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Abstract
Multifactor dimensionality reduction (MDR) was developed as a nonparametric and model-free
data mining method for detecting, characterizing, and interpreting epistasis in the absence of
significant main effects in genetic and epidemiologic studies of complex traits such as disease
susceptibility. The goal of MDR is to change the representation of the data using a constructive
induction algorithm to make nonadditive interactions easier to detect using any classification
method such as naïve Bayes or logistic regression. Traditionally, MDR constructed variables have
been evaluated with a naïve Bayes classifier that is combined with 10-fold cross validation to
obtain an estimate of predictive accuracy or generalizability of epistasis models. Traditionally, we
have used permutation testing to statistically evaluate the significance of models obtained through
MDR. The advantage of permutation testing is that it controls for false-positives due to multiple
testing. The disadvantage is that permutation testing is computationally expensive. This is in an
important issue that arises in the context of detecting epistasis on a genome-wide scale. The goal
of the present study was to develop and evaluate several alternatives to large-scale permutation
testing for assessing the statistical significance of MDR models. Using data simulated from 70
different epistasis models, we compared the power and type I error rate of MDR using a 1000-fold
permutation test with hypothesis testing using an extreme value distribution (EVD). We find that
this new hypothesis testing method provides a reasonable alternative to the computationally
expensive 1000-fold permutation test and is 50 times faster. We then demonstrate this new method
by applying it to a genetic epidemiology study of bladder cancer susceptibility that was previously
analyzed using MDR and assessed using a 1000-fold permutation test.
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INTRODUCTION
Epistasis or gene-gene interaction is a fundamental component of the genetic architecture of
complex traits such as disease susceptibility. Epistasis has been recognized for many years
and has been described essentially from two different perspectives, biological and statistical
[e.g. Cordell, 2002; Moore and Williams, 2005]. Biological epistasis, as defined by Bateson
(1909), results from physical interactions among biomolecules in gene regulatory networks
and biochemical pathways at the cellular level in an individual. Statistical epistasis, as
defined by Fisher (1918), is deviation from additivity in a linear mathematical model that
describes the relationship between multilocus genotypes and phenotype variation at the
population level. Epistasis, along with other phenomena such as locus heterogeneity,
phenocopy, and gene-environment interaction are major sources of complexity in the
mapping relationship between genotype and phenotype. As such, we need research strategies
that embrace, rather than ignore, this complexity [Templeton, 2000; Moore, 2003, 2005;
Sing et al., 2003; Thornton-Wells et al., 2004; Moore and Williams, 2005; Rea et al., 2006].

Multifactor dimensionality reduction (MDR) was developed as a nonparametric and model-
free data mining method for detecting, characterizing, and interpreting epistasis in the
absence of significant main effects in genetic and epidemiologic studies of complex traits
such as disease susceptibility [Ritchie et al., 2001, 2003; Hahn et al., 2003; Hahn and
Moore, 2004; Moore, 2004; Moore et al., 2006; Moore, 2007, Velez et al. 2007]. The goal of
MDR is to change the representation of the data using a constructive induction algorithm to
make nonadditive interactions easier to detect using any classification method such as naïve
Bayes or logistic regression [Moore et al., 2006; Moore, 2007]. This is accomplished by first
labeling each genotype combination as high-risk or low-risk using some function of a
discrete endpoint such as case-control status. A new MDR variable with two levels is
constructed by pooling all high-risk genotype combinations into one group and all low-risk
combinations into another group. Traditionally, variables constructed using MDR have been
evaluated with a probabilistic naïve Bayes classifier that is combined with 10-fold cross
validation. Ten-fold cross validation allows estimation of a testing accuracy of a model by
leaving out 1/10 of the data as an independent test set. The model is developed on 9/10 of
the data and then evaluated on the remaining test set. This process is repeated for each 1/10
of the data, and the resulting prediction accuracies are averaged. Permutation testing has
been used to statistically evaluate the results from MDR. In this process, the endpoint labels
are randomized thus creating a relationship between the variables and the endpoint under the
null hypothesis of no association that can be used to determine what would be expected from
MDR by chance. For example, when using a 1,000-fold permutation test, we obtain a
distribution of 1,000 testing accuracies that we can use to determine where in that
distribution we find the testing accuracy of our model and assign a p-value accordingly. The
advantage of permutation testing is that it controls for false-positives due to multiple testing
as long as the entire MDR model fitting process is repeated in each permuted dataset. The
disadvantage of this approach is that permutation testing is computationally expensive and
often not practical for large datasets such as those from genome-wide association studies.

