessel 6 
lumen narrowing can starve the heart muscle of oxygen. 7 
Vulnerable plaques can rupture, occlude the vessel 8 
lumen and result in cardiac muscle ischaemia/death, 9 
which manifests clinically as a heart attack. Early 10 
detection of the presence of atheromatous plaque and 11 
vessel stenosis [2] could allow early medical 12 
intervention and potentially reduce the risk of heart 13 
attack. Currently, several non-invasive imaging 14 
modalities are available to clinicians for visualising the 15 
anatomy of the coronary arteries as well as delineating 16 
the severity of vessel stenosis. These imaging 17 
modalities are Stress Echocardiography [3], Cardiac 18 
magnetic resonance imaging (MRI) [4] and Computed 19 
Tomography Coronary Angiography (CTCA) [5]. 20 
CTCA is the quickest of these methods and offers high 21 
sensitivity and specificity for detection and exclusion of 22 
significant coronary stenosis [6]. As a result CTCA is 23 
the preferred first-line option for the assessment of 24 
stable cardiac disease in the National Institute for 25 
Health and Care Excellence guidelines for the UK [7]. 26 
CTCA has the ability to identify calcified, non-calcified 27 
coronary plaque and mixed-attenuation plaques which 28 
can help clinicians characterise plaques and formulate 29 
management strategies. 30 
To assess the severity of CAD, one approach involves 31 
visual estimation of stenosis severity on CTCA scans. 32 
This requires the geometrical information of the 33 
coronary arteries to be provided in order to accurately 34 
assess the severity of the stenosis. This approach 35 
however is subjective, time consuming and requires 36 
specialist radiologists, who are in short supply, to 37 
interpret the CTCA images [8]. Accurate interpretation 38 
and diagnosis of CAD is heavily reliant on the 39 
experience and expertise of individual clinicians [9, 10]. 40 
The diagnostic outcomes can differ between newly 41 
trained clinicians compared to experienced specialists.  42 

An alternative approach for assessing CAD severity 43 
involves performing computational fluid dynamics 44 
(CFD) on the target arteries [11]. It first requires 45 
identification of accurate geometries of the aorta and 46 
coronary arteries. A set of partial differential equations 47 
of blood flow are then solved numerically given the 48 
boundary conditions and the geometries. Once blood 49 
flow is estimated, the useful clinical predictor, 50 
Fractional Flow Reserve (FFR) [12-14] can be derived. 51 
Provided accurate geometries of the aorta and coronary 52 
arteries are available, this approach provides an 53 
objective estimation of stenosis and does not require 54 

additional imaging, which makes it particularly 55 
attractive to clinicians.  56 

Deriving accurate geometrical information of the 57 
aorta and coronary arteries is important for the above 58 
approaches. It is achieved by delineating the outline of 59 
the vessels, termed segmentation. Blood vessel 60 
segmentation can be performed manually, semi-61 
automatically or automatically [15-20]. Manual 62 
segmentation is subjective and time consuming, 63 
requiring pixel-by-pixel labelling of individual vessels. 64 
Semi-automatic and automatic segmentation methods 65 
are objective and quicker, though they can require 66 
manual correction for under- or over- segmented 67 
vessels. There remains an unmet need to develop fast, 68 
objective and accurate automated computer-derived 69 
coronary artery segmentation algorithms that can be 70 
deployed in a hospital setting to assist clinicians 71 
diagnose CAD. This is especially relevant in Accident 72 
and Emergency (A+E) departments where CTCA 73 
reviews are often delayed due to a lack of available 74 
specialists to read the CTCAs  [21]. This delay in turn 75 
slows patient management in A+E, increases resource 76 
utilisation and results in excess costs to the health 77 
service. 78 

Deriving accurate geometries of the aorta and 79 
coronary arteries are crucial components of the clinical 80 
information required by radiologists and cardiologists to 81 
evaluate the severity of coronary artery disease. The 82 
current approaches used to segment the coronary 83 
arteries and the aorta have varying accuracy, can be 84 
time consuming and most importantly require extensive 85 
computational resources. Most hospital systems in the 86 
UK do not have access to the required computational 87 
resources such as GPUs required for machine learning 88 
analyses. We have proposed a deep learning approach 89 
to improve the accuracy and speed of cardiac vessel 90 
analysis. Our proposed approach is fast, accurate and 91 
fully automatic. But most importantly, our method 92 
requires only low computational resources, which are 93 
feasible to be implemented within a hospital network. 94 

