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Abstract In this paper we build on an approach proposed by
Zou et al. (2014) for nonparametric changepoint detection.
This approach defines the best segmentation for a data set as
the one which minimises a penalised cost function, with the
cost function defined in term of minus a non-parametric log-
likelihood for datawithin each segment.Minimising this cost
function is possible using dynamic programming, but their
algorithm had a computational cost that is cubic in the length
of the data set. To speed up computation, Zou et al. (2014)
resorted to a screening procedure which means that the esti-
mated segmentation is no longer guaranteed to be the global
minimum of the cost function. We show that the screening
procedure adversely affects the accuracy of the changepoint
detection method, and show how a faster dynamic program-
ming algorithm, pruned exact linear time (PELT) (Killick et
al. 2012), can be used to find the optimal segmentation with
a computational cost that can be close to linear in the amount
of data. PELT requires a penalty to avoid under/over-fitting
the model which can have a detrimental effect on the qual-
ity of the detected changepoints. To overcome this issue we
use a relatively new method, changepoints over a range of
penalties (Haynes et al. 2016), which finds all of the optimal
segmentations for multiple penalty values over a continuous
range. We apply our method to detect changes in heart-rate
during physical activity.
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1 Introduction

Changepoint detection is an area of statistics broadly studied
across many disciplines such as acoustics (Guarnaccia et al.
2015; Lu and Zhang 2002), genomics (Olshen et al. 2004;
Zhang and Siegmund 2007) and oceanography (Nam et al.
2014). Whilst the changepoint literature is vast, many exist-
ingmethods are parametric. For example a commonapproach
is to introduce a model for the data within a segment, use
minus the maximum of the resulting log-likelihood to define
a cost for a segment, and then define a cost of a segmenta-
tion as the sum of the costs for each of its segments. See for
example Yao (1988), Lavielle (2005), Killick et al. (2012)
and Davis et al. (2006). Finally, the segmentation of the data
is obtained as the one that minimises a penalised version of
this cost (see also Frick et al. 2014, for an extension of these
approaches).

A second class of methods are based on tests for a single
changepoint, with the tests often defined based on the type
of change that is expected (such as change in mean), and the
distribution of the null-statistic for each test depending on
further modelling assumptions for the data (see e.g. Bai and
Perron 1998; Dette and Wied 2015). Tests for detecting a
single change can then be applied recursively to detect mul-
tiple changes, for example using binary segmentation (Scott
and Knott 1974) or its variants (e.g. Fryzlewicz 2014). For
a review of alternative approaches for change detection see
Jandhyala et al. (2013) and Aue and Horvth (2013).

Much of the existing literature on nonparametric methods
look at single changepoint detection (Page 1954; Bhat-
tacharyya and Johnson 1968; Carlstein 1988; Dumbgen
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1991). Several approaches are based on using rank statis-
tics such as the Mann–Whitney test statistic (Pettitt 1979).
Ross and Adams (2012) introduce the idea of using the
Kolmogorov–Smirnov and the Cramer-von Mises test statis-
tics; both of which use the empirical distribution function.
Other methods include using kernel density estimations
(Baron 2000), however these can be computationally expen-
sive to calculate.

There is less literature on the nonparametric multiple
changepoint setting. The single changepoint detection meth-
ods which have been developed using nonparametric meth-
ods do not extend easily to multiple changepoints. Within
the sequential changepoint detection literature one can treat
the problem as a single changepoint problem which resets
every time a changepoint is detected (Ross andAdams 2012).
Lee (1996) proposed a weighted empirical measure which
is simple to use but has been shown to have unsatisfactory
results. Under the multivariate setting Matteson and James
(2014) and James and Matteson (2015) proposed methods,
E-divisive and e-cp3o, based on clustering and probabilistic
pruning respectively. The E-divisive method uses an exact
test statistic with an approximate search algorithm whereas
the e-cp3o method uses an approximate test statistic with an
exact search algorithm. As a result e-cp3o is faster but lacks
slightly in the quality for the changepoints detected.

In this article we focus on univariate changepoint detec-
tion and we are interested in the work of Zou et al.
(2014) who propose a nonparametric likelihood based on the
empirical distribution. They then use a dynamic program-
ming approach, Segment Neighbourhood Search (Auger and
Lawrence 1989), which is an exact search procedure, to find
multiple changepoints. Whilst this method is shown to per-
formwell, it has a computational cost ofO(Mn2+n3)where
M is the maximum number of changepoints and n is the
length of the data. This makes this method infeasible when
we have large data sets, particularly in situations where the
number of changepoints increases with n. To overcome this,
Zou et al. (2014) propose an additional screening step that
prunes many possible changepoint locations. However, as
we establish in this article, this screening step can adversely
affect the accuracy of the final inferred segmentation.

