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Abstract

A Sequential Quadratic Programming (SQP) algorithm generating
feasible iterates is described and analyzed. What distinguishes this
algorithm from previous feasible SQP algorithms proposed by various
authors is a drastic reduction in the amount of computation required
to generate a new iterate while the proposed scheme still enjoys the
same global and fast local convergence properties. A preliminary im-
plementation has been tested and some promising numerical results
are reported.

1 Introduction

Consider the inequality constrained nonlinear programming problem

min f(x)
s.t. gj(x) � 0; j = 1; : : : ;m;

(P )

where f : Rn ! R and gj : Rn ! R, j = 1; : : : ;m; are continuously
di�erentiable. When the number of variables n is not too large, Sequential
Quadratic Programming (SQP) algorithms are widely acknowledged to be
the most successful algorithms available for solving (P ). For an excellent
recent survey of SQP algorithms, and the theory behind them, see [2].
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Denote the feasible set for (P ) by

X
�
= f x 2 Rn j gj(x) � 0; j = 1; : : : ;m g:

In [14, 6, 11, 12, 1], variations on the standard SQP iteration for solving
(P ) are proposed which generate iterates lying within X. Such methods are
sometimes referred to as \Feasible SQP" (or FSQP) algorithms. It was ob-
served that requiring feasible iterates has both algorithmic and application-
oriented advantages. Algorithmically, feasible iterates are desirable because

� The QP subproblems are always consistent, i.e. a feasible solution
always exists, and

� The objective function may be used directly as a merit function in the
line search.

In an engineering context, feasible iterates are important because

� Often f(x) is unde�ned outside of the feasible region X,

� The optimization process may be stopped after a few iterations, yield-
ing a feasible point, and

� Trade-o�s may be meaningfully explored.

Each of these features is relevant in both engineering analysis and design.
Further, the second is critical for real-time applications, where a feasible
point may be required before the algorithm has had time to \converge" to
a solution.

An important function associated with the problem (P ) is the Lagrangian
L : Rn � Rm ! R, which is de�ned by

L(x; �)
�
= f(x) +

mX
i=1

�igi(x):

Given estimates x 2 X of the solution of (P ), 0 � � 2 Rm of the Lagrange
multipliers at the solution, and 0 < H = HT 2 Rn�n of the Hessian of the
Lagrangian L(x; �), the standard SQP search direction d 0 = d 0(x;H) 2 Rn
is computed as a solution of the Quadratic Program (QP)

min 1
2hd 0;Hd 0i+ hrf(x); d 0i

s.t. gj(x) + hrgj(x); d 0i � 0; j = 1; : : : ;m:
QP 0(x;H)
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With an appropriate merit function, line search procedure, Hessian approx-
imation procedure, and (if necessary) Maratos avoidance scheme, the SQP
iteration is well-known to be globally and locally superlinearly convergent
(see, e.g., [2]).

A feasible direction at a point x 2 X is de�ned as any vector d 2 Rn
which satis�es x + td 2 X for all t 2 [0; �t ], for some �t > 0. Note that
the SQP direction d 0 = d 0(x;H), a direction of descent for f , may not
be a feasible direction at x, though it is at worst tangent to the active
constraint surface. Thus, in order to generate feasible iterates in the SQP
framework, it is necessary to \tilt" d 0 into the feasible set. A number of
di�erent approaches have been considered in the literature for generating
feasible directions and, speci�cally, tilting the SQP direction.

Early feasible direction algorithms (see, e.g., [24, 14]) were �rst-order
methods, i.e. only �rst derivatives were used and no attempt was made to
accumulate and use second-order information. Furthermore, search direc-
tions were often computed via linear programs instead of QPs. As a conse-
quence, such algorithms converged linearly at best. Polak proposed several
extensions to these algorithms (see [14], Section 4.4) which took second-
order information into account when computing the search direction. A few
of the search directions proposed by Polak could be viewed as tilted SQP di-
rections (with proper choice of the matrices encapsulating the second-order
information in the de�ning equations). Even with the second-order infor-
mation, though, it was not possible to guarantee superlinear convergence
because no mechanism was included for controlling the amount of tilting.

A straightforward way to tilt the SQP direction is, of course, to perturb
the right-hand side of the constraints in QP 0(x;H) directly. Building on
this observation, Herskovits and Carvalho [6] and Panier and Tits [11] in-
dependently developed similar feasible SQP algorithms in which the size of
the perturbation was a function of the norm of d 0(x;H) at the current point
x 2 X. Thus, their algorithms required the solution of QP 0(x;H) in order
to de�ne the perturbed QP. Both algorithms were shown to be superlinearly
convergent. On the other hand, as a by-product of the tilting scheme, global
convergence proved to be more elusive. In fact, the algorithm in [6] is not
globally convergent, while the algorithm in [11] had to resort to a �rst-order
search direction far from a solution in order to guarantee global convergence.
Such a hybrid scheme could give slow convergence if a poor initial point is
chosen.

The algorithm developed by Panier and Tits in [12], and analyzed under
weaker assumptions by Qi and Wei in [17], has enjoyed a great deal of
success in practice as implemented in the FFSQP/CFSQP [23, 10] software
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packages. We will refer to their algorithm throughout this paper as FSQP.
In [12], instead of directly perturbing QP 0(x;H), tilting is accomplished by
replacing d 0 with the convex combination d = (1��)d 0+�d1, where d1 2 Rn
is an (essentially) arbitrary feasible descent direction. To preserve the local
convergence properties of the SQP iteration, � = �(d 0) 2 [0; 1] is computed
so that d approaches d 0 fast enough (in particular, �(d 0) = O(kd 0k2)) as
the solution is approached. Finally, in order to avoid the Maratos e�ect
and guarantee a superlinear rate of convergence, a second order correction
~d = ~d(x; d;H) 2 Rn is used to \bend" the search direction. That is, an
Armijo-type search is performed along the arc x + td + t2 ~d. In [12], the
directions d1 and ~d are both computed via QPs, which we will refer to as,
respectively, QP 1(x) and gQP (x; d;H). It is observed in [12] that ~d could
instead be taken as the solution of a linear least squares problem without
a�ecting the asymptotic convergence properties.

From the point of view of computational cost, the main drawback of
algorithm FSQP is the need to solve three QPs (or two QPs and a linear
least squares problem) at each iteration. Clearly, for many problems it
would be desirable to reduce the number of QPs at each iteration while
preserving the generation of feasible iterates as well as the global and local
convergence properties. This is especially critical in the context of those
large-scale nonlinear programs for which the time spent solving the QPs
dominates that used to evaluate the functions.

In this paper, we consider a perturbation of QP 0(x;H) which allows
more control over the tilting. Speci�cally, given x 2 X, 0 < H = HT 2
Rn�n , and 0 � � 2 R, let (d̂; 
̂) = (d̂(x;H; �); 
̂(x;H; �)) 2 Rn �R solve the
QP

min 1
2hd̂;Hd̂i+ 
̂

s.t. hrf(x); d̂i � 
̂;

gj(x) + hrgj(x); d̂i � 
̂ � �; j = 1; : : : ;m:

dQP (x;H; �)
In Section 3, we show that d̂ is a descent direction and, for � > 0, d̂ is
a feasible direction. Note that for � � 1, the search direction is a special
case of those computed in Polak's second-order feasible direction algorithms
(again, see Section 4.4 in the book [14]). Further, it is not di�cult to show
that when � � 0, we recover the SQP direction, i.e. d̂(x;H; 0) = d 0(x;H).
Large values of the parameter �, which we will call the tilting parameter,
emphasize feasibility, while small values of � emphasize descent.

In [1], Birge, Qi, and Wei propose a feasible SQP algorithm based ondQP (x;H; �). Their motivation for introducing the right-hand-side constraint
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perturbation and the tilting parameters (they use a vector of parameters,
one for each constraint) is, like us, to obtain a feasible search direction.
Speci�cally, motivated by the nature of the application problems they are
interested in tackling, their goal is to ensure a full step of one is accepted in
the line search as early as is possible (so that costly line searches are avoided
for most iterations). To this end, their tilting parameters start out positive
and, if anything, increase when a step of one is not accepted. A side-e�ect of
such an updating scheme is that the algorithm cannot achieve a superlinear
rate of convergence, as the authors point out in Remark 5.1 of [1].

In the present paper, our goal is to compute a feasible descent direc-
tion which approaches the true SQP direction fast enough so as to ensure
superlinear convergence. Furthermore, we would like to do this with as lit-
tle computation per iteration as possible. While computationally the most
expensive, algorithm FSQP of [12] has the convergence properties and prac-
tical performance we seek. Motivated by this observation, we now exam-
ine the relevant properties of the search directions generated by algorithm
FSQP on the sequence of iterates fxkg. For x 2 X, de�ne

I(x)
�
= f j j gj(x) = 0 g;

the index set of active constraints at the point x. In [12], in order for
the line-search (with the objective function f(x) used directly as the merit
function) to be well-de�ned, and in order to preserve global and fast local
convergence, the sequence of search directions fdkg generated by algorithm
FSQP is constructed so that the following properties hold:

1. dk = 0 if xk is a KKT point for (P ),

2. hrf(xk); dki < 0 if xk is not a KKT point,

3. hrgj(xk); dki < 0, for all j 2 I(xk) if xk is not a KKT point, and

4. dk = d 0k +O(kd 0k k2):
We will show in Section 3 that for Hk = HT

k > 0 and �k � 0, d̂k =

d̂(xk;Hk; �k) automatically satis�es the �rst two properties. Furthermore,
d̂k satis�es the third property if �k > 0. Ensuring the fourth property is
satis�ed requires a bit more care.