A fully automatic detection and classification system 95 
for CAD using computer-based deep learning 96 
algorithms is a way to achieve the above goal. The first 97 
stage of the process initially requires segmentation 98 
(identifying the outlines) of the aorta and coronary 99 
arteries on CTCA images. The second stage involves 100 
classification of disease severity performed on 101 
segmented CTCA images. The segmentation task has 102 
be considered in two ways in the literature. The first 103 
involves segmentation of both the aorta and the 104 
coronary arteries. For example, Gu et al [22] proposed a 105 
3D deep learning model to perform this task. The other 106 
strategy is to segment just the coronary arteries alone. 107 
For example, Huang et al [23] suggested a 3D deep 108 
learning method with centreline to segment the 109 
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coronary arteries. In general, the performance of aorta 1 
and coronary artery segmentation is better than 2 
segmentation of the coronary arteries alone. A more 3 
detailed summary regarding existing deep learning-4 
based segmentations is discussed in the following 5 
paragraph. 6 

The utility of deep learning applied to medical 7 
images [24] and relevant work in medical image 8 
segmentation have been extensively discussed in the 9 
literature [25-27]. The works related to artery 10 
segmentation on CTCA images have been discussed in 11 
two review papers [20, 28]. They provide a review of 12 
3D vessel lumen segmentation techniques and deep 13 
learning methods for cardiac image segmentation. The 14 
focus of the current study relates to deep learning 15 
methods for coronary artery segmentation and we 16 
briefly summarise the work published in the following 17 
paragraph. 18 

Several deep learning techniques have been proposed 19 
to segment the aorta and/or coronary arteries. Moeskops 20 
et al [29] investigated a single convolutional neural 21 
network trained to segment coronary arteries in cardiac 22 
CTA images. The training dice similarity coefficient 23 
(DSC) accuracy was around 65%. A 3D-convolutional 24 
neural network was presented by Merkow et al [30], 25 
which demonstrated that processing the volumetric data 26 
in 3D could improve the segmentation performance 27 
compared to 2D processing. However, the performance 28 
of the coronary artery segmentation model was not 29 
reported.  Kjerland et al [31] adopted a 3D DeepMedic 30 
network to segment both the aorta and coronary 31 
arteries. The reported DSC accuracy was between 75%-32 
78%. Huang et al [23] examined a 3D Unet 33 
with/without a centerline to segment the coronary 34 
artery. The DSC accuracy was between 71%-78%.  35 

Recently, a 3D multi-channel Unet has been 36 
proposed by Chen et al [32], which had a DSC accuracy 37 
of 80% for coronary artery segmentation. Shen et al 38 
[33] proposed a 3D fully convolutional network with 39 
attention gates to segment both the aorta and coronary 40 
artery. The boundary of the segmented artery was 41 
smoothed by a level set function. The average DSC 42 
accuracy was about 90%. Lee et al [34] introduced a 43 
template transformer network where a shape template is 44 
deformed to match the underlying structure of interest 45 
through an end-to-end trained spatial transformer 46 
network for coronary artery segmentation. The DSC 47 
accuracy is between 76%-78%. Wolterink et al [35] 48 
proposed using graph convolutional networks to predict 49 
the spatial location of vertices in a tubular surface mesh 50 
that segments the coronary artery lumen. The average 51 
DSC is 74%. Mirunalini et al [36] proposed a two-stage 52 
approach to segment the coronary artery. The first stage 53 
adopted a 2D Recurrent Convolutional Neural Network 54 
to detect the artery in the slice, then a 2D residual Unet 55 

was used to segment the coronary artery. The 56 
intersection over union (IoU) was reported, which was 57 
84%. Lei et al [37] developed a 3D Attention Fully 58 
Convolutional Network model to automatically 59 
segment the aorta and coronary artery for CCTA. The 60 
mean DSC is 83%. Gu et al [22] recently published a 61 
3D global feature embedded network with active 62 
contour loss to segment the aorta and coronary artery. 63 
The reported average DSC is 91.43%. 64 

Recently, a multi-objective clustering and toroidal 65 
model-guided tracking method has been used to 66 
segment the coronary artery tree automatically [38]. 67 
Gao et al [39] have proposed a novel deep neural 68 
network solution (TreeVes-Net) that allows machines to 69 
perceive FFR values directly from static coronary CT 70 
angiography images. 71 