In this paper we seek to develop a computationally effi-
cient approach to themultiple changepoint search problem in
the nonparametric setting.Our approach is an extension to the
methodofZouet al. (2014),whichuses the cumulative empir-
ical distribution function to define segment costs.Ourmethod
firstly involves simplifying the definition of the segment cost,
so that calculating the cost for a given segment involves com-
putation that isO(log n) rather thanO(n). Secondlyweapply
a different dynamic programming approach, pruned exact
linear time (PELT) (Killick et al. 2012), that is substantially
quicker than Segment Neighbourhood Search; for many sit-
uations where the number of changepoints increases linearly

with n, PELT has been proven to have a computational cost
that is linear in n.

We call the new algorithm ED-PELT, referring to the fact
we have adapted PELT with a cost function based on the
empirical distribution. A disadvantage of ED-PELT is that it
requires the user to pre-specify a value by which the addi-
tion of a changepoint is penalised. The quality of the final
segmentation can be sensitive to this choice, and whilst there
are default choices these do not always work well. How-
ever we show that the Changepoints for a Range of PenaltieS
(CROPS) algorithm (Haynes et al. 2016) can be used with
ED-PELT to explore optimal segmentations for a range of
penalties.

The rest of this paper is organised as follows. In Sect. 2 we
give details of the NMCD approach proposed by Zou et al.
(2014). In Sect. 3 we introduce our new efficient nonpara-
metric search approach, ED-PELT, and show how we can
substantially improve the computational cost of this method.
In Sect. 4 we demonstrate the performance of our method
on simulated data sets comparing our method with NMCD.
Finally in Sect. 5 we include some simulations which analyse
the performance of NMCD for different scenarios and then
we show how a nonparametric cost function can be beneficial
in situations where we do not know the underlying distribu-
tion of the data. In order to demonstrate our method we use
heart-rate data recorded whilst an individual is running.

2 Nonparametric changepoint detection

2.1 Model

The model that we refer to throughout this paper is as fol-
lows. Assume that we have data, x1, ..., xn ∈ R , that have
been ordered based on some covariate information such as
time or position along a chromosome. For v ≥ u we denote
xu:v = {xu, ..., xv}. Throughout we let m be the number of
changepoints, and the positions be τ1, . . . , τm . Furthermore
we assume that τi is an integer and that 0 = τ0 < τ1 < τ2 <

... < τm < τm+1 = n. Thus our m changepoints split the
data into m + 1 segments, with the i th segment containing
xτi−1+1:τi .

As in Zou et al. (2014) we will let Fi (t) be the (unknown)
cumulative distribution function (CDF) for the i th segment,
and F̂i (t) the empirical CDF. In other words

F̂i (t)= 1

τi − τi−1
×

⎛
⎝

τi∑
j=τi−1+1

1{x j < t} + 0.5 × 1{x j=t}
⎞
⎠.

(2.1)

Finally we let F̂(t) be the empirical CDF for the full data
set.
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2.2 Nonparametric maximum likelihood

If we have n data points that are independent and identi-
cally distributed with CDF F(t), then, for a fixed value of t ,
the empirical CDF will satisfy nF̂(t) ∼ Binomial(n, F(t)).
Hence the log-likelihood of F(t) is given by: n{F̂(t) log
(F(t)) + (1 − F̂(t)) log(1 − F(t))}. This log-likelihood is
maximised by the value of the empirical CDF, F̂(t). We can
thus use minus the maximum value of this log-likelihood as
a segment cost function. So for segment i we have a cost that
is −Lnp(xτi−1+1:τi |t) where

Lnp(xτi−1+1:τi |t) = (τi − τi−1) × [F̂i (t) log F̂i (t)
+ (1 − F̂i (t)) log(1 − F̂i (t))]. (2.2)

We can then define a cost of a segmentation as the sum of the
segment costs. Thus to segment the datawithm changepoints
we minimise −∑m+1

i=1 Lnp(xτi−1+1:τi |t).

2.3 Nonparametric multiple changepoint detection

One problem with the segment cost as defined by (2.2) is
that it only uses information about the CDF evaluated at one
value of t and that the choice of t can have detrimental effects
on the resulting segmentations. To overcome this Zou et al.
(2014) suggest defining a segment cost which integrates (2.2)
over different values of t . They suggest a cost function for a
segment with data xu:v that is

∫ ∞

−∞
−Lnp(xu:v|t)dw(t), (2.3)

with a weight, dw(t) = {F(t)(1 − F(t))}−1dF(t), that
depends on the CDF of the full data. This weight is cho-
sen to produce a powerful goodness of fit test (Zhang 2002).
As this is unknown they approximate it by the empirical CDF
of the full data, and then further approximate the integral by
a sum over the data points. This gives the following objective
function

QNMCD(τ1:m |x1:n) = −n
m+1∑
i=1

n∑
t=1

(τi − τi−1)

× F̂i (t) log F̂i (t) + (1 − F̂i (t)) log(1 − F̂i (t))

(t − 0.5)(n − t + 0.5)
. (2.4)

For a fixed m this objective function is minimised to find the
optimal segmentation of the data.

