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abstract

An often mentioned obstacle for the use of Dempster-Shafer theory for the

handling of uncertainty in expert systems is the computational complexity of the

theory. One cause of this complexity is the fact that in Dempster-Shafer theory the

evidence is represented by a belief function which is induced by a basic probability

assignment, i.e. a probability measure on the powerset of possible answers to a

question, and not by a probability measure on the set of possible answers to a

question, like in a Bayesian approach. In this paper, we define a Bayesian

approximation of a belief function and show that combining the Bayesian

approximations of belief functions is computationally less involving than

combining the belief functions themselves, while in many practical applications

replacing the belief functions by their Bayesian approximations will not essentially

affect the result.

Key words and phrases: expert systems, reasoning with uncertainty,

Dempster- Shafer theory, computational efficiency.
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Introduction

Recently, Dempster-Shafer theory (also known as° evidence theory or theory of belief

functions), has received much, attention as°a promising theory for the handling°of uncertain

information in expert systems:- Its main- attractions' are the ease with which uncertainty

deriving froth ignorance is represented- and the possibility of combining evidence by

Dempster's rule of combination. This latter feature seems to° give Dempster-`Shafer'°theory

an advantage over=the Bayesian approach to the handling, of uncertainty; where in general

the combination- of several bodiesrof evidence requires- very` strong independence

assumptions. However, although the way uncertainty, is represented in Oempsfer-Shafer

theory may be intuitively sound and attractive, it does causethe reasoning with uncertainty

to be computationally 'very expensive:

Let O be a set of possible answers to a question: Then evidence may point to a

proper subset of O without pointing to a particular element. E.g. some scratches on a

forced door may tell an expert that the burglar was left-handed, without giving any clue to

the question which left-handed person was the burglar: The Bayesian° representation of this

evidence consists of a uniform distribution of the weight attributed to the evidence over all

left-handed persons; while in Dempster-Shafer theory this weight is attributed to the-set of

all left-handed persons without attributing `any weight to `aa particular Teft-hander: In

Dempster- Shafer theory evidence is represented byabelief function which is induced by a

probability measure on the powerset of O instead of by a probability measure on a itself,

like in the Bayesian approach. A consequence flf this is that the amount of computation

required for the combination of evidences by Dempster's rule increases exponentially with

the cardinality of O, -which- is generally <found to'be a serious obstacle, for the use of

Dempster-Shafer theory.

Barnett (1.981) has described an algorithm for Dempster's rule of combination which

achieves computational savings in case the only proper subsets of O supported by the

evidence are a singleton and its complement. Gordon and Shortliffe (1985) were not

satisfied with this result, since they were attracted to Dempster-Shafer theory by its

"potential for handling evidence. bearing on categories of diseases _as well as on specific

disease entities They suggest an efficient algorithm for combining evidence which can be

applied in case,the hypotheses of interest form a their algorithm only

yields an;approxiznationof the result that would be obtained by, using the full hypothesis

space, but it was improved on in this respect by Shafer and Logan (1987).

In this paper we define a Bayesian approximation of a belieffunctiot and show that

in general the combination of Bayesian approximations of belief functions is compu-

tationally less involving than the combination of the belief functions themselves. If
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combining the belief functions would yield a Bayesian belief function, .e. a probability

measure on O, then the substitution of belief functions by their Bayesian approximation

will. not affect the result .of Dempster's rule. In general, the combination of Bayesian

approximations of belief functions yields the Bayesian approximation of the combination

of those belief functions. This property makes-the results obtained by employing Bayesian

approximations =useful in at least those cases, w.hereaone is interested in final conclusions

about the elements of rather than ;subsets ,of: O: = ,, y

Section 1 reviews the basics ;of_Dempster-Shafer theory. In section 2 the Bayesian

approximation of a belief function is defined and some properties of this approximation are

given. The remaining sections are devoted ;to the relation -between a belief function and its

Bayesian approximation; a sdi^;gression on the, (at ;least, formally) -interesting -_space ;of

generalized belief functions and a description of the algorithm for the combination of

evidence by. applying Dempster's rule to, ayesianapproximations.