There is a lack of efficient deep learning methods 72 
(which only require low computational resources) that 73 
can be used within typical hospital networks. For 74 
example, 3D deep learning models require a high 75 
computational resource. Though a 2D deep learning 76 
method has been described in the literature [36], the 77 
second additional component that was part of this 78 
model would increase the computational complexity of 79 
the model and hence decrease the algorithmic efficiency 80 
of the method.  We propose a 2D Unet to perform aorta 81 
and/or coronary artery segmentation and demonstrate 82 
that this 2D Unet is practically feasible to be 83 
implemented given that the computational resources are 84 
limited to those available in a hospital network whilst 85 
maintaining a good segmentation accuracy.  86 
Additionally, we emphasise that we are the first to 87 
employ a 2D technique (2D Unet) for artery 88 
segmentation directly on the CTCA image. Most of the 89 
previous studies evaluating coronary artery 90 
segmentation have utilised 3D models. For the study 91 
that employed a 2D approach, where an additional 92 
sequence model was required for segmentation, the 93 
coronary artery segmentation was performed indirectly. 94 

In this study, we propose a modified U-Net [40] 95 
model: (1) a batch normalization layer is added to the 96 
convolution block; (2) a dropout layer is added before 97 
each convolution block and evaluate its performance for 98 
the automated segmentation of the aorta and coronary 99 
arteries on CTCA images. We then retrain our model to 100 
segment the coronary arteries alone and demonstrate 101 
improved performance. 102 

The main contributions of this study are: 103 
 The first study to propose a modified 2D Unet 104 

that directly segments the aorta and/or 105 
coronary arteries on CTCA scans 106 

 The method is practically feasible to be 107 
implemented within clinical systems where the 108 
available computational resources are limited 109 
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 Importantly, our technique works well when 1 
the coronary arteries alone are segmented 2 
(accuracy ~89%). 3 

II.  METHOD 4 

  All the patients in the study had presented with chest 5 
pain and associated symptoms that indicated an 6 
intermediate risk of coronary artery disease. All 7 
patients underwent cardiac CT angiography for 8 
anatomical assessment of their coronary arteries and 9 
risk stratification for coronary artery disease. 71 cases 10 
were selected out of a total of 101 cases. 30 cases 11 
were not usable mainly due to major motion artefacts, 12 
artefacts on the image or the presence of coronary 13 
stents or bypass grafts distorting the coronary 14 
anatomy. The Simpleware ScanIP algorithm also 15 
failed in vessel segmentation on two of the selected 16 
cases. To segment the aorta and/or coronary artery we 17 
have proposed a modified 2D Unet model where: (1) a 18 
batch normalization layer has been added to the 19 
convolution block; (2) a dropout layer is added before 20 
each convolution block. The proposed method is 21 
compared to semi-automatic segmentation 22 
(Simpleware-ScanIP) and 2D/3D deep learning 23 
methods. The segmentation performance and time 24 
taken for vessel analysis are then evaluated. 25 

Clinical data 26 
  The final study data represented CTCA scans 27 
performed on 69 subjects with chest pain. The scans 28 
were acquired at University College Hospital London 29 
and Barts Health NHS Trust using different CT 30 
scanners and acquisition protocols. All the patients in 31 
the study had presented with chest pain and associated 32 
symptoms that indicated an intermediate risk of 33 
coronary artery disease. All patients underwent 34 
cardiac CT angiography for anatomical assessment of 35 
their coronary arteries and risk stratification for 36 
coronary artery disease. The study was carried out in 37 
accordance with the recommendations of the South 38 
East Research Ethics Committee, Aylesford, Kent, 39 
UK, with written informed consent from all subjects in 40 
accordance with the Declaration of Helsinki. An 41 
example of a CTCA scan is shown in Fig. 1. 42 

Data pre-processing 43 
  The original Digital Imaging and Communications in 44 
Medicine (DICOM) data were pre-processed using 3D 45 
Slicer. The brightness of the CTCA image was adjusted 46 
by windowing (window center = 40, window width = 47 
400). The image was saved as a NIfTI Data Format. 48 
The image size was 512 x 512 pixels. The image was 49 
then processed by ImageJ [41]. The pixel intensity was 50 
normalised by using linear histogram stretch and then 51 
rescaled to between 0 to 255. The final images were 52 
converted to 8-bit Portable Network Graphics (PNG) 53 

for training, validation and testing. The pre-processing 54 
technique is simple and quick to perform. 55 