In practice a suitable choice of m is unknown, and Zou
et al. (2014) suggest estimating m using the Bayesian Infor-
mation criterion (Schwarz 1978). That is, they minimise

BIC = min
m|τ1,...,τm

{QNMCD(τ1:m |x1:n) + mξn} , (2.5)

where ξn is a sequence going to infinity.

2.4 NMCD algorithm

To maximise the objective function (2.4), Zou et al. (2014)
use the dynamic programming algorithm Segment Neigh-
bourhood Search (Auger and Lawrence 1989). This algo-
rithm calculates the optimal segmentations, given a cost
function, for each value of m = 1, . . . , M , where M is a
specified maximum number of changepoints to search for. If
all the segment costs have been pre-computed then Segment
Neighbourhood search has a computational cost ofO(Mn2).
However for NMCD the segment cost involves calculating

n∑
t=1

F̂i (t) log F̂i (t) + (1 − F̂i (t)) log(1 − F̂i (t))

(t − 0.5)(n − t + 0.5)
,

and thus calculating the cost for a single segment is O(n).
Hence the cost of precomputing all segment costs is O(n3),
and the resulting algorithm has a cost that is O(Mn2 + n3).

To reduce the computational burden when we have long
data series, Zou et al. (2014) propose a screening step.
They consider overlapping windows of length 2NI for some
NI ∈ R. For each window they calculate the Cramér-von
Mises (CvM) statistic for a changepoint at the centre of the
window. They then compare these CvM statistics, each cor-
responding to a different changepoint location, and remove
a location as a candidate changepoint if its CvM statistic is
smaller than any of the CvM statistics for locations within
NI of it. The number of remaining candidate changepoint
positions is normally much smaller than n and thus the
computational complexity can be substantially reduced. The
choice of NI is obviously important, with larger values lead-
ing to the removal of more putative changepoint locations,
but at the risk or removing true changepoint locations. In
particular, the rationale for the method is based on NI being
smaller than any segment that youwish to detect.As a default,
Zou et al. (2014) recommend choosing NI = �(log n)3/2/2�
where �x� denotes the smallest integer which is larger than
x .

3 ED-PELT

Herewedevelop a new, computationally efficient,way to seg-
ment data using a cost function based on (2.3). This involves
firstly an alternative numerical approximation to the integral
(2.3), which is more efficient to calculate. In addition we
use a more efficient dynamic programming algorithm, PELT
(Killick et al. 2012), to then minimise the cost function.
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3.1 Discrete approximation

To reduce the cost of calculating the segment cost,we approx-
imate the integral by a sumwith K << n terms. The integral
in (2.3) involves a weight, and we first make a change of vari-
ables to remove this weight.

Lemma 3.1 Let c = − log(2n − 1). For z ∈ [−1, 1] define
p(z) = (1 + exp{cz})−1. Then

∫ 2n−1
2n

1
2n

Lnp(xu:v|t){F(t)(1 − F(t))}−1dF(t)

= −c
∫ 1

−1
Lnp(xu:v|F−1(p(z)))dz. (3.1)

Proof This follows from making the change of variable
F(t) = p(z). �	
Using Lemma 3.1, we suggest the following approxima-
tion, based on an approximation of (3.1) using K unevenly
spaced x-values. We choose these x-values specifically to
give higher weight to values in the tail of the distribution
of the data. Our approximation achieves this through a sum
where each term has equal weight, but where the x-values we
choose are preferentially chosen from the tail of the distribu-
tion. That is we fix K , and let t1, . . . , tK be such that tk is the
(1 + (2n − 1) exp{ c

K (2k − 1)})−1 empirical quantile of the
data, where c is defined in Lemma 3.1. then we approximate
(2.3) by

CK (xu:v) = −2c

K

K∑
k=1

Lnp(xu:v|tk). (3.2)

The cost now for calculating the segment costs is O(K ).
We show empirically in Sect. 4 that this choice of K can lead
to segment costs of O(log n).

3.2 Use of PELT

We now turn to consider how the PELT approach of Kil-
lick et al. (2012) can be incorporated within this framework.
The PELT dynamic programming algorithm is able to solve
minimisation problems of the form

QPELT(x1:n|ξn) = min
m,τ1:m

{
m+1∑
i=1

[CK (xτi−1+1:τi ) + ξn]
}

.