. D.empster-Blu er . l eory L;

In this. section we-;briefly explain some-no. tions. and terminology of -FDempster=Shafer

theory. For a more detailed exposition and some background information see e.g. Shafer

(1976). or'aordon£and Shortliffe1985 <<

Let O be a set of .mutually exclusive and exhaustive hypotheses about, some problem

domain, (O ,may be regarded to be, a set- of possible answers .,to a question.) -Relevant

propositions are represented as subsets of. this set O which' is, called. the frame .of

discernment. A basic probability assignment (bpa) is a function mfrom2®, the powerset

of O, to [0j] such; that r

m(O) = 0 and - m(A) = 1

"r

The quantity m(A), called A's°biesic°probability -number,'corresponds`to The me- asure`of

belief that is to the proposition (represented by the set) A and in general

riot-to the total belief to - A; this also includes' the measures of belief

committed to subsets°of defie=the be'l'ief function Bel induced by a bpa m by:

el(l) m(B) (A,B, O)
$CA
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A computationally efficient approximation off Dempster-Shafer theory=

Bel(A) measures the total belief committed to A Each belief function -Belis induced by a

unique bpa m which-, can be recovered from Bel as follows:

m( ) = `L= (-1),IA-BIBe1(B)

BMA

(Here A-B denotes A`nBc;`the_ intersection of A and the complement of B, and IA-BI

denotes the cardinality of this set.)

The plausibility of A, P1(A), is defined by P1(A) = 1- Bel(Ac). It is easy to see that we

have:

P1(A) = I m(B)
Br ADO

Notice that each function from {m,Bel,P1.} uniquely determines the other two,

Some additional terminology: Let m be the bpa of Bel. If m(A)>O, then A is called a focal

element of Bel. The union of all focal elements of Bet -is. called the core of Bel. A belief

function is called vacuous if e is its only focal element. If all focal elements of Bel are

singletons, then Bel- is called Bayesian. Notice that if Bel is Bayesian,.; then Bel and Pl

coincide and are equivalent to adprobability.measureon Q :;
n

Let m and m' be the bpa's of the belief functions Bel and Bel' with cores {Al,...Ap} and

{Bl,._.,Bq} respectively. Then mOm', the orthogonal combination of m and m' is given

by the following formula, which is called Dempster's rule of combination:

m@m'(A) =

m(Ai)-m(Bj)

if ADO; m0m'(0) =

The factor [ m(A).
Air-Bj#O

,

AirnBj#O

B)]1 is called the renormalizing constant of Bel and Bel'.

We write Bet Bel' for the belief function induced by m0+ m'. The intuition behind the rule'

is- that §the,-combined effect of the assignment of- (A) probability mass to Ai and the

assignment of m(Bj) probability mas-s"to Bj is the assignment of m(A)-ff(Bj) probability

mass to AinBj. A given subset A of O may of course be the intersection of Ai and Bi for

(-1)

I
A,r Bj =A

0.

2:
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more than one pairs (i,j) Hence to obtain the total exactly committed to A

by the combination mO+ m' of m and m' we }ave to take the sum of all. m(A) m'(Bj) such

that A = APB j., The case AinBj = 0 forms an exception, since by definition no

probability mass is assigned to 0. Therefore the measures of the of

focal elements are rescaled by dividing through the sum of all such that

AinB. 0, provided this sum does not equal 0; otherwise one says that BelO+ Bel' does
.;. .

`ice S'

not exists or that Bel and Bel' are not combinable.