Semi-automatic segmentation 56 
  Initial annotation was performed using Simpleware-57 
ScanIP (Version 2018.12; Synopsys, Inc., Mountain 58 
View, USA). The segmentation procedure consisted of 59 
thresholding, background flood-fill and split algorithms. 60 
Firstly, thresholding was applied such that only regions 61 
containing contrast were considered. Secondly, a seed 62 
point was placed within the aorta, and the background 63 
flood-fill algorithm was able to segment the coronary 64 
arteries and cardiac chambers which were connected to 65 
the aorta. Lastly, the split algorithm was performed 66 
such that the aorta and the coronary arteries were 67 
separated from the cardiac chambers. It should be noted 68 
that the split operation may be repeated such that all 69 
connected chambers are separated. The workflow of 70 
these procedures is displayed in Fig. 2. 71 
  The initial mask contained the ascending aorta (AA), 72 
right coronary artery (RCA), left circumflex artery 73 
(LCX) and left coronary artery (LCA). The mask was 74 
then fine-tuned manually using 3D Slicer [42]. To 75 
acquire the mask containing just the coronary arteries, 76 
the AA was removed to leave the RCA, LCX and LCA 77 
only. An example of initial and final masks is shown in 78 
Fig. 3. 79 

Manual segmentation 80 
  The manual segmentation was implemented in Slicer 81 
3D. The annotator highlighted the vessel by identifying 82 
the contrast within the CTCA image given an initial 83 
mask. The segmented masks were used as the optimum 84 
manual (ground-truth) labels. 85 

Segmentation methods 86 
(1) AORTA AND CORONARY ARTERY 87 
SEGMENTATION 88 
  The regions of interest that the current work focusses 89 
on are the aorta and coronary arteries. There are two 90 
scenarios where these masks are used. (1) The 91 
combined mask of the aorta and coronary arteries is 92 
useful for blood flow estimation using computational 93 
fluid dynamics. Aorta segmentations can produce 94 
continuous 3D measurements of aortic size and shape 95 
which are objective and allow detailed longitudinal 96 
comparisons of subtle changes in aortic morphology for 97 
various disease states of the aorta. (2) The mask of 98 
coronary arteries alone is useful for cardiologists to 99 
assess the degree of stenosis in areas where CAD has 100 
developed. The proposed method was therefore 101 
evaluated on these two segmented masks. 102 
 103 
(2) FULLY AUTOMATIC SEGMENTATION 104 
(A) Our proposed model 105 
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  Our model is based on the 2D Unet [40]. A Unet is a 1 
deep convolutional neural network consisting of down-2 
sample and up-sample paths. The first component of the 3 
network extracts spatial features and contexts, while the 4 
second component localizes the features by using 5 
transposed convolutions. A sigmoid function is used for 6 
the final background/foreground classification. We 7 
have modified the Unet model in two ways: (1) a batch 8 
normalization layer is added to the convolution block; 9 
(2) a dropout layer is added before each convolution 10 
block. The training process suffered from internal 11 
covariate shift. The batch normalisation was able to 12 
stabilise the training by normalising the inputs for each 13 
mini-batch which was performed by computing the 14 
mean and standard deviation of each input variable to a 15 
layer per mini-batch. The dropout layer was used to 16 
reduce overfitting by setting the weights to be zero 17 
randomly. This additional implementation improved the 18 
stability and performance of the proposed model. The 19 
details of our proposed model is shown in Fig. 4. 20 
 21 
(B) Model training 22 
  55 datasets (n=13 with no coronary disease, n=42 23 
with coronary disease) were used for training (80%) 24 
and validation (20%) The test data set contained 14 25 
datasets (n=5 with no coronary disease, n=9 with 26 
coronary disease). There were 11677 slices in the 27 
training dataset and 2920 slices in the validation 28 
dataset. Slice by slice training was adopted. Two 29 
models were trained by using the following optimum 30 
manual labels: (1) Aorta and coronary arteries (2) 31 
coronary arteries only. 32 
 33 
(C) Training implementation 34 
  The proposed models were implemented in 35 
Tensorflow (v 2.1.0) and Keras (2.3.1) on Linux (Rocks 36 
7). They were executed on a cluster (Intel Xeon Gold 37 
5118, 2.3GHz) with a Tesla V100-PCIE-32GB GPU. 38 
The Adam algorithm was used to optimise the proposed 39 
models. The learning rate was initially set to 1e-5. 200 40 
epochs were set for model training. The only 41 
hyperparameter optimised in this study was the learning 42 
rate. It was initially set as 1e-5. When the DSC had 43 
stopped improving after three epochs, the learning rate 44 
was reduced by a factor of 0.1 using Keras function – 45 
ReduceLROnPlateau. The setting was as follows: 46 
factor=0.1, patience=3, min_lr=0.00001. Early stopping 47 
was executed when the loss was not reduced across 10 48 
consecutive epochs. 49 
 50 
(D) Loss function and performance evaluation 51 
  The combined binary cross entropy (BCE) and dice 52 
similarity coefficient (DSC) with equal weights were 53 
used as the loss function for deep learning. The 54 
segmentation performance was measured by using DSC 55 