It jointly minimises over both the number and position of the
changepoints, but requires the prior choice of ξn , the penalty
value for adding a changepoint. The PELT algorithm uses

the fact that QPELT(x1:n) is the solution of the recursion, for
v > 1

QPELT(x1:v|ξn) = min
u<v

(QPELT(x1:u) + CK (xu+1:v) + ξn) .

(3.3)

The interpretation of this is that the term in the brackets on
the right-hand side of Eq. 3.3 is the cost for segmenting x1:v
with the most recent changepoint at u. We then optimise
over the location of this most recent changepoint. Solving
the resulting set of recursions leads to an O(n2) algorithm
(Jackson et al. 2005), as (3.3) needs to be solved for v =
2, . . . , n; and solving (3.3) for a given value of v involves a
minimisation over v terms.

The idea of PELT is that we can substantially speed up
solving (3.3) for a given v by reducing the set of values of
u we have to minimise over. This can be done through a
simple rule that enables us to detect time points u which can
never be the optimal location of the most recent changepoint
at any subsequent time. For our application this comes from
the following result

Theorem 3.2 If at time v, we have u < v such that

QPELT(x1:uξn) + CK (xu+1:v) ≥ QPELT(x1:v|ξn), (3.4)

then for any future time T > v, u can never be the time of
the optimal last changepoint prior to T .

Proof This follows fromTheorem3.1 ofKillick et al. (2012),
providing we can show that for any u < v < T

CK (xu+1:T ) ≥ CK (xu+1:v) + CK (xv+1:T ). (3.5)

As CK (·) is a sum of k terms, each of the form −Lnp(·|tk)
we need only show that for any t

Lnp(xu+1:T |t) ≤ Lnp(xu+1:v|t) + Lnp(xv+1:T |t).

Now if we introduce notation that F̂u,v(t) is the empirical
CDF for data xu:v , we have

Lnp(xu+1:T |t) = (T − u)[F̂u,T (t) log(F̂u,T (t))

+ (1 − F̂u,T (t)) log(1 − F̂u,T (t))]
= {(v − u)[F̂u,v(t) log(F̂u,T (t))

+ (1 − F̂u,v(t)) log(1 − F̂u,T (t))]
+ (T − v)[F̂v,T (t) log(F̂u,T (t))

+ (1 − F̂v,T (t)) log(1 − F̂u,T (t))]}
≤ Lnp(xu+1:v|t) + Lnp(xv+1:T |t),

as required. �	
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Thus at each time-point we can check whether (3.4) holds,
and if so prune time-point u. Under certain regularity con-
ditions, Killick et al. (2012) show that for models where the
number of changepoints increases linearly with n, such sub-
stantial pruning occurs that the PELT algorithm will have an
expected computational cost that is O(n). We call the result-
ing algorithm we obtain ED-PELT (PELT with a cost based
on the empirical distribution).

4 Results

4.1 Performance of NMCD

We firstly compare the NMCD algorithm with (NMCD+)
and without screening (NMCD) using the nmcdr R pack-
age (Zou and Zhange (2014)), with the default choices ξn
(Bayesian Information Criterion) and in the NMCD+ algo-
rithm NI as detailed in Section 2.4. We set up a similar
simulation as in Zou et al. (2014). That is, we simulate data
of length n = 1000 from the following three models, where
J (x) = {1 + sgn(x)}/2.

Model 1: xi = ∑M
j=1 h j J (nti − τ j ) + σξi , where

{τ j/n} = {0.1, 0.13, 0.15, 0.23, 0.25, 0.40, 0.44,
0.65, 0.76, 0.78, 0.81},

{h j } = {2.01,−2.51, 1.51,−2.01, 2.51,

− 2.11, 1.05, 2.16,−1.56, 2.56,−2.11},

and there are n equally spaced ti in [0, 1].

Model 2: xi = ∑M
j=1 hi J (nti−τ j )+σξi

∏∑M
j=1 J (nti−τ j )

j=1 v j ,
where

{τ j/n} = {0.20, 0.40, 0.65, 0.85}, {h j } = {3, 0,−2, 0},
and {v j } = {1, 5, 1, 0.25}.

Model 3: xi ∼ Fj (x), where τ j/n = {0.20, 0.50, 0.75},
j = 1, 2, 3, 4, and F1(x), ..., F4(x) corresponds to the stan-
dard normal, the standardized χ2

(3) (with zero mean and unit

variance), the standardized χ2
(1) and the standard normal dis-

tribution respectively.
The first model has M = 11 changepoints, all of which

are changes in location. Model 2 has both changes in loca-
tion and in scale and model 3 has changes in skewness and in
kurtosis. For the first two models we also consider three dis-
tributions for the error, ξi : N (0, 1), Student’s t distribution
with 3 degrees of freedom and the standardised chi-square
distribution with one degree of freedom, χ2

(1).