In the algorithm presented in Section 2, at iteration k, we compute the
search direction viadQP (xk;Hk; �k) and the tilting parameter �k is iteratively
adjusted to ensure the four properties are satis�ed. The resultant algorithm
will be shown to be locally superlinearly convergent and globally convergent
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without resorting to a �rst-order direction far from the solution. Further,
the generation of a new iterate will only require the solution of one QP and
two closely related linear least squares problems. Note that, in contrast with
the algorithm presented in [1], our tilting parameter starts out positive and
asymptotically approaches zero.

Recently there has been a great deal of interest in interior point algo-
rithms for nonconvex nonlinear programming (see, e.g., [4, 5, 21, 3, 13, 20]).
Such algorithms generate feasible iterates and typically only require the solu-
tion of linear systems of equations in order to generate new iterates. Perfor-
mance of interior point algorithms tends to be closely related to the careful
iterative reduction of a barrier parameter. Essentially, search directions are
computed based upon quadratic models of logarithmic barrier functions. On
the other hand, SQP-type methods, such as the algorithm proposed here,
base search directions upon a quadratic model of the original problem. Thus
SQP-type methods should, in general, generate better search directions than
interior point methods at the expense of possibly more work per iteration.
Of course, work is still very much in its infancy for interior point nonconvex
nonlinear programming algorithms. Eventually, such algorithms may be an
attractive alternative, especially for very large problems.

In Section 2, we present the details of our new FSQP algorithm. In
Section 3, we show that under mild assumptions our iteration is globally
convergent, as well as locally superlinearly convergent. The algorithm has
been implemented and tested and we show in Section 4 that the numerical
results are quite promising. Finally, in Section 5, we o�er some concluding
remarks and discuss some extensions to the algorithm which are currently
being explored.

2 Algorithm

We begin by making a few assumptions that will be in force throughout.

Assumption 1: The set X is non-empty.

Assumption 2: The functions f : Rn ! R and gj : R
n ! R, j = 1; : : : ;m,

are continuously di�erentiable.

Assumption 3: For all x 2 X with I(x) 6= ;, the set frgj(x) j j 2 I(x)g
is linearly independent.

A point x 2 Rn is said to be a Karush-Kuhn-Tucker (KKT) point for
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the problem (P ) if there exist scalars (KKT multipliers) �j, j = 1; : : : ;m,
satisfying 8>>>>><>>>>>:

rf(x) +
mX
j=1

�jrgj(x) = 0;

gj(x) � 0; j = 1; : : : ;m;

�jgj(x) = 0 and �j � 0; j = 1; : : : ;m:

(1)

It is well known that, under our assumptions, a necessary condition for
optimality for a point x 2 X is that it be a KKT point, i.e. satisfy the KKT
conditions.

Note that, with x 2 X, dQP (x;H; �) is always consistent: (0; 0) satis�es
the constraints. Indeed, dQP (x;H; �) always has a unique solution (d̂; 
̂) (see
Lemma 1 below) which, by convexity, is its unique KKT point; i.e. there
exists multipliers �̂ 2 R and �̂j , j = 1; : : : ;m, which, together with (d̂; 
̂),
satisfy8>>>>>>>>>>>>><>>>>>>>>>>>>>:

�
Hd̂
1

�
+ �̂

� rf(x)
�1

�
+

mX
j=1

�̂j
� rgj(x)
��

�
= 0;

hrf(x); d̂i � 
̂;

gj(x) + hrgj(x); d̂i � 
̂ � �; 8j = 1; : : : ;m;

�̂
�
hrf(x); d̂i � 
̂

�
= 0 and �̂ � 0;

�̂j
�
gj(x) + hrgj(x); d̂i � 
̂ � �

�
= 0 and �̂j � 0; 8j = 1; : : : ;m:

(2)

A simple consequence of the �rst equation in (2), which will be used through-
out our analysis, is an a�ne relationship amongst the multipliers, namely

�̂+ � �
mX
j=1

�̂j = 1: (3)

The parameter � will be iteratively adjusted, i.e. � = �k, to ensure that
d̂k = d̂(xk;Hk; �k) has the necessary properties. At iteration k, choosing
�k > 0 is su�cient to guarantee the �rst three properties are satis�ed. As
it turns out, though, we will need something a little stronger than this. In
order to ensure that, away from a solution, there is adequate tilting into
the feasible set (hence the step size does not collapse) we strengthen the
positivity requirement to force �k to be bounded away from zero away from
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KKT points of (P ). Finally, the fourth property requires that �k ! 0, as
k ! 1, su�ciently fast as d 0(xk;Hk) ! 0. Of course, we do not want to
compute d 0k = d 0(xk;Hk), as is done in [11], so we must rely on some other
information to update �k.

Given an estimate Ik of the active set I(xk), we can compute an estimatecd 0k = cd 0(xk;Hk; Ik) of d
0(xk;Hk) by solving the equality constrained QP

min 1
2hcd 0;Hk

cd 0i+ hrf(xk);cd 0i
s.t. gj(xk) + hrgj(xk);cd 0i = 0; j 2 Ik;

LS0(xk;Hk; Ik)

which is equivalent (after a change of variables) to solving a linear least
squares problem.1 Let Îk be the set of active constraints, not including the
\objective descent" constraint hrf(xk); d̂ki � 
̂k, for dQP (xk;Hk; �k), i.e.

Îk
�
= f j j gj(xk) + hrgj(xk); d̂ki = 
̂k � �k g:

We will show in Section 3 that cd 0(xk;Hk; Îk�1) = d 0(xk;Hk) for all k su�-
ciently large. Furthermore, it will be shown that, when d̂k is small, choosing

�k / kcd 0(xk;Hk; Îk�1)k2

will be su�cient to establish global and 2-step superlinear convergence.
Proper choice of the proportionality constant (Ck in the algorithm state-
ment below), while not important in the convergence analysis, is critical for
satisfactory numerical performance. This will be discussed in Section 4.

In [12], the Maratos correction ~dk is taken as the solution of the QP

min 1
2hd̂k + ~d;Hk(d̂k + ~d)i+ hrf(xk); d̂k + ~di

s.t. gj(xk + d̂k) + hrgj(xk); d̂k + ~di � �kd̂kk� ; j = 1; : : : ;m;gQP (xk; d̂k;Hk)
if it exists and has norm less than minfkd̂kk; Cg, where � 2 (2; 3) and C
large are given. Otherwise, ~dk = 0. In Section 1, it was mentioned that a
linear least squares problem could be used instead of a QP to compute a
version of the Maratos correction ~d with the same asymptotic convergence
properties. Given that our goal is to reduce the computational cost per
iteration, it makes sense to use such an approach here. Thus, we take
~dk = ~d(xk; d̂k;Hk; Îk) as the solution, if it exists and is not too large, of

1Which is, in turn, equivalent to solving a square system of linear equations in n+ jÎ0k j
variables.
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the equality constrained QP (equivalent to a least squares problem after a
change of variables)

min hd̂k + ~d;Hk(d̂k + ~d)i+ hrf(xk); d̂k + ~di
s.t. gj(xk + d̂k) + hrgj(xk); ~di = �kd̂kk� ; 8j 2 Îk;fLS(xk; d̂k;Hk; Îk)

where � 2 (2; 3); a direct extension of an alternative considered in [11]. Such
an objective, as compared to the pure least squares objective k ~dk2, should
improve numerical performance without signi�cantly increasing computa-
tional requirements (or a�ecting the convergence analysis). In the case thatfLS(xk; d̂k;Hk; Îk) is inconsistent, or the computed solution ~dk is too large,

we could simply set ~dk = 0. Note that one should use gQP (xk; d̂k;Hk) for
problems in which function evaluations are expensive compared to the solu-
tion of a QP since it provides a better model of (P ).

The proposed algorithm is as follows.

Algorithm FSQP0

Parameters: � 2 (0; 12), � 2 (0; 1), � 2 (2; 3), �` > 0, 0 < C � C;
�D > 0.

Data: x0 2 X, 0 < H0 = HT
0 2 Rn�n , 0 < �0 2 R.

Step 0 - Initialization. set k  0.

Step 1 - Computation of search arc.

(i). compute (d̂k; 
̂k) = (d̂(xk;Hk; �k); 
̂(xk;Hk; �k)); the active
set Îk, and the associated multipliers �̂k 2 R, �̂k 2 Rm .
if (d̂k = 0) then stop.

(ii). compute ~dk = ~d(xk; d̂k;Hk; Îk) if it exists and satis�es
k ~dkk � kd̂kk. Otherwise, set ~dk = 0.

Step 2 - Arc search. compute tk, the �rst number t in the sequence
f1; �; �2; : : : g satisfying

f(xk + td̂k + t2 ~dk) � f(xk) + �thrf(xk); d̂ki;
gj(xk + td̂k + t2 ~dk) � 0; j = 1; : : : ;m:

Step 3 - Updates.

(i). set xk+1  xk + tkd̂k + t2k
~dk.
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(ii). compute a new symmetric positive de�nite estimate Hk+1

to the Hessian of the Lagrangian.

(iii). select Ck+1 2 [C;C].

� if (kd̂kk < �`) then

� compute, if possible,2 dd 0k+1 = cd 0(xk+1;Hk+1; Îk), and

the associated multipliers[�0k+1 2 RjÎk j:
� if

�dd 0k+1 exists and kdd 0k+1k � �D and [�0k+1 � 0
�
then set

�k+1  Ck+1 � kdd 0k+1k2:
� else set �k+1  Ck+1 � kd̂kk2:

� else set �k+1  Ck+1 � �2` .
(iv). set k  k + 1 and goto Step 1.