and IoU metrics which are commonly used to measure 56 
the similarity between two segmentations. 57 
 58 
(E) The segmentation prediction implementation 59 
  The prediction was performed by using the trained 60 
models above. It was implemented on Tensorflow (v 61 
2.1.0) and Keras (v 2.3.1) on Windows 10 and executed 62 
on a machine (Intel i9-9960X, 3.1GHz) with a Nvidia 63 
Geforce RTX 2700 GPU. The time required for the 64 
prediction was also recorded on a per subject/patient 65 
basis. 66 
(3) SEGMENTATION PERFORMANCE AND TIME 67 
EVALUATION 68 
  The accuracy of the segmentation performance of our 69 
proposed method was compared with published 70 
accuracies of existing 2D and 3D deep learning models. 71 
Our model was also compared with the standard 72 
Unet++ [43] and its variant that incorporating Xnet [44] 73 
with batch normalisation. It should be noted that the 74 
standard skip connections in Unet only combine the 75 
decoder feature maps with the same scale feature maps 76 
from the encoder, this could limit its ability to capture 77 
the intermediate features maps at multiscale levels. The 78 
redesigned skip connections mechanism in Unet++ 79 
could be used to overcome this limitation and hence a 80 
better artery segmentation might be obtained.  81 
  For the test dataset, the time required for segmentation 82 
and the segmentation performance for our method was 83 
compared to semi-automatic segmentation methods. 84 
The performance of the segmentation was evaluated by 85 
using the DSC and IoU metrics. The Mann-Whitney U 86 
Test was performed to evaluate whether there was any 87 
difference in segmentation time between automatic and 88 
semi-automatic approaches. The analyses were 89 
implemented on SPSS (IBM SPSS Statistics for 90 
Windows, version 25, IBM, Armonk, NY, USA). 91 

III. EXPERIMENTS AND RESULTS  92 

Learning curve 93 
  The learning curves of our model for two scenarios 94 
are shown in Fig. 5. No overfitting was found in the 95 
training for both scenarios. Some fluctuations of the 96 
loss function were found at an early stage of training, 97 
though the training became stable later on. This 98 
potentially reflects the fact that the training was 99 
performed in mini-batches. The training that used the 100 
aorta and coronary arteries as ground-truth labels took 101 
125 epochs, while the training using coronary arteries 102 
alone as the ground-truth label took only 51 epochs. 103 
This indicates that the aorta and coronary arteries have 104 
distinct features that took longer to learn in the first 105 
scenario. 106 
  The accuracy (DSC) during training is shown in Fig. 107 
6. Within the same model, it can be seen that the 108 
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segmentation performance improves as more features 1 
are learnt. 2 

Effect of network depth 3 
  In general, a deeper network would be able to 4 
capture the main/larger diameter artery on the CTCA 5 
image, while a shallow network would be able to 6 
capture the branch/narrow diameter artery on the 7 
CTCA image. For this work, an optimization study 8 
was performed (see Table 1). We found that the 9 
optimal results (performance on test set) were 10 
obtained when using a four-layer (number of layers 11 
over which skip connections were used) network. 12 