To compare both the NMCD and NMCD+ we first look
at the true and false discovery rates. That is a detected
changepoint τ̂i is true if min1≤ j≤m{|τ̂i − τ j |} ≤ h, where
m is the true number of changepoints and h is some thresh-
old. In this case we will use h = 0. That is a detected
changepoints is only counted as true if it is in the correct
location. The number of true detected changepoints is thus
m̂TRUE = ∑m̂

i=1 1min1≤ j≤m {|τ̂i−τ j |}≤0, where m̂ is the number
of detected changepoints. The true discovery rate (TDR) and
false discovery rate (FDR) are then calculated as:

TDR = m̂TRUE

m
, FDR = m̂FALSE

m̂
= 1 − m̂TRUE

m̂
. (4.1)

It is clear from Table 1 that using the screening step
(NMCD+) significantly improves the computational cost of
NMCD. However using this screening step comes at a cost
of not correctly detecting the true changepoints. It can be
seen that in all cases NMCD+ detects fewer true positives
and more false positives than NMCD.

These measures provide a good evaluation of the number
as well as location of changepoints. In order to explore the
accuracy of the changepoint locations further we can use the
distance measures as in Zou et al. (2014). That is we can
use the worst case distance between the true changepoint set
and the false changepoint set as in Boysen et al. (2009). If
we set τ as the set of true changepoints and τ̂ as the set of
detected changepoints then the over-segmentation and under-
segmentation error are calculated, respectively, as:

d(τ̂ , τ ) = max
1≤i≤m̂

min
1≤ j≤m

|τ̂i − τ j | and

d(τ , τ̂ ) = max
1≤ j≤m

min
1≤i≤m̂

|τ j − τ̂i |. (4.2)

Table 2 gives the average of over-segmentation and under-
segmentation error for NMCD and NMCD+ as well as the
number of detected changepoints. The over segmentation
error is higher forNMCD+ than it is for NMCD in allmodels.
In model 1 with the Normal errors both NMCD and NMCD+
found the same number of changepoints for all models but
on average NMCD was more accurate than NMCD+. The
under segmentation error is comparable for both NMCD and
NMCD+ for all models except model 1 with Student’s t dis-
tribution error where the under segmentation error is much
higher for NMCD than NMCD+ and in model 2 with chi-
squared error where the under-segmentation error is much
higher for NMCD+ than NMCD. In all cases NMCD+ found
the same or less number of changepoints than NMCD but
closer to the true number. However even though NMCD+
detected the true number of changepoints more we see that
the locations of these changepoints were most of the time
less accurate than NMCD.
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4.2 Size of screening window

We now turn to consider the choice for the size of the screen-
ing window NI further. Using Model 1 with normal errors
we can compare the results for different values of NI . The
default value for this data is NI = 10, but we now repeat the
analysis using NI ∈ {1, . . . , 20}. Figure 1a shows a bar plot
of the number of times (in 100 simulations) that the window
size resulted in the same changepoints as using NMCDwith-
out screening. Figure 1b shows the number of changepoints
detected with different window lengths and Fig. 1c looks at
the number of true and false positives found using the differ-
entwindow lengths in the screening step. Figure 1d shows the
computational time taken for NMCD+ with varying window
lengths NI . We found similar results for the other models.
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Fig. 1 aThe number of replications out of 100 inwhich usingNMCD+
with varying NI results in the same results as NMCDwithout screening.
b The number of changepoints detected with with increasing window

size NI . c The proportion of true changepoints detected with vary-
ing window size NI . d The computational time (s) for NMCD+ with
increasing window size NI

It is clear that whilst in the majority of the cases NMCD+
with the different NI find the correct number of change-
points the location of these are not always correct and in
fact are different than that found using NMCD. It is also
worth noting that even though many window sizes find 11
changepoints the location of these may be different for dif-
ferent window lengths. In general the performance decreases
as window length increases however the results do fluctuate a
bit. This shows that the performance of NMCD+ is sensitive
to the choice of the window size. Despite this we can see that
NMCD+ is significantly faster than NMCD especially as the
window length increases.

The NMCD method also requires us to choose a penalty
value in order to pick the best segmentation. The default
choice appears to work reasonably well, but resulted in slight

123



1300 Stat Comput (2017) 27:1293–1305

Fig. 2 a The proportion of true
positive changepoints for a
range of quantiles, K , in
ED-PELT (solid) in comparison
to ED-PELT (dashed). Black
n = 100, red n = 500, blue:
n = 1000, grey n = 2000 and
dark green n = 5000. b Relative
speed of using ED-PELT
compared to using ED-PELT.
with varying number of
quantiles, K . Black n = 100,
red n = 500, blue n = 1000 ,
grey n = 3000, dark green
n = 5000 and purple n =10,000.
(Color figure online)
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over-estimates of the number of changepoints for our three
simulation scenarios. These over-estimates suggest that the
penalty value has been too small.