3 Convergence Analysis

Much of our analysis, especially the local analysis, will be devoted to estab-
lishing the relationship between d̂(x;H; �) and the SQP direction d 0(x;H).
As a consequence, we will be referring to the KKT conditions for QP 0(x;H)
in several places. The direction d 0 = d 0(x;H) is a KKT point for QP 0(x;H)
if there exists a multiplier �0 2 Rm satisfying8>>>>><>>>>>:

Hd 0 +rf(x) +
mX
j=1

�0;jrgj(x) = 0;

gj(x) + hrgj(x); d 0i � 0; j = 1; : : : ;m;

�0;j � �gj(x) + hrgj(x); d 0i� = 0 and �0;j � 0; j = 1; : : : ;m:

(4)

Further, an estimate cd 0 = cd 0(x;H; I) is a KKT point for LS0(x;H; I) if

there exists a multiplierc�0 2 Rm satisfying8><>:
Hcd 0 +rf(x) +X

j2I

c�0jrgj(x) = 0;

gj(x) + hrgj(x);cd 0i = 0; j 2 I:
(5)

Note that the components of c�0 for j 62 I play no role in the optimality

conditions. We chose to always use c�0 2 Rm , independent of the size of I,
for notational convenience and consistency in indexing.

2That is, if LS0(xk+1; Hk+1; Îk) is non-degenerate.
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3.1 Global Convergence

In this section we establish that, under mild assumptions, our proposed
algorithm FSQP0 generates a sequence of iterates fxkg with the property
that all accumulation points are KKT points for the problem (P ). We begin
by establishing some properties of the tilted SQP search direction d̂(x;H; �).

Lemma 1. Given H = HT > 0, x 2 X, and � � 0, d̂(x;H; �) is well-

de�ned and (d̂; 
̂) = (d̂(x;H; �); 
̂(x;H; �)) is the unique KKT point ofdQP (x;H; �). Furthermore, for H = HT > 0 and � � 0 �xed, d̂(x;H; �)
is bounded over bounded subsets of X.

Proof. First note that the feasible set for dQP (x;H; �) is non-empty, since
(d̂; 
̂) = (0; 0) is always feasible. Now consider the cases � = 0 and � > 0
separately. From (2) and (4), it is clear that, if � = 0, then (d̂; 
̂) is a

solution to dQP (x;H; 0) if, and only if, d̂ is a solution of QP 0(x;H) and

̂ = hrf(x); d̂i. It is well known that, under our assumptions, d 0(x;H) is
well-de�ned, unique, and continuous as a function of x. Thus, the Lemma
follows immediately for this case. Suppose now that � > 0. In this case,
(d̂; 
̂) is a solution of dQP (x;H; �) if, and only if, d̂ solves the unconstrained
problem

min
1

2
hd̂;Hd̂i+max

�
hrf(x); d̂i; 1

�
� max
j=1;::: ;m

fgj(x) + hrgj(x); d̂ig
�
: (6)

and


̂ = max

�
hrf(x); d̂i; 1

�
� max
j=1;::: ;m

fgj(x) + hrgj(x); d̂ig
�
:

Since the function being minimized in (6) is strictly convex and radially
unbounded, it follows that (d̂(x;H; �); 
̂(x;H; �)) is well-de�ned and unique

as a global minimizer for the convex problem dQP (x;H; �), and thus unique
as a KKT point for that problem. Boundedness of d̂(x;H; �) over bounded
subsets of X follows from the �rst equation in (2), H > 0, our regularity
assumptions, and (3), which shows (since � > 0) that the multipliers are
bounded.

Lemma 2. Given H = HT > 0 and � � 0

(i). 
̂(x;H; �) � 0 for all x 2 X. Moreover, 
̂(x;H; �) = 0 if, and only if,

d̂(x;H; �) = 0.

(ii). d̂(x;H; �) = 0 if, and only if, x is a KKT point for (P ).
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Proof. To prove (i), note that since (d̂; 
̂) = (0; 0) is always feasible fordQP (x;H; �), the optimal value of the QP is non-positive. Further, since
H > 0, the quadratic term in the objective is non-negative, which implies

̂(x;H; �) � 0. Now suppose d̂(x;H; �) = 0, then feasibility of the �rst QP
constraint implies 
̂(x;H; �) = 0. Finally, suppose 
̂(x;H; �) = 0. Since
x 2 X, H > 0, and � � 0, it is clear that d̂ = 0 is both feasible and achieves
the minimum value of the objective. Thus, uniqueness gives d̂(x;H; �) = 0
and part (i) is proved.

Suppose now that d̂(x;H; �) = 0. Then 
̂(x;H; �) = 0 and by (2) there
exists multipliers �̂ 2 Rm and 0 � �̂ 2 R satisfying8>>>>><>>>>>:

�̂rf(x) +
mX
j=1

�̂jrgj(x) = 0;

gj(x) � 0; 8j = 1; : : : ;m;

�̂jgj(x) = 0 and �̂j � 0; 8j = 1; : : : ;m:

We begin by showing that �̂ > 0. Proceeding by contradiction, suppose
�̂ = 0, then by (3) we have

mX
j=1

�̂j > 0:

Note that,

Î
�
= f j j gj(x) + hrgj(x); d̂(x;H; �)i = 
̂(x;H; �) � � g
= f j j gj(x) = 0 g = I(x):

Thus, by the complementary slackness condition of (2) and the optimality
conditions above,

0 =

mX
j=1

�̂jrgj(x) =
X

j2I(x)

�̂jrgj(x):

By Assumption 3, if I(x) 6= ;, then this sum vanishes only if �̂j = 0; for
all j 2 I(x), but we saw above that this is not the case. Hence we have
a contradiction and it follows that �̂ > 0. It is now immediate that x is a
KKT point for (P ) with multipliers �j = �̂j=�̂; j = 1; : : : ;m:

Finally, to prove the necessity portion of part (ii) note that if x is a
KKT point for (P ), then (1) shows that (d̂; 
̂) = (0; 0) is a KKT point

for dQP (x;H; �), with �̂ = (1 + �
P

j �j)
�1 and �̂j = �j(1 + �

P
j �j)

�1,
j = 1; : : : ;m: Uniqueness of such points (Lemma 1) gives the result.
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The next two lemmas establish that the line search in Step 2 of Algorithm
FSQP0 is well de�ned.

Lemma 3. Suppose x 2 X is not a KKT point for (P ), H = HT > 0, and
� > 0. Then

(i). hrf(x); d̂(x;H; �)i < 0; and

(ii). hrgj(x); d̂(x;H; �)i < 0; for all j 2 I(x):
Proof. Both follow immediately from Lemma 2 and the fact that d̂(x;H; �)

and 
̂(x;H; �) must satisfy the constraints in dQP (x;H; �).
Lemma 4. If �k = 0, then xk is a KKT point for (P ) and the algorithm will

stop in Step 1(i) at iteration k. On the other hand, whenever the algorithm

does not stop in Step 1(i), the line search is well de�ned, i.e. Step 2 yields

a step tk = �j for some �nite j = j(k).

Proof. Suppose that �k = 0. Then k > 0 and, by Step 3(iii), either cd 0k = 0

with c�0k � 0, or d̂k�1 = 0. The latter case cannot hold, as the stopping
criterion in Step 1(i) would have stopped the algorithm at iteration k � 1.

On the other hand, if cd 0k = 0 with c�0k � 0, then in view of the optimality
conditions (5), and the fact that xk is always feasible for (P ), we see that
xk is a KKT point for (P ) with multipliers

�j =

8<: c�0kj ; j 2 Îk�1;
0; otherwise:

Thus, by Lemma 2, d̂k = 0 and the algorithm will stop in Step 1(i). The
�rst claim is thus proved. Also, we have established that �k > 0 whenever
Step 2 is reached. The second claim now follows immediately from Lemma 3
and Assumption 2.

The previous lemmas imply that the algorithm is well-de�ned. In addi-
tion, Lemma 2 shows that if Algorithm FSQP0 generates a �nite sequence
terminating at the point xN , then xN is a KKT point for the problem (P ).
We now concentrate on the case in which an in�nite sequence fxkg is gen-
erated, i.e. the algorithm never satis�es the termination condition in Step

1(i). Note that, in view of Lemma 4, we may assume throughout that

�k > 0; 8k 2 N: (7)

13



Given an in�nite index set K, we will use the notation

xk
k2K�! x�

to mean
xk ! x� as k !1; k 2 K:

Lemma 5. Suppose K � N is an in�nite index set such that xk
k2K�! x� 2 X,

Hk
k2K�! H� > 0, f�kg is bounded on K, and d̂k

k2K�! 0: Then Îk � I(x�),
for all k 2 K, k su�ciently large and the QP multiplier sequences f�̂kg and
f�̂kg are bounded on K. Further, given any accumulation point �� � 0 of

f�kgk2K, (0; 0) is the unique solution of dQP (x�;H�; ��):

Proof. It follows immediately from non-negativity and (3) that f�̂kgk2K is
bounded. Assumption 2 allows us to conclude that frf(xk)gk2K is bounded.