Segmentation performance 13 
  Table 2 shows the segmentation performance when 14 
the aorta and coronary arteries were segmented. The 15 
accuracy of our method and Simpleware-ScanIP are 16 
91.20% and 99.40% respectively. The semi-automatic 17 
approach performed better than our method when both 18 
the aorta and coronary arteries were present in the 19 
mask.  20 
  The performance for segmentation of the coronary 21 
arteries alone is shown in Table 3. The accuracy of our 22 
method and Simpleware-ScanIP were 88.80% and 23 
73.22% respectively. Our method performs better than 24 
the semi-automatic approach when just the coronary 25 
arteries are present in the mask. 26 
  The results demonstrate that a semi-automatic 27 
approach is good at segmenting the aorta. The semi-28 
automatic approach was limited in its ability to 29 
segment the coronary arteries, but as the aorta 30 
occupied most of the volume of the mask, the overall 31 
segmentation accuracy remained high. Our method 32 
performed well when attempting to segment the 33 
coronary arteries alone. This suggests that our model 34 
has the ability to utilise other features (i.e. shape) to 35 
recognise the coronary arteries, while the semi-36 
automatic approach relies solely on pixel density. If 37 
the contrast within the coronary artery is not bright 38 
enough, the semi-automatic approach will miss some 39 
segments of the coronary artery (See Fig. 7). 40 
  The segmentation results of patients 1 and 2 are 41 
displayed in Figs. 8 and 9. From Fig. 8, it is clear that 42 
our method can segment the aorta and coronary 43 
arteries, with a result very close to the optimal manual 44 
label. The Simpleware–ScanIP segments the aorta 45 
with good accuracy while some segments of the 46 
coronary arteries are missing. 47 
  For patient 2 (Fig. 9), our method can segment the 48 
aorta and coronary arteries well, but the segmentation 49 
incorporates an artefact (red arrowhead). When 50 
segmenting the coronary arteries alone, some 51 
segments of the coronary arteries are missing in the 52 
segmentation. As expected, the aorta segmentation is 53 
good when using the semi-automatic method, while 54 
the segmentation of the coronary arteries is relatively 55 

poor. It should be noted that the artefact present in the 56 
segmentation of the aorta and coronary arteries using 57 
our method can be easily removed by excluding the 58 
non-connected components of the mask. 59 

Segmentation performance comparison with 60 
Unet++ 61 
  Table 4 shows the segmentation performance of the 62 
standard Unet++ and its variant [Xnet with batch 63 
normalisation]. From Table 4, the performance of the 64 
standard Unet++ is the weakest. This may be due to 65 
the fact that batch normalisation has not been adopted 66 
to reduce the internal covariate shift which has 67 
affected the training significantly. While the Unet++ 68 
variant performed much better than standard Unet++, 69 
its performance remains slightly worse than our 70 
model. This suggests that learning through 71 
semantically similar feature maps may not be useful 72 
for artery segmentation. The segmentation of the aorta 73 
and/or coronary artery using the Unet++ [Xnet/BN] is 74 
shown in Fig. 10. 75 

Segmentation time 76 
  The segmentation time of our proposed method 77 
compared to semi-automatic segmentation is shown in 78 
Table 5 (aorta and coronary arteries) and Table 6 79 
(coronary arteries only) respectively. The mask 80 
prediction using our method was significantly faster 81 
than the Simpleware-ScanIP for both segmentation 82 
scenarios (p-value < 0.001), taking less than 4 seconds 83 
on average to predict the aorta and/or coronary arteries 84 
masks. Additionally, the segmentation time was 85 
between 40s and 141s when run on a CPU with multi-86 
cores. 87 