4.3 Choice of K in ED-PELT

We now turn our attention to ED-PELT. In order to use
the improvement suggested in Sect. 3.1 for ED-PELT we
first of all need to decide on an appropriate value for
K . We use Model 1 again to assess the performance of
ED-PELT using only K quantiles of the data (ED-PELT),
for a range of values of K , in comparison to ED-PELT
using the full data set. Here we only look at the model
with normal errors and simulate data-series with lengths
n = (100, 500, 1000, 2000, 5000, 10000). Further simula-
tions using different error terms gave similar results. In order
to assess performance we look at the proportion of true posi-
tives detected using bothmethods and also the computational
cost. Again we use 100 replications. The results for the accu-
racy can be seen in Fig. 2a.

We can see from Fig. 2a that as the number of quantiles
increases the proportion of true change points detected using
ED-PELT converges to the same result as ED-PELT. As the
length of the data increases this convergence appears to hap-
pen more slowly, this can be seen from the purple line in
Fig. 2a, which represents data of length 10000. We suggest
using K = �4 log(n)� in order to conserve as much accuracy
as possible. This choice corresponds to K = 19, 25, 28, 31,
35 and 37 for n = 100, 500, 1000, 2000, 5000 and 10,000
respectively.

In addition to the accuracy we also look at the relative
speed up of ED-PELT with various K values in comparison
to ED-PELT, i.e.,

(speed of ED-PELT)

speed of ED-PELT
.

The results of this analysis can be seen in Fig. 2b. Clearly
as the number of quantiles increases the relative speed up
decreases. This is expected since the number of quantiles
is converging to the whole data set which is used in ED-
PELT.We can also see that the relative speed up of ED-PELT
increases with increasing data length.

4.4 Comparison of NMCD and ED-PELT

We next compare ED-PELT with K = 4 log(n) to NMCD as
above. For this we perform an equivalent analysis to that of
Sect. 4.1 and again look at the accuracy of the methods and
the computational time. As before, to implement NMCD we
used the nmcdr R package (Zou and Zhange 2014) which
is written in FORTRAN with an R user interface. We use the
changepoint.np R package (Haynes 2016) to run ED-
PELT which also has an R interface but with the main body
of the code written in C. We use the default parameters for
nmcd and for ED-PELT we use the SIC/BIC penalty term,
2p log(n), where p is the number of parameters, to match
the penalty term used in the nmcd algorithm.

The results for ED-PELT can be found in Tables 1 and 2.
In terms of accuracy we can see that ED-PELT is compara-
ble to NMCD albeit lacking slightly in some of the measures,
however it is significantly faster to run. We can also see from
table 2 that ED-PELT has lower under-segmentation error
than NMCD in most of the models, however it has a higher
segmentation error. In comparison to NMCD+, EP-PELT+ is
faster and also more accurate so would be the better approx-
imate method to choose.

5 Activity tracking

In this section we apply ED-PELT to try to detect changes in
heart-rate during a run.Wearable activity trackers are becom-
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ing increasingly popular devices used to record step count,
distances (based on the step count), sleep patterns and in
some of the newer devices, such as the Fitbit change HR
(Fitbit Inc., San Francisco, CA), heart-rate. The idea behind
these devices is that the ability tomonitor your activity should
help you lead a fit and active lifestyle. Changepoint detection
can be used in daily activity tracking data to segment the day
into periods of activity, rest and sleep.

Similarly, many keen athletes, both professional and ama-
teur, also use GPS sports watches which have the additional
features of recording distance and speed which can be very
beneficial in training, especially in sports such as running and
cycling. Heart-rate monitoring during training can helpmake
sure you are training hard enough without over training and
burning out. Heart-rate is the number of heart beats per unit
time, normally we express this as beats per minute (bpm).

5.1 Changepoints in heart-rate data

In the changepoint and signal processing literature many
authors have looked at heart-rate monitoring in different
scenarios (see for example Khalfa et al. (2012); Galway
et al. (2011); Billat et al. (2009); Staudacher et al. (2005)).
Aubert et al. (2003) give a detailed review of the influence of
heart-rate variability in athletes. They highlight the difficulty
of analysing heart-rate measurements during exercise since
no steady state is obtained due to the heart-rate variability
increasing according to the intensity of the exercise. They
note that one possible solution is to pre-process the data to
remove the trend.