Lemma 2 and the �rst constraint in dQP (xk;Hk; �k) give

hrf(xk); d̂ki � 
̂k � 0; 8k 2 K:

Thus, 
̂k
k2K�! 0. Next, we will show that Îk � I(x�), for all k 2 K, k

su�ciently large. Consider j0 62 I(x�). There exists �j0 > 0 such that
gj0(xk) � ��j0 < 0; for all k 2 K, k su�ciently large. In view of Assump-

tion 2, and since d̂k
k2K�! 0, 
̂k

k2K�! 0, and f�kg is bounded on K, it is clear
that

gj0(xk) + hrgj0(xk); d̂ki � 
̂k � �k � �
�j0

2
< 0;

i.e. j0 62 Îk, for all k 2 K, k su�ciently large. Hence, Îk � I(x�), for all
k 2 K, k su�ciently large, which proves the �rst claim of the Lemma.

Boundedness of f�̂kgk2K has been proved. To prove that of f�̂kgk2K,
using complementary slackness, and the �rst equation in (2), write

Hkd̂k + �̂krf(xk) +
X

j2I(x�)

�̂jkrgj(xk) = 0: (8)

Proceeding by contradiction, suppose that f�̂kgk2K is unbounded. Without
loss of generality, assume that k�̂kk1 > 0, for all k 2 K and de�ne for all
k 2 K

�jk
�
=

�̂jk
k�̂kk1

2 [0; 1]:

14



Note that, for all k 2 K, k�kk1 = 1: Dividing (8) by k�̂kk1 and taking
limits on an appropriate subsequence of K, it follows thatX

j2I(x�)

��;jrgj(x�) = 0;

for some ��;j , j 2 I(x�), where k��k1 = 1. As this contradicts Assumption
3, it is established that f�̂kgk2K is bounded.

To complete the proof, let K0 � K be an in�nite index set such that

�k
k2K

0�! �� and assume without loss of generality that �̂k
k2K

0�! �̂� and

�̂k
k2K

0�! �̂�. Taking limits in the optimality conditions (2) shows that, indeed,

(d̂; 
̂) = (0; 0) is a KKT point for dQP (x�;H�; ��) with multipliers �̂� and
�̂�. Finally, uniqueness of such points (Lemma 1) proves the result.

Before proceeding, we make an assumption concerning the estimates Hk

of the Hessian of the Lagrangian.

Assumption 4: There exists constants 0 < �1 � �2 such that, for all k,

�1kdk2 � hd;Hkdi � �2kdk2; 8d 2 Rn :

Lemma 6. The sequences fHkg and f�kg generated by Algorithm FSQP0

are bounded. Further, the sequence fd̂kg is bounded on subsequences on

which fxkg is bounded.
Proof. That fHkg is bounded follows immediately from Assumption 4. Step
3(iii) of Algorithm FSQP0 ensures that the sequence f�kg is bounded. Fi-
nally, it then follows from Lemma 1 that fd̂kg is bounded on subsequences
on which fxkg is bounded.

Lemma 7. If K � N is an in�nite index set such that d̂k
k2K�! 0, then all

accumulation points of fxkgk2K are KKT points for (P ).

Proof. Suppose K0 � K is an in�nite index set on which xk
k2K

0�! x� 2 X. In

view of Lemma 6, assume, without loss of generality that Hk
k2K

0�! H� > 0

and �k
k2K

0�! �� � 0. Lemma 5 shows that (0; 0) is the unique solution ofdQP (x�;H�; ��). Thus, in view of Lemma 2, x� is a KKT point for (P ).

We now state and prove the main result of this section.
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Theorem 1. Under the stated assumptions, Algorithm FSQP0 generates

a sequence fxkg for which all accumulation points are KKT points for (P ).

Proof. Suppose K � N is an in�nite index set such that xk
k2K�! x�. In

view of Lemma 6, we may assume without loss of generality that d̂k
k2K�! d̂�,

�k
k2K�! �� � 0, and Hk

k2K�! H� > 0. The cases �� = 0 and �� > 0 are
considered separately.

Suppose �rst that �� = 0. Then, by Step 3(iii), either cd 0k k2K�! 0 withc�0k � 0, for all k 2 K, k large enough, or d̂k�1
k2K�! 0. If the latter case holds,

it is then clear that xk�1
k2K�! x�, since kxk � xk�1k � 2kd̂k�1k k2K�! 0. Thus,

by Lemma 7, x� is a KKT point for (P ). Now suppose instead that cd 0k k2K�! 0

with c�0k � 0, for all k 2 K, k large enough. Using an argument very similar

to that used in Lemma 5, we can show that fc�0kgk2K is a bounded sequence

and Îk�1 � I(x�), for all k 2 K, k su�ciently large. Thus, taking limits in
(5) on an appropriate subsequence of K shows that x� is a KKT point for
(P ).

Now consider the case �� > 0. We will show that d̂k
k2K�! 0. Proceeding

by contradiction, without loss of generality suppose there exists d > 0 such
that kd̂kk � d for all k 2 K. Thus, from non-positivity of the optimal value

of the objective function in dQP (xk;Hk; �k) (since (0; 0) is always feasible)
and Assumption 4, we see that


̂k � �1
2
�1d

2 < 0; 8k 2 K:
Further, in view of (7) and since �� > 0, there exists � > 0 such that

�k > �; 8k 2 K:
From the constraints of dQP (xk;Hk; �k), it follows that

hrf(xk); d̂ki � �1
2
�1d

2 < 0; 8k 2 K;
and

gj(xk) + hrgj(xk); d̂ki � �1
2
�1d

2� < 0; 8k 2 K;
j = 1; : : : ;m: Hence, using Assumption 2, it is easily shown that there exists
� > 0 such that for all k 2 K, k large enough,

hrf(xk); d̂ki � ��;
hrgj(xk); d̂ki � ��; 8j 2 I(x�)

gj(xk) � ��; 8j 2 f1; : : : ;mg n I(x�):
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The rest of the contradiction argument establishing d̂k
k2K�! 0 follows exactly

the proof of Proposition 3.2 in [11]. Finally, it then follows from Lemma 7
that x� is a KKT point for (P ).

3.2 Local Convergence

While the details are often quite di�erent, overall the analysis in this section
is inspired by and occasionally follows that of Panier and Tits in [11, 12]. In
order to establish a rate of convergence for the algorithm, we �rst strengthen
the regularity assumptions.

Assumption 20: The functions f : Rn ! R and gj : R
n ! R, j = 1; : : : ;m,

are three times continuously di�erentiable.

A point x� is said to satisfy the second order su�ciency conditions with

strict complementary slackness for (P ) if there exists a multiplier vector
�� 2 Rm such that

� The pair (x�; ��) satis�es (1), i.e. x� is a KKT point for (P ),

� r2
xxL(x

�; ��) is positive de�nite on the subspace

fh j hrgj(x�); hi = 0; 8j 2 I(x�)g;

� and ��;j > 0 for all j 2 I(x�) (strict complementary slackness).

In order to guarantee that the entire sequence fxkg converges to a KKT
point x�, we make the following assumption. Recall that we have already
established, under weaker assumptions, that every accumulation point of
fxkg is a KKT point for (P ).

Assumption 5: The sequence fxkg has an accumulation point x� which
satis�es the second order su�ciency conditions with strict complementary
slackness.

It is well known, and not di�cult to show, that Assumption 5 guarantees
the entire sequence converges. For a proof see, e.g., Proposition 4.1 in [11].
We state the result here without proof.

Lemma 8. The entire sequence generated by Algorithm FSQP0 converges

to a point x� satisfying the second order su�ciency conditions with strict

complementary slackness.
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From this point forward, �� will denote the (unique) multiplier vector
satisfying the KKT conditions for (P ) at x�. Further, we need to strengthen
the assumptions concerning the sequence fHkg.

Assumption 6: The sequence fHkg converges to some H� = H�T > 0.

In order to establish a rate of convergence, we will show that our se-
quence of tilted SQP directions approaches the true SQP direction, for which
asymptotic rates of convergence are well known, su�ciently fast. In order
to do so, de�ne d 0k = d 0(xk;Hk), where xk and Hk are as computed by
Algorithm FSQP0 . Further, for each k, de�ne �0k 2 Rm as a multiplier

vector satisfying (4) at d 0k and let I0k
�
= f j j gj(xk) + hrgj(xk); d 0k i = 0 g:

The following Lemma is proved in [11, 12] under identical assumptions.

Lemma 9.

(i) d 0k ! 0,

(ii) �0k ! ��.

(iii) For all k su�ciently large, the following two equalities hold

I0k = f j j �0;jk > 0 g = I(x�):

Before proceeding, we state one more well-known result that will be
called upon several times throughout the balance of the analysis. First, we
make the de�nitions

Rk
�
= [ rgj(xk) : j 2 I(x�) ] ;

gk
�
= [ gj(xk) : j 2 I(x�) ]T :

Lemma 10. Under the stated assumptions, the matrix�
Hk Rk

RT
k 0

�
is uniformly invertible, i.e. it is invertible for all k and its singular values

are bounded away from 0 for all k su�ciently large.

We now establish that the entire tilted SQP direction sequence converges
to 0. In order to do so, we establish that d̂(x;H; �) is continuous in a
neighborhood of (x�;H�; ��), for any �� � 0. Complicating the analysis is
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the fact that we have yet to establish that the sequence f�kg does, in fact,
converge. Given �� � 0, de�ne the set

N�(��)
�
=

�� rf(x�)
�1

�
;

� rgj(x�)
���

�
; j 2 I(x�)

�
:

Lemma 11. Given any �� � 0, the set N�(��) is linearly independent.