We list some useful properties of Q+ :

1. Bell©Bel2 = Be12$Be11

2. Bell©(Be12(DBe13) _ (Be11(DBe12)©Bel3

3. If Bell is vacuous, then Bell©Be12 = Belt

4. If Bell is Bayesian, then Bell$Be12 is Bayesian.

Notation: Let 'I = { 1,2,...,n},-then°SiE1B'el denotes -Be1 $B'e12$. $Beln.

ayesian -appRoXi'mationY-

Definition Let m be a bpa and Bel the belief function induced by m. The Bayesian

approximation Bel of Bel is induced b y the"bp a"'- "defined, by:

AFB

if A 'isa singleton, otherwise,'m(A)
. ,n7(C) ICI ,

Cce

The factor [ will be called the Bayesian constant of Bel.

It is clear that Bel is Bayesian. Notice that in general the Bayesian approximation of Bel

essentially differs from the Bayesian belief function obtained from Bel by distributing,

uniformly all probability mass assigned by m to subsets of over their elements.

Let O {a,b },,,:m({a.}).= 0 4 and rn({b,c) 0 6 T en a, t = 0:4,/(0 4 Ire.0:6 2)

0,:25 .and m({ b<}) =- rn({ c }) = 0 6/(0.4.1 + 0..6 2=) =-0.3 5.

4
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The Bayesian constant c of Bel may be, considered to be a measure of precision or

specificity of the information given by Bel, where c = 101-1` corresponds with the most

imprecise, i.e. vacuous,-belief .function an c- = L with Bayesian belief functions, which

are maximally precise. (In Dubois and Prade
(1987a)s;l

m(C)-lC1 is= mentioned as an

example of a measure of imprecision, although it does not possess all appropriate

properties; m(C) -10921C1, is better suited in this respect..See Dubois and Prade (1987b)

and Ramer (1987).)

The following proposition summarizes some trivial facts:

Proposition 1

(i) Bel = Bel iff Bel is Bayesian iff the Bayesian constant of Bet = 1.

(ii) Bel and Bel' are not combinable iff Bel and Bel' are not combinable.

Proof .. trivial..

Proposition 2 below, sstates.-that the, ,combination- of the =Bayesian approximations -Of two

combinable belief functions is identical to the Bayesian approximation of the combination

of the belief functions themselves.

Proposition 2 If Bel and Bel' are combinable, then Bel$Bel' =rBel(Bel'

Proof It is clear that if A is not a singleton, then mO+m'(A) = 0 = m+$m'(A). Let c

(c') denote the Bayesian. constant of Bel (Be1') and let k -be the renorrnalizing constant of

Bel and Bel'. Then we haVel,

m(B)'m'(C)
{a)=Br,C

mG m'({a}) _ _
Z

Br C#P be 8

m'(D))
aeC aeD

(I m'(D))
a.EC - .a D

m'(F))) Z ((Z m'(F)))
be 8 bEE b(=-F bE 8 beE beF

5
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m(C)'m'(D) n?(C)'m'(D))
aECrt aEB B=C(-D

m(E)-m'-(F) lEnFl
Cce E4=C-

m(C)-m.'(D))
k ,E m(C) m'(D))

aEB B=CrD aEB B=CrD

k- Z (E E E
C : ® EnF=C C _ ,. .ErF=C

m©m'(B)
aEB

= m m'({a)) .L
CEO

Since the Bayesian approximation of a belief function is Bayesian, the combination of

Bayesian approximations will also be Bayesian. Hence, a necessary condition for the

combination of Bayesian approximations to agree with the combination of the belief

functions themselves is that this latter combination, is Bayesian: Proposition 3 shows that

this; condition is also sufficient

Proposition 3 Let I be some non-empty set and assume that the belief functions from

{ B eli I iE I) are combinable. Then

iE1
Beli = DiEIBeli iff IT{mi(Ai) I iE I)> 0 implies 1njEIAil S 1.ED

Proof . (mi(Aj) I iE I-) > 0 - In EIAiI < 1;
'

jE1Bel,--is Bayesian

DiEIBeli = Bel'. (pr'op 1) , ..

DiEIBeli = DiEIBeli (prop. 2).