In this section we apply ED-PELT to see whether changes
can be detected in the raw heart-rate time series without hav-
ing to initially pre-process the data. We use a nonparametric
approach sinceheart-rate is a stochastic timedependent series
and thus does not satisfy the conditions for an IID Normal
model. However we will compare the performance had we
assumed that the data was Normal in Sect. 5.3. The aim is
to develop a method which can be used on data recorded
from commercially available devices without the need to pre-
process the data.

5.2 Range of penalties

One disadvantage of ED-PELT over NMCD is that ED-PELT
produces a single segmentation, which is optimal for the
pre-chosen penalty value ξn . By comparison, NCMD finds
a range of segmentations, one for each of m = 1, . . . , M
changepoints (though, in practice, the nmcdr package only
outputs a single segmentation). Whilst there are default
choices for ξn , these do not always work well especially in
real-life applications where the assumptions they are based
on do not hold. There are also advantages to being able to

compare segmentations with different number of change-
points.

Haynes et al. (2016) propose amethod, Changepoints over
aRangeOf PenaltieS (CROPS),which efficiently finds all the
optimal segmentations for penalty values across a continuous
range. This involves an iterative procedure which chooses
values of ξn to run ED-PELT on, based on the segmenta-
tions obtained from previous runs of ED-PELT for different
penalty values. Assume we have a given range [ξmin, ξmax]
for the penalty value, and the optimal segmentations at ξmin

and ξmax have mmin and mmax changepoints respectively.
Then CROPS requires at most mmin −mmax + 2 runs of ED-
PELT to be guaranteed to find all optimal segmentations for
ξn ∈ [ξmin, ξmax]. Furthermore, it is possible to recycle many
of the calculations from early runs of ED-PELT to speed up
the later runs.

5.2.1 Nonparametric changepoint detection

An example data set is given in Fig. 4, where we show heart-
rate, speed and elevation recorded during a 10 mile run. We
will aim to segment this data using the heart-rate data only,
but include the other two series in order that we may assess
how well the segmentation of the heart-rate data relates to
the obvious different phases of the run. As is common in
nonparametric methods, ED-PELT assumes that data is IID
which in the case of heart-rate data the assumptions do not
hold since there is some time-series dependence between
segments. However for the moment we will assume all the
assumptions hold and that we can use thismethod. In training
many people use heart-rate as an indicator of how hard they
are working. There are different heart-rate zones that you
can train in each of which enhances different aspects of your
fitness (BrainMacSportsCoach 2015). The training zones are
defined in terms of percentages of a maximum heart-rate:
peak (90–100 %), anaerobic (80–90 %), aerobic (70–80 %)
and recovery (<70 %).

This example looks at detecting changes in heart-rate over
a long undulating run. We use CROPS with ED-PELT with
ξmin = 25, ξmax = 200 and K = 4 log(n) (the results are
similar for different K ). In order to choose the best segmenta-
tion we use the approach suggested by Lavielle (2005). This
involves plotting the segmentation cost against the number
of changepoints and then looking for an “elbow” in the plot.
The points on the “elbow” are then suggested to be the most
feasible segmentations. The intuition for this method is that
as more true changepoints are detected the cost will decrease
however as we detect more changepoints we are likely to be
detecting false positives and as such the cost will not decrease
as much. The plot of the “elbow” for this example can be
seen in Fig. 3a. The elbow is not always obvious therefore
the choice can be subjective, in high throughput situations
you can often learn a good choice of penalty through com-
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Fig. 3 The cost vs number of
changepoints plotted for a
ED-PELT and b Change in
slope. The red lines indicate the
elbow and the blue circle
highlights the point that we use
as being the centre of the elbow.
(Color figure online)
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Fig. 4 Segmentations using ED-PELT with 10 changepoints. We have colour coded the line based on the average heart-rate of each segment where
red peak, orange anaerobic, yellow aerobic and green recovery. (Color figure online)
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Fig. 5 Segmentations using change in slope with 9 changepoints. We
have colour coded the line based on the average heart-rate of each
segment where red peak, orange anaerobic, yellow aerobic and green

recovery. The solid black line in the top plot is the best fit for the mean
within each segment. (Color figure online)

paring segmentations for a range of training data sets (see
Hocking et al. (2013)). However in this example the elbow
approach this gives us amethod for roughly choosing the best
segmentations which we can then explore further. We have
highlighted the points on the “elbow” as the points which are
between the two red lines.

We decided from this plot that the segmentations with 9,
10, 12 and 13 changepoints are the best. We illustrate the
segmentation with 10 changepoints, the number of change-
points at the centre of the elbow in Fig. 3a indicated by the
blue circle, in Fig. 4. The segments have been colour coded
based on the average heart-rate in each segment. That is red:
peak, orange: anaerobic, yellow: aerobic and green: recovery.
Alternative segmentations from the number of changepoints
on the elbow can be found in the supplementary material.