Proof. Note that, in view of Lemma 2, d̂� = d̂(x�;H�; ��) = 0. Now suppose
the Lemma does not hold, i.e. suppose there exists scalars �j , j 2 f0g[I(x�),
not all zero, such that

�0
� rf(x�)

�1
�
+

X
j2I(x�)

�j
� rgj(x�)

���
�
= 0: (9)

In view of Assumption 3, �0 6= 0 and the scalars �j are unique modulo a
scaling factor. This uniqueness, the fact that d̂� = 0, and the optimality
conditions (2) imply that �̂� = 1 and

�̂�;j =

8<:
�j

�0
j 2 I(x�)

0 else,

j = 1; : : : ;m are KKT multipliers for dQP (x�;H�; ��). Thus, in view of (3),

�� �
X

j2I(x�)

�j

�0
= 0:

But this contradicts (9), which gives

�� �
X

j2I(x�)

�j

�0
= �1;

hence N�(��) is linearly independent.

Lemma 12. Let �� � 0 be an accumulation point of f�kg. Then (d̂�; 
̂�) =

(0; 0) is the unique solution of dQP (x�;H�; ��) and the second order su�-

ciency conditions hold, with strict complementary slackness.
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Proof. In view of Lemma 2,dQP (x�;H�; ��) has (d̂�; 
̂�) = (0; 0) as its unique
solution. De�ne the Lagrangian function L̂� : Rn � R � R � Rm ! R fordQP (x�;H�; ��) as

L̂�(d̂; 
̂; �̂; �̂) =
1

2
hd̂;H�d̂i+ 
̂ + �̂

�
hrf(x�); d̂i � 
̂

�
+

mX
j=1

�̂j
�
gj(x

�) + hrgj(x�); d̂i � 
̂��
�
:

Suppose �̂� 2 R and �̂� 2 Rm are multipliers satisfying (2) at (d̂�; 
̂�).

Let j = 0 be the index for the �rst constraint in dQP (x�;H�; ��), i.e.
hrf(x�); d̂i � 
̂. Note that since (d̂�; 
̂�) = (0; 0), the active constraint

index set3 Î� for dQP (x�;H�; ��) is equal to I(x�), the active constraint in-
dex set for (P ) at x�, in addition to j = 0. Thus the set of active constraint

gradients for dQP (x�;H�; ��) is N�(��).

Now consider the Hessian of the Lagrangian for dQP (x�;H�; ��), i.e. the
second derivative with respect to the �rst two variables (d̂; 
̂),

r2L̂�(0; 0; �̂�; �̂�) =

�
H� 0
0 0

�
;

and given an arbitrary h 2 Rn+1 , decompose it as h = (yT ; �)T , where
y 2 Rn and � 2 R. Then clearly,

hTr2L̂�(0; 0; �̂�; �̂�)h � 0; 8h
and for h 6= 0, hTr2L̂�(0; 0; �̂�; �̂�)h = yTH�y is zero if, and only if, y = 0
and � 6= 0. Since � rf(x�)

�1
�T �

0
�

�
= �� 6= 0;

it then follows that r2L̂�(0; 0; �̂�; �̂�) is positive de�nite on N�(��)?, the

tangent space to the active constraints for dQP (x�;H�; ��) at (0; 0). Thus,
it is established that the second order su�ciency conditions hold. We next
show that strict complementary slackness holds.

First, �̂� > 0. Indeed, suppose to the contrary that �̂� = 0. In view
of (3), this implies there exists an index j0 2 Î� such that �̂�;j

0

> 0. Re-
calling that Î� = I(x�) [ f0g and invoking complementary slackness for

3We are temporarily abandoning our convention of omitting the objective descent con-
straint in Î for this argument only.
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dQP (x�;H�; ��), the �rst equation in (2) givesX
j2I(x�)

�̂�;jrgj(x�) = 0:

As �̂�;j
0

> 0 for some j0 2 Î�, this contradicts Assumption 3. Next, a well-
known consequence of Assumption 3 is that the KKT multipliers ��;j for (P )
at x� are unique. Thus, it follows from the optimality conditions (2) and
(1) that �̂�;j = �̂� ���;j ; j = 1; : : : ;m: Further, it follows from Assumption 5
that �̂�;j > 0; j 2 I(x�), i.e. strict complementary slackness is satis�ed bydQP (x�;H�; ��) at (0; 0).

Lemma 13. If K is a subsequence on which f�kg converges, say to �� � 0,

then �̂k
k2K�! �̂� > 0 and �̂k

k2K�! �̂� � ��, where �̂� = �̂�(��) is the KKT

multiplier for the �rst constraint of dQP (x�;H�; ��). Finally, d̂k ! 0 and


̂k ! 0.

Proof. In view of Lemmas 11 and 12, we may invoke a result due to Robinson
(Theorem 2.1 in [18]) to conclude

(d̂k; 
̂k)
k2K�! (0; 0); �̂k

k2K�! �̂�; and
�̂k
�̂�

k2K�! ��:

It is important to note that �̂� is a function of ��, i.e. �̂� = �̂�(��). Now
suppose that the last claim of the lemma does not hold. If d̂k 6! 0, there
exists an in�nite index set K � N and d > 0 such that kd̂kk � d; for all
k 2 K. As f�kgk2K is bounded, there exists an in�nite index set K0 � K and

�� � 0 such that �k
k2K

0�! ��. By what we showed above, d̂k
k2K

0�! 0, which is a
contradiction, hence d̂k ! 0. It immediately follows from the �rst constraint
of dQP (xk;Hk; �k) that 
̂k ! 0.

Lemma 14. For all k su�ciently large, Îk = I(x�).

Proof. Since f�kg is bounded and (d̂k; 
̂k) ! (0; 0), in view of Lemma 5,
Îk � I(x�), for all k su�ciently large. Now suppose it does not hold that
Îk = I(x�) for all k su�ciently large. Thus, there exists j0 2 I(x�) and an
in�nite index set K � N such that j0 62 Îk, for all k 2 K. Now, in view of
Lemma 6, there exists an in�nite index set K0 � K and �� � 0 such that

�k
k2K

0�! ��: Since j0 2 I(x�), Assumption 5 guarantees ��;j
0

> 0. Further,

Lemma 13 shows that �̂j
0

k

k2K
0�! �̂�(��) � ��;j0 > 0: Therefore, �̂j

0

k > 0 for all k

su�ciently large, k 2 K0, which, by complementary slackness, implies j0 2 Îk
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for all k 2 K0 large enough. Since K0 � K, this is a contradiction, hence
Îk = I(x�); for all k su�ciently large.

Given a vector � 2 Rm , de�ne the notation

�+
�
= [ �j : j 2 I(x�) ]T :

Note that, in view of Lemma 9(iii), for k large enough, the optimality
conditions (4), yield�

Hk Rk

RT
k 0

� d 0k

(�0k)
+

!
= �

� rf(xk)
gk

�
: (10)

Lemma 15. For all k su�ciently large, cd 0k = d 0k .

Proof. In view of Lemma 14 and the optimality conditions (5), the estimatecd 0k and its corresponding multiplier vectorc�0k (recall that for ease of notation
we de�ned c�0k 2 Rm) satisfy

�
Hk Rk

RT
k 0

�0@ cd 0k
(c�0k)+

1A = �
� rf(xk)

gk

�
; (11)

for all k su�ciently large. In view of (10), the result then follows from
Lemma 10.

Lemma 16.

(i) �k ! 0,

(ii) �̂k ! 1, and �̂k ! ��.

(iii) For all k su�ciently large, Îk = f j j �̂jk > 0 g:
Proof. Claim (i) follows from Step 3(iii) of Algorithm FSQP0, since in view

of Lemma 13, Lemma 15, and Lemma 9, fd̂kg and fcd 0k g both converge to 0.

In view of (i), Lemma 13 establishes that �̂k ! �̂�(0), and �̂k ! �̂�(0) � ��.
That �̂�(0) = 1 follows from (3), hence claim (ii) is proved. Finally, claim
(iii) follows from claim (ii), Lemma 14, and Assumption 5.

We now focus our attention on establishing relationships between d̂k, ~dk,
and the true SQP direction d 0k .
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Lemma 17.

(i) �k = O(kd 0k k2);

(ii) d̂k = d 0k +O(kd 0k k2):
(iii) 
̂k = O(kd 0k k):

Proof. In view of Lemma 15, cd 0k exists and cd 0k = d 0k for all k su�ciently
large. Lemmas 13 and 9 ensure that Step 3(iii) of Algorithm FSQP0 chooses

�k = Ck � kcd 0k k2 for all k su�ciently large, thus (i) follows. It is clear from

Lemma 14 and the optimality conditions (2) that d̂k and �̂k satisfy�
Hk Rk

RT
k 0

��
d̂k
�̂+k

�
= �

�
�̂k � rf(xk)

gk � �k � 
̂k � 1jI(x�)j

�

= �
� rf(xk)

gk

�
+ �k �

0BB@
0@ X

j2I(x�)

�̂jk

1A � rf(xk)

̂k � 1jI(x�)j

1CCA ; (12)

for all k su�ciently large, where 1jI(x�)j is a vector of jI(x�)j ones. It thus
follows from (10) that

d̂k = d 0k +O(�k);

and in view of claim (i), claim (ii) follows. Finally, since (from the QP
constraint and Lemma 2) hrf(xk); d̂ki � 
̂k < 0; it is clear that 
̂k =
O(kd̂kk) = O(kd 0k k):
Lemma 18. ~dk = O(kd 0k k2):
Proof. Let

ck
�
= [�gj(xk + d̂k)� kd̂kk� : j 2 I(x�)]T :