IV. DISCUSSIONS 88 
  A deep learning model based on a 2D Unet has been 89 
developed to segment the aorta and/or coronary 90 
arteries on cardiac CTCA images. Two models were 91 
trained to segment ROIs in two scenarios - (1) the 92 
aorta and coronary arteries (2) coronary arteries only. 93 
Our method demonstrates 91.20% and 88.80% DSC 94 
accuracy on scenarios 1 and 2 respectively. This 95 
suggests that our method can segment the aorta and/or 96 
coronary arteries with high accuracy. 97 
  Current deep learning approaches require high 98 
computational resources, which are difficult to 99 
implement in standard hospital networks. Therefore, 100 
we developed an alternative deep learning approach 101 
(2D Unet) that is feasible for implementation in a 102 
hospital network and which importantly maintains 103 
good segmentation accuracy. 104 
  Compared with a published 3D deep learning model 105 
[22] developed to segment the aorta and coronary 106 
arteries, which uses a 3D global feature embedded 107 
network with active contour loss, the performance of 108 
our method was similar (DSC: 91.20% (our method) 109 
vs 91.43% (ref. [22])). Our proposed method utilised a 110 
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smaller number of network parameters resulting in 1 
more efficient training and a faster prediction time 2 
compared to the published 3D model. Our method 3 
requires less GPU memory, which is a common 4 
limitation when training and implementing a 3D 5 
model. It should also be noted that our method does 6 
not require GPUs for deployment, which favours its 7 
application in hospital networks where typically only 8 
CPUs are available. 9 
  The performance of our method was also compared 10 
with the 2D RCNN + 2D Unet technique [36] for 11 
scenario 2. Our method showed comparable 12 
performance (IoU: 79.85% (our method) vs 84.36% 13 
(ref. [36])), but does not require implementation of a 14 
sequence model to detect the coronary arteries. 15 
Implementing an additional sequence model would 16 
increase the computational complexity and hence 17 
decrease the algorithmic efficiency. It should be noted 18 
that the difference in reported accuracy between these 19 
methods are likely to relate to the different test sets 20 
that were evaluated. 21 
  Compared with semi-automatic methods, our model 22 
performance is degraded when segmenting the aorta 23 
and coronary arteries. However, our model gives 24 
improved accuracy when segmenting the coronary 25 
arteries alone. The findings highlight the importance 26 
of evaluating segmentation performance of large 27 
vessels and small vessels separately to reduce the 28 
potential bias of segmentation performance metrics. In 29 
terms of the prediction time, our proposed model 30 
provided the fastest prediction when compared with 31 
the semi-automatic method. Though the time 32 
difference is statistically significant, it may be 33 
negligible from a clinical perspective. 34 
 35 
  Our study utilised a larger sample size for training 36 
and prediction when compared to the published 2D 37 
approach. This allows for a more generalizable model 38 
and therefore a more reliable prediction. It should be 39 
noted that two cases were excluded in our analysis as 40 
the Simpleware ScanIP failed to segment the vessels. 41 
Our deep learning model however was still able to 42 
segment the aorta and coronary arteries adequately. 43 
 44 
  There are several limitations to this study. The design 45 
of the study was retrospective, and accordingly it may 46 
have suffered from patient selection bias. The ground-47 
truth labels of the study were obtained by manual 48 
annotation and it is possible that the accuracy of the 49 
labels were potentially biased due to the annotator’s 50 
experience. The performance of our model was 51 
compared with existing models using different 52 
datasets. The lack of openly available code for other 53 
models precluded direct comparisons of models on the 54 
same dataset. Although our method can predict the 55 
segmented mask with good accuracy, visual inspection 56 
of the imaging by experts is still required. Currently, 57 

small regions of the proximal coronary artery are 58 
occasionally missed when using our models. Further 59 
improvements could be made by incorporating an 60 
attention gate to our model, which could allow the 61 
network to focus more closely on the coronary arteries 62 
during training. 63 

V. CONCLUSION 64 
  Our study demonstrates that a 2D UNET model is 65 
able to segment the coronary arteries efficiently and 66 
with good accuracy. It has the advantage that it can be 67 
deployed within hospital computer networks where 68 
GPUs are not available.  Our study is a first essential 69 
stage of work to develop fully automatic detection and 70 
classification systems for coronary artery disease by 71 
using computer-based deep learning algorithms. The 72 
aims of our future work would be to extend our model 73 
for coronary artery disease severity classification 74 
which could speed up the patient pathway for referrals 75 
with chest pain in A&E departments. 76 
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1 

 

Figure 1: A CTCA scan of a patient. Arrow=right coronary artery; arrowhead=ascending     
                aorta. 