In the present study, we sought to develop and evaluate a computationally efficient
alternative to permutation testing for assessing the statistical significance of MDR models.
Using data simulated from 70 different epistasis models, we compared the power and type I
error rate of MDR using a 1000-fold permutation test with hypothesis testing using an
extreme value distribution (EVD). Our goal was to demonstrate that the EVD test can
approximate p-values as accurately as permutation testing while greatly reducing the
computational burden of the analysis (e.g. by using 20 instead of 1000 permutations). For
our simulated data, we estimate the mean and variance of a Gumbel distribution, which is
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derived from the generalized extreme value distribution (GEV) when the shape parameter is
zero, to estimate a p-value for any given testing accuracy. We find that this new hypothesis
testing method provides a powerful and efficient alternative to the computationally
expensive 1000-fold permutation test. We then demonstrate this method by applying the
GEV to a genetic epidemiology study of bladder cancer susceptibility that was previously
analyzed using MDR and a 1000-fold permutation test.

METHODS
Data Simulation

There were two objectives of our simulation study. The first objective was to generate
artificial datasets and use this data to evaluate the power and the type I error of MDR using a
1000-fold permutation testing and the extreme value distribution (EVD) test. The second
goal was to generate pseudo-artificial datasets based on our real bladder cancer data and use
this data to test the assumptions of the EVD test. We describe each simulation objective in
turn.

First, we developed a total of 70 different penetrance functions that define a probabilistic
relationship between genotype and phenotype where susceptibility to disease is dependent
on genotypes from two loci in the absence of any marginal effects. These purely epistatic
models were distributed evenly across seven broad-sense heritabilities (0.01, 0.025, 0.05,
0.1, 0.2, 0.3, and 0.4) and two different minor allele frequencies (0.2 and 0.4), where all
functional SNPs in that data set have either one or the other MAF. Note that intermediate
heritabilities (e.g. 0.15, 0.25, etc.) were not considered in this study due to computational
constraints. However, previous results have indicated these intermediate heritabilities follow
the same power trends (data not shown). A total of five models for each of the 14
heritability-allele frequency combinations were generated for a total of 70 models. The
details of the 70 penetrance functions have been described previously [Velez et al., 2007].
Genotype frequencies for all 70 epistasis models were consistent with Hardy-Weinberg
proportions. One hundred data sets were generated for each model with four sample sizes
(200, 400, 800, and 1600 total individuals) each having an equal number of cases and
controls. Each pair of functional polymorphisms was embedded within a set of 20 tagSNPs
all with either a MAF of 0.2 or 0.4. The two functional SNPs were not in linkage
disequilibrium (LD) with each other or any other SNPs in the data set.

We also generated larger data sets for all sample sizes consisting of 1000 tagSNPs
embedded with two functional SNPs. All nonfunctional SNPs were simulated using allele
frequencies selected randomly from a uniform distribution between 0 and 0.5. These 1000-
SNP data sets represented the five models with a broad-sense heritability of 0.1 and a minor
allele frequency of 0.4. These five models refer to models 35–39 in [Velez et al., 2007].
Similarly 100 data sets were generated for each of the five models for all sample sizes.

For evaluating the type I error of each test, null data sets with no functional SNPs were
generated by permuting (randomizing the case-control labels) each of the data sets described
above, including the large dataset. A total of 28,000 functional and 28,000 null datasets
consisting of 20 SNPS and a total of 2000 functional and 2000 null data sets consisting of
1000 SNPs were generated and analyzed using MDR. All simulated data are available upon
request.

For the second part of our study, we simulated pseudo-artificial datasets based on the real
bladder cancer data described in more detail below. Our goal in this study was to generate
datasets that featured more realistic correlation patterns and other complexities and use these
datasets to test the independent and identically distributed (iid) assumption of the EVD test.
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Here, we fixed the genotypes and covariate levels and simulated case-control labels using
several different penetrance functions. First, we developed a penetrance function for a single
factor with heritability of 0.10. We then developed a two-locus epistasis model with a
heritability of 0.10 using the allele frequencies for two SNPs (XPD 312 and XPD 751) that
exhibit significant linkage disequilibrium (D’=0.52) and epistasis effects in the real data
(Andrew et al. 2006). We then developed a three-factor penetrance function for the two
epistatic SNPs and the single independent factor with a total heritability of 0.10. Using the
fixed genotypes from the real data, we simulated case-control labels for a total of 100
datasets using each of these three penetrance functions.