Expanding gj(�); j 2 I(x�), about xk we see that, for some �j 2 (0; 1),
j 2 I(x�),

ck = [

=��k�
̂kz }| {
�gj(xk)� hrgj(xk); d̂ki

+
1

2
hd̂k;r2gj(xk + �jd̂k)d̂ki � kd̂kk� : j 2 I(x�) ]T :
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Since � > 2, from Lemma 17, we conclude ck = O(kd 0k k2): Now, for all k
su�ciently large, Îk = I(x�), ~dk is well-de�ned and satis�es

gj(xk + d̂k) + hrgj(xk); ~dki = �kd̂kk� ; j 2 I(x�); (13)

thus, we have established

RT
k
~dk = O(kd 0k k2): (14)

The �rst order KKT conditions for fLS(xk; d̂k;Hk; Îk) tell us there exists
a multiplier ~�k 2 RjI(x� )j satisfying(

Hk(d̂k + ~dk) +rf(xk) +Rk
~�k = 0;

RT
k
~dk = ck:

Also, from the optimality conditions (12) we have

Hkd̂k +rf(xk) = qk �Rk�̂
+
k ;

where

qk
�
= �k �

0@ X
j2I(x�)

�̂jk

1A � rf(xk):
So, ~dk and ~�k satisfy�

Hk Rk

RT
k 0

��
~dk
~�k

�
=

�
Rk�̂

+
k � qk
ck

�
:

Solving for ~dk, after a little algebra we obtain

~dk = H�1
k Rk(R

T
kH

�1
k Rk)

�1ck
+
�
H�1

k �H�1
k Rk(R

T
kH

�1
k Rk)

�1RT
kH

�1
k

�
(Rk�̂

+
k � qk)

= H�1
k Rk(R

T
kH

�1
k Rk)

�1ck
+
�
H�1

k �H�1
k Rk(R

T
kH

�1
k Rk)

�1RT
kH

�1
k

�
(�qk):

Further, in view of Lemma 17 and since all sequences are bounded, qk =
O(kd 0k k2): Thus, ~dk equivalently satis�es�

Hk Rk

RT
k 0

��
~dk
�0k

�
=

� �qk
ck

�
= O(kd 0k k2);

for some �0k 2 RjI(x
� )j. The result then follows from Lemma 10.
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We now add one additional assumption to ensure that the matrices fHkg
suitably approximate the Hessian of the Lagrangian at the solution. De�ne
the projection

Pk
�
= I �Rk(R

T
kRk)

�1RT
k :

Assumption 7:

lim
k!1

kPk(Hk �r2
xxL(x

�; ��))Pkd̂kk
kd̂kk

= 0:

The following technical lemma will be needed in order to establish that
eventually the step of one is always accepted by the line search.

Lemma 19. There exists constants �1; �2; �3 > 0 such that

(i) hrf(xk); d̂ki � ��1kd 0k k2;
(ii) for all k su�ciently large

mX
j=1

�̂jkgj(xk) � ��2kgkk;

(iii) d̂k = Pkd̂k + d1k; where

kd1kk � �3kgkk+O(kd 0k k3);
for all k su�ciently large.

Proof. To show part (i), note that in view of the �rst QP constraint, nega-
tivity of the optimal value of the QP objective, and Assumption 4,

hrf(xk); d̂ki � 
̂k

� �1
2hd̂k;Hkd̂ki

� ��1
2 kd̂kk2 = ��1

2 kd 0k k2 +O(kd 0k k4):
The proof of part (ii) is identical to that of Lemma 4.4 in [11]. To show
(iii), note that from (12) for all k su�ciently large, d̂k satis�es

RT
k d̂k = �gk � 
̂k�k � 1jI(x�)j:

Thus, we can write d̂k = Pkd̂k + d1k; where

d1k = �Rk(R
T
kRk)

�1(gk + 
̂k�k � 1jI(x�)j):
The result follows from Assumption 3.
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Lemma 20. For all k su�ciently large, tk = 1.

Proof. Following [11], consider an expansion of gj(�) about xk + d̂k for j 2
I(x�), for all k su�ciently large,

gj(xk + d̂k + ~dk) = gj(xk + d̂k) + hrgj(xk + d̂k); ~dki+O(kd 0k k4)
= gj(xk + d̂k) + hrgj(xk); ~dki+O(kd 0k k3)
= �kd̂kk� +O(kd 0k k3)
= �kd 0k k� +O(kd 0k k3);

where we have used Lemmas 17 and 18, boundedness of all sequences, and
the constraints from fLS(xk; d̂k;Hk; Îk) (Îk = I(x�) for all k su�ciently large
by Lemma 14). As � < 3, it follows that gj(xk+ d̂k+ ~dk) � 0, j 2 I(x�), for
all k su�ciently large. The same result trivially holds for j 62 I(x�): Further,
we have

gj(xk + d̂k + ~dk) = O(kd 0k k� ); j 2 I(x�): (15)

In view of Assumption 20 and Lemmas 17 and 18,

f(xk + d̂k + ~dk) = f(xk) + hrf(xk); d̂ki+ hrf(xk); ~dki
+ 1

2hd̂k;r2f(xk)d̂ki+O(kd 0k k3):
From the optimality conditions (2), Lemma 17(i), and boundedness of all
sequences, we see

Hkd̂k +rf(xk) +
mX
j=1

�̂jkrgj(xk) = O(kd 0k k2): (16)

Complementary slackness for dQP (xk;Hk; �k) and Lemma 17 yield

�̂jkhrgj(xk); d̂ki = ��̂jkgj(xk) +O(kd 0k k3): (17)

Taking the inner product of (16) with d̂k, then adding and subtracting the
quantity

P
j �̂

j
khrgj(xk); d̂ki, using (17), and �nally multiplying the result

by 1
2 gives

1
2hrf(xk); d̂ki = �1

2
hd̂k;Hkd̂ki �

mX
j=1

�̂jkhrgj(xk); d̂ki

� 1

2

mX
j=1

�̂jkgj(xk) +O(kd 0k k3):
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Further, Lemmas 17 and 18 and (16) give

hrf(xk); ~dki = �
mX
j=1

�̂jkhrgj(xk); ~dki+O(kd 0k k3):

Combining results, we have

f(xk + d̂k + ~dk)� f(xk) = (18)

1

2
hrf(xk); d̂ki � 1

2
hd̂k;Hkd̂ki � 1

2

mX
j=1

�̂jkgj(xk) (19)

�
mX
j=1

�̂jkhrgj(xk); d̂ki �
mX
j=1

�̂jkhrgj(xk); ~dki (20)

+
1

2
hd̂k;r2f(xk)d̂ki+O(kd 0k k3): (21)

Expanding about xk and using Lemmas 17(ii) and 18 and equation (15)
we have

gj(xk) + hrgj(xk); d̂ki+ hrgj(xk); ~dki =
�1
2
hd̂k;r2gj(xk)d̂ki+O(kd 0k k� ); j 2 I(x�);

since � < 3: Rearranging to give an expression for gj(xk) and then substi-
tuting into the third term on the right-hand side of (18) for each j gives

f(xk + d̂k + ~dk)� f(xk) =

1

2
hrf(xk); d̂ki+ 1

2

mX
j=1

�̂jkgj(xk)

+
1

2
d̂Tk

0@r2f(xk) +
mX
j=1

�̂jkr2gj(xk)�Hk

1A d̂k

+O(kd 0k k� ):

Subtracting �hrf(xk); d̂ki from both sides and invoking Lemma 19 shows
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there exists constants �2; �3 > 0 such that, since � > 2,

f(xk + d̂k + ~dk)� f(xk)� �hrf(xk); d̂ki �

(
1

2
� �)hrf(xk); d̂ki+ 1

2
d̂Tk Pk

0@r2f(xk) +
mX
j=1

�̂jkr2gj(xk)�Hk

1APkd̂k

�
0@�2 � �3

�
kd̂kk+ �3kgkk

� 





r2f(xk) +

mX
j=1

�̂jkr2gj(xk)�Hk








1A� kgkk

+o(kd 0k k2):

Since d̂k ! 0 and gk ! 0 and all sequences are bounded, the third term on
the right-hand side is negative for all k su�ciently large, hence

f(xk + d̂k + ~dk)� f(xk)� �hrf(xk); d̂ki �
(
1

2
� �)hrf(xk); d̂ki+ 1

2
d̂Tk Pk

�
r2

xxL(xk; �̂k)�Hk

�
Pkd̂k

+o(kd 0k k2):

Assumption 7 says that Pk(r2
xxL(xk; �̂k)�Hk)Pkd̂k = o(kd̂kk): This, along

with Lemma 19 implies

f(xk + d̂k + ~dk)� f(xk)� �hrf(xk); d̂ki
� ��1(1

2
� �)kd 0k k2 + o(kd 0k k2)

� 0;

for all k su�ciently large. Thus we have shown that the conditions of the
line search in Step 2 are satis�ed with tk = 1 for all k su�ciently large.