 
 

 

Figure 2: The workflow of initial annotation by using Simpleware-ScanIP 

 
 
 

 

Figure 3: The final coronary artery mask fine-tuned using 3D Slicer 
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Figure 4: The network architecture of our proposed method 
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(A) 

 

(B) 
Figure 5: Learning curves: trained with (A)  aorta and coronary arteries (B) coronary  
               arteries only 
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(A) 

 

(B) 

Figure 6: Learning curves – Accuracy (DSC): trained with (A) aorta and coronary   

               arteries (B) coronary arteries only  
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(A) (B) (C) 

Figure 7: (A) Ground-truth mask (yellow) (B) Mask from Simpleware-ScanIP  (blue) with     
                a missing vessel (orange circle) (C) Mask from our model (red) 
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(A) Optimal manual label (B) Optimal manual label 

  

(C) Our method (D)  Our method 

  

(E) Simpleware-ScanIP (F) Simpleware-ScanIP 

Figure 8: Segmentation results of Patient 1. Segmentation of aorta and coronary arteries: 
               (A) Optimal manual label, (C) Our method, (E) Simpleware–ScanIP. 
               Segmentation of coronary arteries only: (B) Optimal manual label, (D) Our 
               method, (F) Simpleware–ScanIP 

 
 



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3099030, IEEE Access

 

VOLUME XX, 2017 16 

 
 

  
(A) Optimal manual label (B) Optimal manual label 

  
(C) Our method (D) Our method 

  
(E) Simpleware-ScanIP (F) Simpleware-ScanIP 

Figure 9: Segmentation results of Patient 2: with aorta and coronary arteries (A) Optimal   
                manual label (C) Our method (E) Simpleware–ScanIP, with coronary arteries  
                only (B) Optimal manual label (D) Our method (F) Simpleware–ScanIP 
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(A) Patient 1 (B) Patient 1 

  
(C) Patient 2 (D)  Patient 2 

Figure 10: Segmentation results by Unet++ [Xnet/BN]. Segmentation of aorta and  
                  coronary arteries: (A) Patient 1, (C) Patient 2. Segmentation of coronary  
                  arteries only: (B) Patient 1, (D) Patient 2 
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Table 1: Effect of network depth to segmentation performance 
 Aorta and coronary artery Coronary artery only 

DSC ( average) Training Validation Test Training Validation Test 

1-layer 27.35% 26.95% 24.14% 51.48% 50.62% 48.14% 
2-layer 66.80% 67.13% 67.60% 66.46% 68.65% 73.34% 
3-layer 86.24% 86.79% 85.36% 87.74% 87.51% 82.63% 
4-layer 93.62% 93.33% 91.20% 93.82% 93.41% 88.80% 

5-layer 95.06% 94.98% 88.78% 94.63% 94.49% 88.16% 
6-layer 95.37% 95.13% 87.81% 94.94% 94.55% 88.22% 
7-layer 94.83% 94.99% 88.97% 94.56% 94.39% 87.58% 

 

 

 
 

Table 4: Segmentation performance of standard Unet++ and its variant [Xnet with batch   
              normalisation] 

 Aorta and coronary artery Coronary artery only 

DSC ( average) Training Validation Test Training Validation Test 

Standard Unet++ (L1) 27.47% 26.95% 24.14% 51.48% 50.62% 48.14% 
Standard Unet++ (L4) 27.47% 26.95% 24.14% 51.48% 50.62% 48.14% 

Unet++ [Xnet/BN] (L4) 85.81% 79.61% 86.27% 86.67% 76.27% 78.11% 

 
 
 
 
 
 
 
 
 
 
 

Table 2: Segmentation performance – mask contains aorta and coronary arteries 

With aorta DSC (average) IoU (average) 

Simpleware-ScanIP 99.40% 98.81% 

Our method 91.20% 83.82% 

Table 3:  Segmentation performance – mask contains coronary arteries only 

Without aorta DSC ( average) IoU ( average) 

Simpleware-ScanIP 73.22% 57.75% 

Our method 88.80% 79.85% 
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Table 5: Segmentation time – mask contains aorta and coronary arteries 

With aorta Time (average) Time (SD) 

Simpleware-ScanIP 203.07s 101.69s 

Our method 
(GPU) 

3.29s 0.47s 

Our method 
(CPU only – 2 cores, 4 threads) 

138.57s 15.74s 

Our method 
(CPU only – 16 cores, 32 threads) 

40.93s 4.71s 

Table 6: Segmentation time – mask contains coronary arteries only 

Without aorta Time (average) Time (SD) 

Simpleware-ScanIP 345.00s 113.45s 

Our method 
(GPU) 

3.36s 0.50s 

Our method 
(CPU only – 2 cores, 4 threads) 

140.07s 16.90s 

Our method 
(CPU only – 16 cores, 32 threads) 

40.93s 4.75s 