Corollary

(i) If AnB is a singleton or empty whenever m(A)m'(B) > 0, then Bet Bel' = Bel©Bel'

= Be1O+Be1';-

(ii) If Bel is Bayesian, then BeIO+Bel' = Be1GOBel'.

6
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A computationally efficient approximation of-Di mp&ter=Shafer theory

3 The relation, -between 1H eI and BeI' ,

The term "Bayesian approximation" may be somewhat misleading, since there is for

example probably no natural concept of distance between two be-lief'functions with respect

to which Bel is the Bayesian belief- function closest to Bet. Our justification of the term is

that in many cases one can draw conclusions from the Bayesian approximation of a belief

function: which are similar to those that can be drawn from the belief functions themselves.

If this would not be the case, then Bayesian approximations would not be very useful,

since proposition 3 shows that the conditions under which the combination of Bayesian

approximations give exactly the same result _as the co functions

themselves are rather strict.

Although evidence may point to subsets of the frame of discernment O without

pointing to any particular element, one is often just interested in final conclusions about the

elements of O. (E.g. one is primarily interested in diagnosing the particular diseases of

patients, although symptoms are usually most naturally interpreted as evidence for

categories of diseases.) In Dempster=Shafer theory-the-information,abouf the degree'of

certainty of an-elementa is represented;by, the belief interval-[Be1({a})P1('{'a))]. Itis easy

to see that m({ a } )_= c =is,the Bayesian constant of Bet -Hence one caii

extract from m and c at least one of the two functions which carry the information-about the

degree of certainty of-elements; of-O.-Unfortunately, in general Bel({a}) cannot be

reconstructed from -m. However, the additional knowledge of Bel({-a)) does not yield too-

much new information:.

'Even when the belief intervals of elements of E) are given there is no unique way to

order them with respect to.,their degree of certainty. Two more or»less natural orderings are

those induced by.the>followingorderings- on ,intervals:

Definiti.o;

(i) - - -The: minimal a r d e r i n g ee in is defined b - y [x,y] In [x',y] iffy S x.-'

(ii) The ordering by average <av i defined by [x,y] <av [x' y=] iff '(x+y)/2 < (x'+y')/2.

LetajbE:O- We write a <minb for [Bel({a}),Pl({a})] min [Bel({b}),PI({b})) and a =min

b for a <mm b r b min a =av b: are -defined similarly.

The choice for the minimal ordering corresponds with a rather cautious approach -the

ordering.ofelements with respect to-their certainty (resulting in general only yin a partial

ordering), whereas -the: choice for the ordering by. average-- requires a rather audacious-

approach. =ln_table 1 the orderings and <av are compared with the plausibility ordering

7
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<pl defined by a <pl b iff Pl({ a }) < Pl({ b }) (or equivalently. m((a)) < m({ b) ),) -v

Bel(( a)) S Pl({a}:) < Bel({b})x<_pl({b}): a'4iYliiib a <avb - . a <Plb

Bl((a)) = Bel({b}) <P1((h)) P

4

Bel({a}) <,P1({a}) = Bel({=b}) _ P1({b});

Bel({a}) _ Pl({a}) =,Be1({.b}) _ Pl({b}): _

_7

B 1({a}) < Bel(.{b}) <.P1({a}) < Pl({b}): _

Be1({a))<Be1({b,})<P1(_(a})=,P1({b});

Bel({a}) -=) el({b}) < Pl({a}) = 1)I)-- ,, -.°

8 Bel((a)) < Bel({b)) <- Pl({b}) < Pl({a}):

,<_m b a<avb a<Pb

a <, - b - a a =plb

a =minb 'a =avb .,a = 1b

* a-<avb a< pib

a<avb a-lb
a =avb' a 'plb

b <pla

TABLE 1. `*" `stands for "a andb are incomparable". "? means that the ordering of a and

b is not determined by the given description of the situation.