A consequence of Lemmas 17, 18, and 20 is that the algorithm generates
a convergent sequence of iterates satisfying

xk+1 � xk = d 0k +O(kd 0k k2): (22)

This allows us to apply, with some modi�cation, the argument used by
Powell in [15] to establish a 2-step superlinear rate of convergence, the main
result of this section. The modi�cation of Powell's argument to our case is
given in the appendix.
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Theorem 2. Algorithm FSQP0 generates a sequence fxkg which converges

2-step superlinearly to x�, i.e.

lim
k!1

kxk+2 � x�k
kxk � x�k = 0:

4 Numerical Results

In our implementation of Algorithm FSQP0 we allow for some classi�cation
of the constraints in order to exploit structure. In particular, the implemen-
tation contains special provisions for linear (a�ne) constraints and simple
bounds on the variables. The general problem solved is

min f(x)

s.t. gj(x) � 0; j = 1; : : : ;mn;

haj ; xi+ bj � 0; j = 1; : : : ;ma;

x` � x � xu;

where aj 2 Rn , bj 2 R, j = 1; : : : ;ma, and x`; xu 2 Rn with x` < xu

(componentwise). The linear constraints and bounds require no \tilting"

and may be directly incorporated into dQP (xk;Hk; �k), i.e.

min 1
2hd̂;Hkd̂i+ 
̂

s.t. hrf(xk); d̂i � 
̂;

gj(x) + hrgj(x); d̂i � 
̂ � �jk; j = 1; : : : ;mn;

haj ; xk + d̂i+ bj � 0; j = 1; : : : ;ma;

x` � xk � d̂ � xu � xk:

Note that a distinct value of �k is maintained for each nonlinear constraint,
i.e �jk, j = 1; : : : ;mn: This helps signi�cantly in practice while not a�ecting
the analysis. We de�ne the active sets in the implementation as

Înk = f j j gj(xk) + hrgj(xk); d̂ki � 
̂k � �jk > �
p
�m g

Îak = f j j haj ; xk + d̂ki+ bj > �p�m g

where �m is the machine precision. As before, let �̂jk 2 Rmn be the QP

multipliers corresponding to the nonlinear constraints. De�ne �̂ak 2 Rma ,
�uk 2 Rn , and � lk 2 Rn as the QP multipliers corresponding the the a�ne
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constraints, the upper bounds, and the lower bounds respectively. The
binding sets are de�ned as

Îb;nk = f j j �̂jk > 0 g; Îb;ak = f j j �̂a;jk > 0 g;
Îb;lk = f j j � l;jk > 0 g; Îb;uk = f j j �u;jk > 0 g:

Of course, no bending is required from ~dk for a�ne constraints and simple
bounds, hence if Înk = ;, we simply set ~dk = 0, otherwise the implementation
attempts to compute ~dk as the solution of

min hd̂k + ~d;Hk(d̂k + ~d)i+ hrf(xk); d̂k + ~di
s.t. gj(xk + d̂k) + hrgj(xk); ~di = �minf10�2kd̂kk; kd̂kk�g; j 2 Înk ;

haj ; xk + d̂k + ~di+ bj = 0; j 2 Îak ;
~dj = xu � xjk � d̂jk; j 2 Îb;uk ;

~dj = xl � xjk � d̂jk; j 2 Îb;lk :

Since not all simple bounds are included in the computation of ~dk, it is
possible that xk + d̂k + ~dk will not satisfy all bounds. To take care of this,
we simply \clip" ~dk so that the bounds are satis�ed. Speci�cally, for the
upper bounds, we perform the following:

for j 62 Îb;uk do

if ( ~djk � xu � xjk � d̂jk) then
~djk  xu � xjk � d̂jk

end

The same procedure, mutatis mutandis, is executed for the lower bounds.
We note that such a procedure has no a�ect on the convergence analysis of
Section 3 since, locally, the active set is correctly identi�ed and a full step
along d̂k + ~dk is always accepted.

Due to convexity of a�ne constraints, in the line search of Step 2 we �rst
generate an upper bound on the step size �tk � 1 using the a�ne constraints
that were not used in the computation of ~dk. Once these constraints are
satis�ed, they need not be checked again. Finally, the least squares problem

used to compute cd 0k is modi�ed similarly. In the implementation, cd 0k is only
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computed if mn > 0, in which case we use

min 1
2hcd 0;Hk

cd 0i+ hrf(xk);cd 0i
s.t. gj(xk) + hrgj(xk);cd 0i = 0; j 2 Îb;nk�1;

haj ; xk +cd 0i+ bj = 0; j 2 Îb;ak�1;cd 0j = xu � xjk; j 2 Îb;uk�1;cd 0j = xl � xjk; j 2 Îb;lk�1:

It was mentioned above that, in the implementation, we maintain a
separate tilting parameter �jk for each nonlinear constraint. In particular,

the �jk's are di�erent because we use a di�erent scaling C
j
k for each nonlinear

constraint. In the algorithm description and in the analysis all that was
required of Ck was that it remain bounded and bounded away from zero. In
practice, though, performance of the algorithm is critically dependent upon
the choice of Ck. For our implementation, an adaptive scheme was chosen in
which Cj

k is increased if gj(�) caused a failure in the line search. Otherwise,
if f(�) caused a failure in the line search, Ck is decreased. Speci�cally, our
update rule is as follows,

if (gj(�) caused line search failure) then Cj
k+1  Cj

k � �c
else if (f(�) caused line search failure) then Cj

k+1  Cj
k=�c

if (Cj
k+1 < C) then Cj

k+1  C

if (Cj
k+1 > C) then Cj

k+1  C

where �c > 1.
Another aspect of the algorithm which was purposefully left vague in

Sections 2 and 3 was the updating scheme for the Hessian estimates Hk.
In the implementation, we use the BFGS update with Powell's modi�cation
[16]. Speci�cally, de�ne

�k+1
�
= xk+1 � xk


k+1
�
= rxL(xk+1; �̂k)�rxL(xk; �̂k);

where, in an attempt to better approximate the true multipliers, if �̂k >
p
�m

we normalize as follows

�̂jk  
�̂jk
�̂k

; j = 1; : : : ;mn:
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A scalar �k+1 2 (0; 1] is then de�ned by

�k+1
�
=

8>><>>:
1; if �Tk+1
k+1 � 0:2 � �Tk+1Hk�k+1;

0:8 � �Tk+1Hk�k+1

�Tk+1Hk�k+1 � �Tk+1
k+1
; otherwise.

De�ning �k+1 2 Rn as

�k+1
�
= �k+1 � 
k+1 + (1� �k+1) �Hk�k+1;

the rank two Hessian update is

Hk+1 = Hk �
Hk�k+1�

T
k+1Hk

�Tk+1Hk�k+1
+
�k+1�

T
k+1

�Tk+1�k+1
:

Note that while it is not clear whether the resultant sequence fHkg will,
in fact, satisfy Assumption 7, this update scheme is known to perform very
well in practice.

Our implementation calls the Goldfarb-Idnani based active set QP solver
QLD due to Powell and Schittkowski [19]. QLD uses dense linear algebra
and does not allow \warm starts", i.e. does not allow the user to supply an
initial guess for the QP multipliers. For simplicity, we not only used QLD
to solve dQP (xk;Hk; �k), but also the least squares problems. Of course, this
was likely not too ine�cient since the active set is known automatically for
these problems. In order to guarantee that the algorithm terminates after
a �nite number of iterations with an approximate solution, the stopping
criterion of Step 1 is changed to

if (kd̂kk � �) stop;

where � > 0 is small. Finally, note that during the line search of Step
2, as soon as it is determined that the given trial point does not satisfy
the descent criterion or a particular constraint, no more constraints are
evaluated. In this case, a new trial point is immediately computed and
the trial evaluations start over from the beginning. In order to reduce the
number of constraint function evaluations, the constraint which caused the
failure is always checked �rst at the new trial point, as it is most likely to
be infeasible.

In order to test the implementation, we selected several problems from [7]
which provided feasible initial points and contained no equality constraints.
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The results are reported in Table 1. For all problems we used the parameter
values

� = 0:1; � = 0:5; � = 2:5;

�` = minf1;p�g; C = 1� 10�3; C = 1� 103;
�c = 10; �D = 10 � �`:

Further, we always set H0 = I and �j0 = 1� 10�2, Cj
0 = 1, j = 1; : : : ;mn:

In Table 1 we compare our implementation with CFSQP [10], the im-
plementation of Algorithm FSQP as described in [12]. The column labeled
# lists the problem number as given in [7], the column labeled ALGO tells
which algorithm was used to solve the given problem (the names are self-
explanatory). The next three columns give the size of the problem following
the conventions of this section. The columns labeled NF, NG, and IT give
the number of objective function evaluations, nonlinear constraint function
evaluations, and iterations required to solve the problem, respectively. Fi-
nally, f(x�) is the objective function value at the �nal iterate and � is the
tolerance for the size of the search direction (the stopping criterion). The
value of � was chosen in order to obtain approximately the same precision
as reported in [7] for each problem.

The results reported in Table 1 are very encouraging. The performance
of our implementation of Algorithm FSQP0 is essentially identical to that
of CFSQP (Algorithm FSQP). Of course, Algorithm FSQP0 requires sub-
stantially less work per iteration than Algorithm FSQP, thus in the case
that the work to generate a new iterate dominates the work to evaluate the
objectives and constraints, the new algorithm is at a clear advantage.