Multifactor Dimensionality Reduction (MDR) Analysis
As described above, the goal of MDR is to change the representation space of the data using
constructive induction to make interactions easier to detect. This is accomplished by
combining two or more variables or attributes into a single attribute that can be modeled
using a discrete data classifier. The general process of defining a new attribute as a function
of two or more other attributes is referred to as constructive induction or attribute
construction and was first described by [Michalski et al., 1983]. Constructive induction
using MDR was accomplished in this study in the following way. Given a threshold T, a
multilocus genotype combination, for example, is considered ‘high-risk’ if the ratio of cases
to controls exceeds T; otherwise it is considered low-risk. Once genotypes are labeled ‘high-
risk’ and ‘low-risk’ a new binary attribute is created with those two levels. Here, we set T to
the ratio of cases to controls in the dataset being analyzed as recommended by [Velez et al.,
2007]. Figure 1 illustrates this process for a dataset of 200 cases and 200 controls that was
simulated using the penetrance function in Table 1.

We used a simple probabilistic classifier that is similar to naïve Bayes [Hahn and Moore,
2004] to model the relationship between variables constructed using MDR and case-control
status. Naïve Bayes classifiers were assessed using balanced accuracy as recommended by
[Velez et al., 2007]. Balanced accuracy is defined as the arithmetic mean of sensitivity and
specificity:

where TP are true positives, TN are true negatives, FP are false positives, and FN are false
negatives. For each dataset we evaluated all possible pairwise combinations of SNPs using
MDR. The model that is developed and evaluated on the remaining test set that has the
maximum testing accuracy averaged over the ten-fold cross validation and also has the
maximum cross-validation consistency (CVC) as described previously is selected as the best
model [Ritchie et al., 2001; Hahn et al., 2003; Ritchie et al., 2003; Moore, 2004]. Cross-
validation consistency is the number of times out of n cross-validation intervals that the
selected best model had the maximum testing accuracy. It is often the case that the best
model will have the maximum testing accuracy and the maximum CVC. However, it is
sometimes the case that another model has the highest CVC. When there is disagreement,
the more parsimonious model with the higher CVC can be selected. An open-source MDR
software package is freely available from www.epistasis.org. A tutorial on MDR can be
found in the November and December 2006 postings at compgen.blogspot.com.

Hypothesis Testing using Permutation Testing
Permutation testing is commonly used to assess the statistical significance when the
distribution of the test statistic needs to be empirically derived [Good, 2000]. Permutation
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testing is used with MDR to assess the statistical significance of the testing accuracy of the
best model (i.e. model with the maximum testing accuracy). Here, case-control labels of a
given dataset are randomized on the order of a thousand times and the complete MDR model
fitting procedure is run on each permuted dataset. An empirical distribution of the maximum
testing accuracy for each run is then used to estimate a P-value for MDR model derived
from the original data. The power of MDR using a 1000-fold permutation test was estimated
as the percentage of times MDR correctly identified the two functional SNPs (i.e. the
pairwise combination with the maximum testing accuracy) out of each set of 100 datasets
for which the result was statistically significant at the 0.05 level (i.e. the testing accuracy
was equal to or higher than the top 5% highest testing accuracies in the permuted data).
Type I error was estimated as the proportion of times that the permutation test indicated a
statistically significant MDR model in data consistent with the null hypothesis of no
association. An MDR Permutation Testing software package is freely available from
www.epistasis.org.

Hypothesis Testing using an Extreme Value Distribution (EVD)
Our goal was to develop a hypothesis test for MDR that is based on permutation testing but
that requires many fewer permutations. The end result of an MDR analysis is the selection
of an overall best model with the highest testing accuracy. Since the testing accuracy of the
best model is a maximum value, we suspect that it might follow an extreme value
distribution (EVD), even though, in general, the tests might not be independent and
identically distributed (IID) as we describe below. Coles [2001] describes three EVDs
labeled Gumbel, Fréchet, and Weibull. Each of these distributions has a location parameter
(μ) and a scale parameter (σ). The Fréchet and Weibull distributions are further
characterized by a shape parameter (α). The extremal types theorem [Coles, 2001] allows
these three distributions to be combined into a single family of models, known as the
generalized extreme value distribution (GEV) having distribution functions of the form:

where ξ is a shape parameter that applies specifically to the GEV such that −∞ < ξ < ∞.
When ξ=0, this generalized extreme value distribution simplifies to the Gumbel distribution
with form:

We fit extreme value distributions to the distribution of the MDR testing accuracies
generated from 20-, 10-, and 5-fold permutation testing using the EVD package in R. We
first estimated the mean of the shape parameter ξ across all datasets and determined that this
value was not significantly different from 0 (data not shown). We also observed that the (μ)
and (σ) were similar across the 100 replicates for each model, allowing us to fit the
distribution to the permutations from one replicate per model (data not shown). Thus, for our
simulated data, we used the Gumbel distribution as our EVD for all hypothesis testing with
parameters μ and σ estimated from the data.

To compare the p-values estimated using the EVD test to those estimated from permutation
testing, we evaluated the number of times MDR correctly identified the two functional SNPs
out of each set of 100 datasets and this result was statistically significant at the 0.05 level.
Type I error was estimated with the null data sets as the proportion of times that the EVD
test indicated a statistically significant MDR model in data consistent with the null
hypothesis of no association.
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An important assumption of EVD is that the observations are independent and identically
distributed (IID). To test this assumption we examined a subset of the simulated artificial
data using quantile-quantile (Q-Q) plots. Supplemental Figures 1 and 2 illustrate the
relationship between observed and expected extreme value quantiles from 100 datasets
simulated under the same epistasis model across different sample sizes for 20 SNPs and
1000 SNPs, respectively. Note that there are no major deviations from linearity suggesting
that the EVD is appropriate for these data. Datasets with high linkage disequilibrium and/or
numerous main effects may violate the IID assumption of the EVD since these phenomena
could generate correlations among MDR models. To account for this possibility, we used Q-
Q plots to examine the pseudo-artificial data (described above) which contains an
independent effect, an epistatic effect or both an independent and epistatic effect in the
presence of significant linkage disequilibrium. Supplemental Figures 3A, 3B and 3C show
that there is no major deviation from linearity in the Q-Q plots for any of the models.

Although the simulated artificial data and the pseudo-artificial data do not seem to violate
the IID assumptions, it is important to keep in mind that this could be a problem for other
real datasets. Fortunately, a number of mathematical extensions to the EVD exist that are
more robust to violations of the IID assumption [see Coles 2001]. Many of these extensions
were developed for time series data where there is often significant autocorrelation. A
detailed description for modeling stationary time series is given by [Coles 2001] that has
been more precisely described and developed by [Leadbetter et al. 1983]. Another issue that
arises is in threshold models where exceedences are seen to occur in groups. The more
widely accepted method to deal with this issue is declustering, where the maxima in each
cluster are filtered and fit to a Pareto distribution. This method, however, is sensitive to the
loss of data due to arbitrary choices in cluster determination and selection of only the
maxima in each cluster. In the case of non-stationary time series different approaches that
use extreme value models as basic templates apply. This may include adding a linear trend
component to the location parameter to explain variation, in that case a linear trend, in the
data. The basic principle behind these approaches is to fit the simplest model that explains as
much variation in the data as possible and to use modified diagnostics to ensure the fit of
these models. This process is also described more in more detail by [Cole 2001]. We have
not yet determined which, if any, of these approaches would be appropriate for MDR or data
where SNPs are correlated, but this would be an area of investigation to consider for future
studies.

Bladder Cancer Data
We demonstrated EVD by applying it to a genetic epidemiology study that examined the
relationship between DNA repair gene SNPs, smoking, and bladder cancer susceptibility
that was previously analyzed using MDR and a 1000-fold permutation test [Andrew et. al.,
2006]. The study analyzed 355 bladder cancer cases and 559 controls ascertained from the
state of New Hampshire. Using MDR along with other methods of analysis, Andrew et al.
[2006] identified a 3-way interaction model between XPD codon 751 and 312 SNPs and
smoking as being the best predictor of bladder cancer susceptibility with a testing accuracy
of 0.63. They statistically evaluated this model with a 1000-fold permutation test and
determined these results to be highly significant (p<0.001). When fitting the GEV we
observed that the shape parameter ξ was −0.42, not 0, and so we determine the p-value for
this three factor model using the GEV distribution estimated from 20 permutations of the
data. To determine a more precise p-value for the permutation test, we conducted a 100,000-
fold permutation of this data. This allowed for a more direct comparison with the p-value
derived from the EVD.
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RESULTS
Figure 2 illustrates the average power and type I error of MDR using the Gumbel EVD
estimated from 5, 10, and 20 permutations of the data. Results are averaged across all
epistasis models for each heritability. Results are only shown for models with a minor allele
frequency (MAF) of 0.4. Results for models with a MAF of 0.2 were nearly identical and are
thus not shown. The power of MDR using EVD estimated from 5, 10, or 20 permutations is
approximately the same across all sample sizes. As expected, the power increases with
heritability and sample size. These results are consistent with previous power studies for
MDR [e.g. Velez et al. 2007]. However, the type I error using the EVD test was higher and
inconsistent under 5 and 10 permutations (see Figure 2) whereas the type I error using EVD
estimated from 20 permutations is consistently close to 0.05. Results from estimating the
Gumbel distribution with more than 20 permutations were the same as with 20 and are thus
not shown. These results suggest that a minimum of 20 permutations is necessary to
maximize power and to maintain the size of the test at 0.05.