Notice. that whenever, <min and <av agree -(i.e..in:ease land 4 of table 1), <Pl gives the

same result. Hence if the belief intervals give rise to definite conclusions- about the relative

degree ;of certainty,°ofelements of ; , then ean:already be drawn from in

or the plausibility functions- drawback, of having available only m or {P1((a}) ] aE°O } is

that in that case one does not always know whether a conclusion based on <-P1 agrees with

any reasonable conclusion or constitutes Just a particular:-choiee from= several possible

conclusions. Even additional information about the Bayesian constant c does not always

enables one toydecide whether one.-of the situations 1 and 4.zof ,table ` 1 holds; although

sometimes it does; e;g. P>1({,b }) > P1({ a }) n Pl("{a }.) 0.5 is a necessary and: Ply {.b }) °>.

Pl({ a)) A c > [1 + Pl({ b)) - Pl({a}]-1 is a-,s ufficientconditiop-for..situation 1 andP1({a})

Pl({ b }) A c = 1 is a sufficient condition for situation 4.

However, to conclude that a particular element a from O is (likely to be) the case it

often does not suffice to know that a is at least as certain as any bE U for any reasonable

ordering of the elements of C) with respect to their. certainty E g. if the belief interval of a

is [0 5;O 55]: and that of b is [0.440.45]:, then, for .any reasonable, ordering `a > b, but for

many. applications it would be unwise to-disregard the possibility that b is the case. In fact,

to conclude a it is often necessary -and sufficient that for ali,b:, a}) »_Pl(;{b}). This

justifies to some extent the dominant role of plausibility in the process of deciding between

elements on the basis of,<pr

Another possible (partial) justification of the bias of plausibility of

elements may be extracted from the fact thatDempster's rule is, also somewhat biassed

towards=plaus bility This fact is illustrated by the .be a belief function`

8
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such .that all .elements of 6 ,have- the same- belief intervals. If P>1({ a })>_ Pl(`{ b) ), °then

P1QP1'({ a)) > P10P1'({ b } ). Hence <_pl is -not, affected by the, combination with a "neutral"

belief, function, whereas <av and by a <be, b ff: Bel({ a}) < Bel({ b } );

are not necessarily by the with:a belief function like Bel'. One may

conclude that if one is interested in about the elements of then and

therefore the Bayesian approximation, may often, yield sufficient information. . r,Y

However,, one. cannot always choose the frame of discernment to consist just the

propositions one is interested in, since the application :of Dempster's rule: requires. the

.frame of discernment to -discern all relevant interaction of the evidence to.be:coxnbined.

(See Shafer (1976), chapter. 8..) Therefore the frame :may contain some propositions which

refer, to details in which one is not primarily._interested.
In general we have the following inequalities:

max{m({a}) I aE A} < P1(A) <_ Pl(A)/c

1 - (1 - Bel(A))/c <_ Bel(A) <_ 1 - max{n({a}) I ao A}

These inequalities are only likely to give some information if the Bayesian constant is close

to 1. One might be inclined to think that, the.comb nation by Dempster's rule increases

precision in the sense that the Bayesian constant of the combination is (weakly) larger than

the Bayesian constants of the belief functions which are combined.:This would imply that

as the number of combinations increases, so would the likelihood of the above inequalities

being informative. Unfortunately, this is not the case since, as .is shown in the following

section, the application of Dempster's rule involves a normalizing step which may cause

the Bayesian constant to decrease.