5 Conclusions

We have presented here a new SQP-type algorithm generating feasible it-
erates. The main advantage of the algorithm presented here is a dramatic
reduction in the amount of computation required in order to generate a
new iterate. While this may not be very important for applications where
function evaluations dominate the actual amount of work to compute a new
iterate, it is very useful in many contexts. In any case, we saw in the pre-
vious section that preliminary results seem to indicate that decreasing the
amount of computation per iteration did not come at the cost of increasing
the number of function evaluations required to �nd a solution.
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# ALGO n ma mn NF NG IT f(x�) �

12 NEW 2 0 1 7 14 7 -3.0000000E+01 1.E{6
CFSQP 7 14 7 -3.0000000E+01

29 NEW 3 0 1 11 20 10 -2.2627417E+01 1.E{5
CFSQP 11 20 10 -2.2627417E+01

30 NEW 3 0 1 18 35 18 1.0000000E+00 1.E{7
CFSQP 18 35 18 1.0000000E+00

31 NEW 3 0 1 9 25 8 6.0000000E+00 1.E{5
CFSQP 9 19 7 6.0000000E+00

33 NEW 3 0 2 4 11 4 -4.0000000E+00 1.E{8
CFSQP 4 11 4 -4.0000000E+00

34 NEW 3 0 2 8 32 8 -8.3403245E{01 1.E{8
CFSQP 7 28 7 -8.3403244E{01

43 NEW 4 0 3 9 45 8 -4.4000000E+01 1.E{5
CFSQP 10 46 8 -4.4000000E+01

66 NEW 3 0 2 8 30 8 5.1816327E{01 1.E{8
CFSQP 8 30 8 5.1816327E{01

84 NEW 5 0 6 4 32 4 -5.2803351E+06 1.E{8
CFSQP 4 30 4 -5.2803351E+06

93 NEW 6 0 2 14 55 12 1.3507596E+02 1.E{5
CFSQP 16 62 13 1.3507596E+02

113 NEW 10 3 5 13 116 13 2.4306210E+01 1.E{3
CFSQP 12 108 12 2.4306377E+01

117 NEW 15 0 5 19 179 17 3.2348679E+01 1.E{4
CFSQP 20 219 19 3.2348679E+01

Table 1: Numerical results.

A number of signi�cant extensions of Algorithm FSQP0 are being ex-
amined. It is not too di�cult to extend the algorithm to handle mini-max
problems. The only real issue that arises is how to handle the mini-max
objectives in the least squares sub-problems. Several possibilities, each with
the desired global and local convergence properties, are being examined.
Another extension that is important for engineering design is the incorpo-
ration of a scheme to e�ciently handle very large sets of constraints and/or
objectives. We will examine schemes along the lines of those developed in
[9, 22]. Further, work remains to be done to exploit the close relationship be-
tween the two least squares problems and the quadratic program. A careful
implementation should be able to use these relationships to great advantage
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computationally. For starters, updating the Cholesky factors of Hk instead
of Hk itself at each iteration would save a factorization in each of the sub-
problems. Finally, it is possible to extend the class of problems (P ) which
are handled by the algorithm to include nonlinear equality constraints. Of
course, we will not be able to generate feasible iterates for such constraints,
but a scheme such as that studied in [8] could be used in order to guar-
antee asymptotic feasibility while maintaining feasibility for all inequality
constraints.

Appendix

In this appendix we discuss how the arguments given by Powell in Sec-
tions 2 and 3 of [15] may be used, with some modi�cation, to prove Theo-
rem 2. To avoid confusion, we will refer to Lemmas from [15] as Lemma P:n,
where n is the number as it appears in [15]. We begin by noting that all of
Powell's assumptions outlined at the beginning of Section 2 in [15] hold in
our case (under the strengthened assumptions of Section 3.2). Also, Lem-
mas P.1 and P.2 are already established by our Lemmas 14 and 16. These
Lemmas show that the active set is exactly identi�ed by the QP multipliers
for all k su�ciently large. In view of this, and since Lemma 20 shows that
tk = 1 for all k su�ciently large, the inactive constraints eventually have no
e�ect on the computation of a new iterate. Thus, without loss of general-
ity, it may be assumed here that we are generating iterates converging to a
solution of the problem

min f(x)
s.t. gj(x) = 0; j 2 I(x�); (P+)

Let L+ : Rn � RjI(x� )j ! R be the corresponding Lagrangian function and,
recalling our notation introduced in Section 3.2, let ��+ be the optimal
multiplier for (P+).

Lemma P.3, which establishes that the SQP direction d 0k is unchanged
when the matrix Hk is perturbed by a symmetric matrix whose kernel in-
cludes the orthogonal complement of the constraint gradients, is algorithm
independent, hence automatically holds. Following Powell's notation, de�ne

hk
�
= Pkrf(xk);

and interpret the symbol \�" as meaning the ratio of the expression on the
left-hand side to the right-hand side is both bounded above and bounded
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away from zero, as k !1. Using the same argument as in Lemma P.4, we
can show (recall the de�nition of gk from Section 3.2)

kd 0k k � kgkk+ khkk:
In view of (22), this implies Lemma P.4 still holds in our case.

Unfortunately, the proof of Lemma P.5 will not work in our context.
Thus, we establish this result here.

Lemma 21. kxk � x�k � kgkk+ khkk:
Proof. We begin by showing that r2L+(x�; ��+) (by which we mean the

second derivative with respect to both x and �) is non-singular. Let R�
�
=

limk!1Rk. Suppose there exists z = (yT ; uT )T 2 Rn+jI(x� )j such that
r2L+(x�; ��)z = 0. Then, using complementary slackness we can substitute
r2

xxL(x
�; ��) for r2

xxL
+(x�; ��+), obtaining� r2

xxL(x
�; ��) R�

R�T 0

��
y
u

�
= 0:

So, R�T y = 0 and yTr2
xxL(x

�; ��)y = �(R�T y)Tu = 0, which, in view of
Assumption 5, implies y = 0. This, in turn, implies R�u = 0, which, by
Assumption 3 requires u = 0. Thus, we have shown that r2L+(x�; ��+) is
non-singular.

Note that we may write

rL+(xk; �0+k )

=

Z 1

0
r2L+(x� + t(xk � x�); ��+ + t(�0+k � ��+))

�
xk � x�

�0+k � ��+

�
dt

�
= Dk

�
xk � x�

�0+k � ��+

�
:

Since xk ! x� and �0+k ! ��+, it follows from our regularity Assumption 20

that Dk ! r2L+(x�; ��+). Non-singularity of r2L+(x�; ��+) implies that
for all k su�ciently large, Dk is non-singular and there exists M > 0 such
that

kD�1
k k �M;

for k large enough. Thus,

kxk � x�k � �kxk � x�k2 + k�0+k � ��+k2� 12
=




D�1
k rL+(xk; �0+k )




 ;
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(where we are using the Euclidean norm) which implies

kxk � x�k �M


rL+(xk; �0+k )



 ; (23)

for all k su�ciently large (note that we are using the Euclidean norm).
Recall now that, for k large enough, the SQP direction satis�es�

Hk Rk

RT
k 0

��
d 0k
�0+k

�
= �

� rf(xk)
gk

�
:

This can be solved for d 0k , yielding

d 0k = �H�1
k Rk(R

T
kH

�1
k Rk)

�1gk
� �H�1

k �H�1
k Rk(R

T
kH

�1
k Rk)

�1RT
kH

�1
k

�rf(xk)
= �H�1

k Rk(R
T
kH

�1
k Rk)

�1gk
� �H�1

k �H�1
k Rk(R

T
kH

�1
k Rk)

�1RT
kH

�1
k

�
� (Pk +Rk(R

T
kRk)

�1RT
k )rf(xk)

= �H�1
k Rk(R

T
kH

�1
k Rk)

�1gk
� �H�1

k �H�1
k Rk(R

T
kH

�1
k Rk)

�1RT
kH

�1
k

�
Pkrf(xk)

�
= Bkgk +Ekhk;

where Bk and Ek are bounded for large k, and we have used the trivial
identity Pk+Rk(R

T
kRk)

�1RT
k = I. Now, in view of the optimality conditions

(4),
rxL

+(xk; �
0+
k ) = �Hkd

0
k

= �HkBkgk �HkEkhk:

Thus, there exists K1; K2 > 0 such that for large k

krxL
+(xk; �

0+
k )k � K1kgkk+K2khkk: (24)

Finally, since r�L
+(xk; �

0+
k ) = gk; we conclude from (23) and (24) that

there exists K3 > 0 such that for large k

kxk � x�k � K3 � (kgkk+ khkk) :

To go the other direction, expanding g(�) about x� (recall that for this
argument g : Rn ! RjI(x� )j) and noting that Pkrgj(xk) = 0 for all k, we
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have

kgkk+ khkk = kg(x�) +RT
k (xk � x�) +O(kxk � x�k2)k

+ kPkrxL
+(xk; �

�+)k
= kRT

k (xk � x�) +O(kxk � x�k2)k
+ kPk(rxL

+(x�; ��+) +r2
xxL

+(x�; ��+)(xk � x�)
+O(kxk � x�k2)k

= kRT
k (xk � x�)k+ kPkr2

xxL
+(x�; ��+)(xk � x�)k

+O(kxk � x�k2)
� K4kxk � x�k+O(kxk � x�k2);

for some constant K4 > 0, and the result follows.

Lemma P.6 requires some additional explanation in our case. In partic-
ular, we need to justify/modify equations (3.3), (3.8), and (3.9) in [15]. To
begin with, consider for all k su�ciently large (and recall that we are only
interested in j 2 I(x�) here)

gj(xk+1) = gj(xk + d 0k +O(kd 0k k2)
= gj(xk) + hrgj(xk); d 0k i+O(kd 0k k2)
= O(kxk+1 � xkk2):

Thus equation (3.3) holds. If O(kxk+1 � xkk2) is added to the right hand
side of equation (3.8), and to both sides of equation (3.9), then the same
argument holds for the sequences generated by Algorithm FSQP0. Finally,
Theorem P.1 is the same as our Theorem 2 and the argument used in [15]
may be used to prove Theorem 2.
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