We superimpose the changepoints detected in the heart-
rate onto the plots for speed and elevation to see if we can
explain any of the changepoints. The first segment captures
the “warm-up”where the heart-rate is on average in the recov-
ery zone but is rising to the anaerobic zone. The heart-rate in
the second segment is in the anaerobic zone but changes to
the peak zone in segment three. This change initially corre-
sponds to an increase in speed and then it is because of the
steep incline. The third changepoint matches up to the top of
the elevation which is the start of the fourth segment where
the heart-rate drops into the anaerobic zone whilst running
downhill. The fifth segment is red which might be as a result
of both the speed being slightly higher than the previous seg-
ment and consistent, and a slight incline in elevation. This
is followed by a brief time in the aerobic zone which could
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be due to a drop in speed. The heart-rate in the next three
segments stays in the anaerobic zone. The changepoints that
split this section into three segments relate to the dip in speed
around 75 min. In the final segment the heart-rate is in the
peak zone which corresponds to an increase in elevation and
an increase in speed (a sprint finish). We believe ED-PELT
has found sensible segmentations that can be related to dif-
ferent phases of the run and regimes in heart-rate activity
despite the data not satisfying the independence assumption.

5.3 Piece-wise linear model

For comparisonwe look at estimating the changepoints based
on a penalised likelihood approach that assumes the data
is normally distributed with a mean that is piecewise linear
within each segment. To find the best segmentation we use
PELT with a segment cost proportional to minus the log-
likelihood of our model:

C(ys:t ) = minθ1,θ2

t∑
u=s

(yu − θ1 − uθ2)
2, (5.1)

where θ1 and θ2 and the estimates of the segment intercept
and slope, respectively. We use CROPS to find the best seg-
mentation under this criteria for a range of penalties. The
resulting elbow plot can be seen in Fig. 3b. We can see that
the number of changepoints for the feasible segmentations is
similar to the number of changepoints for using ED-PELT.
Figure 5 shows the segmentation with 9 changepoints which
we have deduced to being the number of changepoints in
the centre of the elbow in Fig. 3b. Alternative segmentations
from the number of changepoints on the elbow can be found
in the supplementary material.

It is obvious from the first look at Fig. 5 that the change
in slope method has not detected segments where the aver-
age heart-rate is different to the surrounding segments. The
majority of the plot is coloured orange with only changes in
the first and last segments. The change in slope method splits
the “warm-up” period into two segments whereas having this
as one segment appears more appropriate. Unlike ED-PELT
the change in slope does not detect changes which corre-
spond to the change in elevation and thus ED-PELT appears
to split the heart-rate data into more appropriate segments
which relate to different phases of the run.

6 Conclusion

We have developed a new algorithm, ED-PELT, to detect
changes in data series where we do not know the underlying
distribution.Ourmethod is an adaption of theNMCDmethod
proposedbyZou et al. (2014)whichdefines the segment costs
of a data series based on the cumulative empirical distribution

function and then uses an exact search algorithm to detect
changes. The main advantage of ED-PELT over NMCD is
that it is orders of magnitude faster. We initially reduced the
time to calculate the cost of a segment fromO(n) toO(log n)

by simplifying the definition of the segment cost by discrete
approximation. To improve the computational cost Zou et al.
(2014) use a screening step but as we show in Sect. 4 this
is still slower than ED-PELT and less accurate. The main
reason for this is we use an exact search algorithm, PELT,
(Killick et al. 2012) that uses inequality based pruning to
reduce the number of calculations. This search algorithm is
much quicker than the one used in Zou et al. (2014).

The main problem with PELT is it requires a penalty
value to avoid under/over-fitting and the performance is detri-
mental to this choice. We overcome this problem by using
CROPS (Haynes et al. 2016), which detects the changepoints
for multiple penalty values over a continuous range. Future
research could look at an alternative pruning method, cp3o,
proposed by James and Matteson (2015) which used proba-
bilistic pruning. This method doesn’t require a penalty value
however there are some mild conditions required for this
search method which would need to be checked with the
empirical distribution cost function.

We have also shown that nonparametric changepoint
detection, using ED-PELT, holds promise for segmenting
data from activity trackers. We applied our method to heart-
rate data recorded during a run. As is common for current
nonparametric approaches to changepoint detection, our
method is based on the assumption that the data is indepen-
dent and identically distributedwithin a segment.Despite this
we were able to segment the data into meaningful segments,
using an appropriately chosen penalty value, that correspond
to different phases of the run and can be related to different
regimes in heart-rate activity.

Code implementing ED-PELT is contained within the R
library changepoint.np which is available on CRAN
(Haynes 2016).
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