Figure 3 illustrates the average power and type I error of MDR using the Gumbel EVD
estimated from 20 permutations of the data and the 1000-fold permutation test. Results are
averaged across all epistasis models for each heritability. Again, results are only shown for
models with a MAF of 0.4. Note that when comparing the two tests, power and type I error
are very similar across the different heritabilities and sample sizes. The only noted
difference is a slight reduction in power using the EVD test in the smallest sample size
considered (100 cases and 100 controls). A complete list of the results for all models and
MAFs can be found in the online supplementary tables.

Table 2 shows the average power and type 1 error of MDR using the Gumbel EVD and
1000-permutation test for our larger 1000 SNP data set. Results are averaged across the five
models that represent a heritability of 0.1 and a MAF of 0.4. Both EVD and permutation
testing are comparable in MDR power with an increasing trend in power across sample
sizes. As expected, we see a slight reduction in power from our 20 SNP data. While the type
1 error using permutation tests is similar to that seen for our 20 SNP data, it is slightly
higher when using EVD and also slightly higher than the type 1 error seen in our 20 SNP
analyses.

We next applied the EVD test to the MDR analysis of a previously published bladder cancer
dataset [Andrew et al. 2006]. MDR analysis of the data indicated a best model consisting of
two SNPs in the XPD gene and pack years of smoking. This model had a testing accuracy of
0.63. Interpretation of this model by Andrew et al. [2006] indicated a synergistic interaction
between the two XPD polymorphisms. The effect of smoking was additive. A 1000-fold
permutation test indicated that the p-value of the testing accuracy was less than 0.001. A
100,000-fold permutation test indicated that p< 0.00001. We also found this model to be
highly significant when fitting the GEV to 20 permutations of this data (p<0.00001). Thus,
the two statistical tests demonstrate that the MDR result is highly significant with p-values
of similar magnitude at the given resolution.

DISCUSSION
Our goal in this study was to develop and evaluate a computationally efficient method of
hypothesis testing that is comparable to permutation testing for the assessment of the
statistical significance of MDR models. We conclude that, dependent on the shape
parameter, either the Gumbel EVD or the GEV distribution estimated from the distribution
of MDR testing accuracies generated from 20 permutations is a reasonable alternative to
1000-fold permutation testing. Further, we have demonstrated that the EVD method and
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1000-fold permutation testing generate similar results in a previously analyzed bladder
cancer susceptibility study [Andrew et al. 2006]. We showed that hypothesis testing using
the Gumbel EVD or the GEV is a viable alternative to large-scale permutation testing
because it preserves both the power and size of MDR. Further, a statistical test based on 20
permutations is 50 times faster than a 1000-fold permutation test and 500 times faster than
10000-fold permutation test. This means that a permutation test that might take 50 days to
run will now run in a single day.

The rapid growth and availability of high-dimensional datasets from genome-wide studies
makes it computationally expensive and impractical to routinely carry out large-scale
permutation testing to assess the statistical significance of data mining methods such as
MDR. To illustrate the intensity of the analysis alone, consider that the report from the
International HapMap Consortium [Altshuler et al., 2005] suggests that approximately
300,000 carefully selected SNPs may suffice to represent most of the relevant genetic
variation across the human Caucasian genome. If this is to be regarded as the lower limit of
a genome-wide association study, then approximately 4.5 × 1010 pairwise combinations
(300,000 choose 2) and 4.5 × 1015 three-way combinations (300,000 choose 3) would need
to be exhaustively analyzed to detect low-order epistasis using MDR. If 106 MDR
evaluations can be computed each second, then evaluation of each individual SNP would
require less than one second of computer time. However, computing all two-way and three-
way MDR models would require more than 52,000 days of computer time. Access to a
1,000 processor supercomputer might reduce this to 52 days which is within the realm of
possibility. However, then running a 1000-fold permutation test would not be feasible. This
is only one of many challenges for detecting epistasis on a genome-wide scale [Ritchie and
Moore, 2004].