4 Generalized belief functions

Definition Let O be a frame of discernment. The space of generalized bpa's or belief

functions on O is a pair (M,O), where M{m; : 20'---> [0,1] 1 1 m(A) = 11
ADO

and O is a binary operation'on M such-that for all, AC O m m2 (A) °

BnC=A

The space (M,(9) is introduced in Hummel and Landy (1988), where it is called "space of

unnormalized belief -states". An 'm of M will'be called a generalized bpa. A

generalized bpa m induces a generalized belief function Be! by Bel(A) = (0)' if A=O and

Bel(A) _ m(B),
Ot-B C A

(M,(&) is an abelian monoid which is closely related to the space of bpa's: let be the

: _

Z
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function 2e -, [0,1] defined by m0(o) f and m0(A) = 0,for all A # o and-let g be the

map defined by g(m0) = mQ and for all. rn *-'mo g(m) ='m, where m is the bpa such that for

all A#om(A) ='m(A)L(1 - m-(O)) Then g maps (M,O-) homomorphically onto

where M is the set of bpa'.s with- as extra element m6-and Q is defined as usual, exceptthat

mlOm2 is defined to- be- nib in case ml and m2' are riot combinable according to the

definition given in section, I. (See Hummel and Landy (1988).) C-`

Although (M;0.) , is primarily introduced -for technical reasons, it might be an

intuitively. appealing space°forthose who object against the normalizing step in Dempster's

rule and its effect of suppressing the conflictdf evidence (cf Zadehe (1984]): The quantity

m( )may be interpreted.. as a measure of this' conflict `of evidence. Further, the` space of

generalized belief functions may be used to-make precise the claim that it is the normalizing

factor which is responsible for the fact°that,the,application- of Dempster's rule may cause

the Bayesian constant to decrease:

Proposition 4 - :Let- m1 j. m2E M and'let,mr©m2(O)= =1: Then

,

m10m2(A)-IAI]=1 L mi(B).I_

BOO ._

Proof"' mI®mA) lA1 = m1(B) m2(C) IBr)CI
Br CEO

= I I
BCO BrC*Q

_< ml(B)181'(' in2(C)) ` .q.

BOO BnCo

Hence [ m1Om2(A)1AI].'.l ? [ The case-i 2. is similar o
A.cO Bc®

Corollary Suppose that Bei13 and,B

constant of Bell and Be12. Then

are combinable and let k be the, BaYesian

[I m10+m2(A).IAI]-1 > [k , (ie { 1,2))
ADO BOO

10

=

#

[I >_ (i(=-[1,21)
ADO

X Z
AcO
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The following example shows that the may not be omitted from the

statement above:

Example Let O = {a,b,c,d},and let ml be given by mt({a,b}) = m1({c}) = 0.5 and

m2({a,b}) = m2({ d)) = 0.5. Then the Bayesian constant of ml and m2 is 2/3, while the

Bayesian constant of ml©m2 is 0.5.

A further generalization of the space of bpa's is obtained by dropping in addition to m(O)

= 0 also the requirement that I m(A) = 1:

Definition Let O be a frame of discernment. The space of unnormalized generalized

bpa's or belief functions on E) is a,pair M,©), where M =,[m:,.28. [0.1] } and and O

is a binary operation on M such that for all AcO m1®m2(A)
7

(M,(D) is again an abelian monoid, which is mapped homomorphically onto (M,(R) and

(M,O) by h and h' respectively, where h(m) = W(m) = mo, if for all A 0 m(A) = 0 and

otherwise h'(m)(A) = m(A)f( (in(B) Irk c e)), ' h(m)(O)-'= 0 and for A Q h(m)(A) _

m(A)/(E { m(B)`'I B #--'0 1). To formulate a generalized notion of Bayesian approximation

in this formal framework, we-need the following definition

Definition

(i) the space of Bayesian bpa's or belief functions (M,(D) is the submonoid of M, e)

such that M = {mE M I m-(A) > 0- inplies-iAl < `1 }

(ii) the Bayesian map f : M'-4' M is the map given f(m) m, if for

all A*Orn(A) = 0 and otherwise,

E m(B)
AFB

f(m).(A) =
'

,- , if A is a singleton and-,f(,-,M )(A)= -o,4 IAI *-L 1.
2
cce

Since M c M c M, f can be restricted to M and M. The functions thus obtained will also

be called Bayesian maps:' Notice that if m. is a bpa, then f(m) = ii:Hence'f

yields a possible generalization of the notion of Bayesian approximation,.-

11 1
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A,computationally -efficient approximation of Dempster-Shafer theory

Proposition,5 f maps (M,©.),.:(M 4) and (M): homoriiorphically onto ME)) and the

following diagram commutes:

Proof

Since' f is the identity function on _M and _M M'c M C M, f is clearly onto. The fact that

f is a homomorphism follows essentially from prop. O"and (the proof of) prop. 2. The

proof that the diagram commutes is straightforward.