We are not the first to suggest using the EVD to reduce the number of permutations
necessary to determine statistical significance for genetic and genomic studies. For example,
Dudbridge and Koeleman [2004] noted that it is becoming more common and feasible to
conduct large-scale screens for disease associations, genome-wide linkage disequilibrium
scans, and array-expression experiments. They recognized that these studies encounter
issues concerning correlated data that are addressed by permutation testing which, as we
have discussed, can be computationally impractical. Similarly, they propose a solution to
this problem that suggests that analytic distributions, such as an EVD, can be fit to
permutation distributions. They use genome-wide SNP data released by the International
HapMap consortium to compare the efficiency and accuracy of their method to permutation
testing and find that their method demonstrates both adequate accuracy and a 40% reduction
in computation. Our results support their conclusions.

A challenging goal in human genetics is to determine which of the many thousands of SNPs
are useful for predicting who is at risk for common diseases. It was nearly a decade ago that
Risch and Merikangas first seriously proposed the testing of all known SNPs in the human
genome for disease association either directly or by linkage disequilibrium with other SNPs
[Risch and Merikangas, 1996]. Today it is possible to measure more than one million SNPs
with widely available human SNP arrays. Unfortunately, there is a lack of powerful
methodology to summarize and interpret this quantity of information within a biological
context. Thus, our ability to measure genetic information, and biological information in
general, is far outpacing our ability to interpret it [Moore and Williams, 2002]. In the current
study, we primarily address the computational efficiency of large-scale genetic analyses of
epistasis. However, another important concern with conducting these analyses with a
method such as MDR is that there may be a certain amount of important information
potentially lost by limiting results to one best model. An interesting future direction would
be to develop hypothesis testing methods that are able to identify a best set of statistically
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significant MDR models rather than a single best model. The EVD could certainly be used
to investigate the significance of a second-best model, a third best model, etc. As an
additional goal, it would be nice to move away from permutation testing entirely. For
example, it might be useful to develop a hypothesis testing approach based on the cross-
validation results. These types of computationally efficient hypothesis testing methods are
critical for the analysis of epistasis in genome-wide association studies.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
MDR attribute construction. A) illustrates distribution of cases (left bars) and controls (right
bars) for each of the three genotypes of SNP1 and SNP2. The dark-shaded cells have been
labeled “high-risk” using a threshold of T = 1. The light-shaded cells have been labeled
“low-risk”. B) illustrates the distribution of cases and controls when the two functional
SNPs are considered jointly. A new single attribute is constructed by pooling the “high-risk”
genotype combinations into one group (G1) and the low-risk” into another group (G0).
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Figure 2.
Comparison of the power (upper lines) and type I error (lower lines) of MDR using then
Gumbel EVD estimated from 5, 10, and 20 permutations. Results are shown in separate
panels for each sample size (200, 400, 800, and 1600). Heritabilities are represented on the
x-axis. The power using Gumbel EVD estimated from 5, 10, and 20 permutations is
represented on the left hand y-axis while the type 1 error is represented on the right hand y-
axis. Note that the power and type I error is best for the EVD estimated from 20
permutations.
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Figure 3.
Comparison of the power (upper lines) and type I error (lower lines) of MDR using 1000-
fold permutation test and the Gumbel EVD estimated from 20 permutations. Results are
shown in separate panels for each sample size (200, 400, 800, and 1600). Heritabilities are
represented on the x-axis. The power using 1000-fold permutation test and the Gumbel EVD
estimated from 20 permutations is represented on the left hand y-axis while the type 1 error
is represented on the right hand y-axis. Note that the power and type I error using the EVD-
based test closely approximates that of the 1000-fold permutation test, especially for the
larger sample sizes.
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Table I

Penetrance values for a two locus M170 epistatic model

(0.25)AA (0.50)Aa (0.25)aa

(0.25)BB 0.0 0.1 0.0

(0.50)Bb 0.1 0.0 0.1

(0.25)bb 0.0 0.1 0.0

*
Genotype frequencies labeled in parentheses
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