Determining the combination of the Bayesian approximation of n belief functions involves

several normalizing steps: n applications off and n-l applications of (P yield a total of 2n-i

normalizing steps. The following proposition, shows that all these normalizing,, steps can be

merged into one step. First we need some definitions.

Definition

(i) The space of unnormalized generalized Bayesian bpa's or belief functions is

the submonoid of (M,Q) such that M =;(rE M I m(A) > 0 implies IAI S I)-

The unnormalized Bayesian approximation map f M --> M is defined by f (m)(ii)

ma, if for all A # 0 m(A) = 0, otherwise f (m) (A) m(B) I A B,} if A is a singleton

and for all A with IAI # 1 f(m)(A) = U.

(iii) The generalized normalization map g'' ;.lid[ M is'.defined by g'(rn) =-:f , if for all

non-empty A rn(A) = 0, otherwise g'(m)(A) = m(A)/(Y- [m(B) I B-* 0)) for A # 0 and

g'(m)(o) = 0 O.

Proposition 6 f maps.(M;(D) ho nomorphically onto (IAI 0), g', napa=( ?If,g) homo-

morphically onto L4,0+) and the vfoilowing'diagram commutes A >

12 _

h

(M,©) (MI( D)

:
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Proof straightforward.

Corollary Let mI and m2 be bpa's. Then f(m1O+'rn2) = g'(f (m f(r. ))

This fact will be used in the following section to avoid unnecessary and cumbersome

normalizing steps.

5 An algorithm for.,.-.,combining:{ -9yesiau *approxim=atlo sR

Let 101= =n=and-let {Aj 10.5 j _< 2n:-1 } be a enumeration of the subsets of O.

(i) Compute for each belief function Beli its Bayesian approximation (up to a multiplicative

constant) by adding for all j the quantity mi(Ai) to=f(nni)({a}); for all aE A. (We suppose

that the initial value of f(m)({a}) is zero.) Normalizing f(m) woul,d'yield the Bayesian

approximation mi, but we will postpone the normalization until the functions have been

combined. .(Here we apply (the corollary of) pYoposition 6.)

(ii) $iEIB-eli is now obtained by first computing', for all a :O>, f(mi)({a}),

then taking the. sum of these, products over all elements of 0 and finally setting

r-Lf'(rn)({a}-)
iEI

Bel.({a}) _1Ei
, (11 f(mi)(fb}))

bE ie -

t is easy to see that the computation as described in step (ii), only requires

time polynomial in 101, while, in general, the computation of the combination of_ Be1

would require time exponential in the cardinality of 0. However, this does not imply that

the combination of belief functions is always computationally more involving than the

combination of the associated Bayesian approximations since if step (i) is implemented in a
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straightforward way, then, in general, the computation of f (mi) requires time exponential

in 101.

Still, there are some situations in which it is, from a computational point of view,

clearly advantageous to combine the Bayesian -approximations rather than the belief

functions themselves. E.g. if the number of combinations, i.e. 111, is not too small relative

to 101 (in that case the computational savings' obtained by combining the Bayesian approxi-

mations in stead of the belief functions themselves weighs up against the additional work

needed to compute the Bayesian approximations) or if the evidence is not-given in terms of

basic probability assignments, but in terms of the plausibility of the elements of a (this

would make step (i) redundant, since replacing f(m) by Pli in step (ii) will not affect the

result). In short, for many applications it might be worth while: to consider the possibility

of using Bayesian approximations in stead of the belief functions themselves.
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