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This paper proposes a computationally efficient simulation-based optimization (SO) algorithm suitable to
address large-scale generally constrained urban transportation problems. The algorithm is based on a novel

metamodel formulation. We embed the metamodel within a derivative-free trust region algorithm and evaluate the
performance of this SO approach considering tight computational budgets. We address a network-wide traffic
signal control problem using a calibrated microscopic simulation model of evening peak period traffic of the full
city of Lausanne, Switzerland, which consists of more than 600 links and 200 intersections. We control 99 signal
phases of 17 intersections distributed throughout the entire network. This SO problem is a high-dimensional
nonlinear constrained problem. It is considered large-scale and complex in the fields of derivative-free optimization,
traffic signal optimization, and simulation-based optimization. We compare the performance of the proposed
metamodel method to that of a traditional metamodel method and that of a widely used commercial signal control
software. The proposed method systematically and efficiently identifies signal plans with improved average
city-wide travel times.
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1. Introduction
The massive amount and variety of mobility data that
can now be collected through, for instance, ubiqui-
tous mobile devices, is enhancing our fundamental
understanding of individual mobility. For instance, it
improves our understanding of the intricate behavior
of travelers—e.g., how they make activity and thereby
travel decisions and how these decisions are motivated
by an underlying objective to enhance their well-being.

State-of-the-art microscopic traffic simulation models
embed such disaggregate models of traveler behavior
(e.g., departure time choice, multimodal route choice,
and access and response to en route traffic information)
and account for behavior heterogeneity. They represent
individual vehicles and can therefore be coupled with
vehicle-specific simulators (e.g., propulsion simula-
tors) to yield detailed estimates of the performance
of vehicles (e.g., energy consumption or emissions
estimates) in networks with complex topologies and
complex traffic dynamics. Additionally, microscopic
simulators provide a detailed representation of the
underlying supply (e.g., variable message signs and
public transport priorities).

Microscopic traffic simulators describe in detail the
interactions between (i) vehicle performance, (ii) trav-
eler behavior, and (iii) the underlying transportation

infrastructure, and they yield an elaborate description
of traffic dynamics in urban networks. They are there-
fore suitable tools to address transportation problems
that should account for a detailed representation of
these three components.
Microscopic simulators are popular tools used in

practice to evaluate the performance of a set of pre-
determined transportation strategies. Cities such as
Toronto, New York, Boston, Stockholm, and Hong Kong
have used these tools to inform their planning and
operations decisions (Traffic Technology International
2012a, b; Papayannoulis et al. 2011; Toledo et al. 2003;
Hasan 1999).
For a given strategy, these simulators can provide

accurate and detailed performance estimates. Their
use is mostly limited to what-if analysis (also called
scenario-based analysis) or sensitivity analysis. That is,
they are used to evaluate the performance of a set of
predetermined transportation alternatives (e.g., traffic
management or network design alternatives), such as
in Bullock et al. (2004); Ben-Akiva et al. (2003); Hasan,
Jha, and Ben-Akiva (2002); Stallard and Owen (1998);
Gartner and Hou (1992) and Rathi and Lieberman
(1989). See further references in Ben-Akiva et al. (2003).

The numerous models of disaggregate traveler behav-
ior, vehicle-performance, and supply components lead
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to detailed performance estimates yet also to models
that are expensive to develop and calibrate and com-
putationally expensive to evaluate. Thus, an accurate
estimation of performance is computationally costly to
obtain. Additionally, these simulators derive stochastic
nonlinear, and typically nonconvex, performance mea-
sures with no closed-form available. For these reasons,
the use of these simulators to address optimization
problems is a challenge.

Currently, the use of these simulation tools is mostly
limited to what-if analysis. With the ubiquity of access
to real-time traffic information, and the increasing
number of prevailing and interacting traffic control
strategies, traffic dynamics of congested networks are
becoming more intricate. Thus, determining a priori a
set of alternatives with good local and network-wide
performance is no longer feasible. Thus, there is a need
to embed these detailed simulators within optimization
frameworks to systematically identify alternatives
with improved local and network-wide performance.
Additionally, given the high cost of developing large-
scale simulation tools, transportation projects would
benefit from computationally efficient methods that
allow the use of simulators to go beyond a what-if
analysis.

This paper proposes a simulation-based optimization
(SO) method that allows large-scale urban transporta-
tion problems to be addressed with detailed micro-
scopic traffic simulators. We focus on problems where
the objective function is derived from the simulator
and, thus, no closed-form analytical expression is avail-
able. The problems have general (e.g., nonconvex)
constraints. Closed-form analytical and differentiable
expressions are available for all constraints (i.e., no
simulation-based constraints).

These urban transportation problems can be formu-
lated as

min
x∈ì

f 4x1 z3p5≡ E6F 4x1 z3p571 (1)

where the purpose is to minimize the expected value
of a given stochastic performance measure F , x denotes
the deterministic continuous decision vector, z denotes
other endogenous variables, and p denotes the deter-
ministic exogenous parameters. For instance, in this
paper we use the proposed SO approach to solve a
traffic signal control problem, where F denotes trip
travel time; x represents the green times of the signal
phases; z accounts, for instance, for signalized link
capacities and route choice decisions; and p accounts,
for instance, for the network topology, the total traffic
demand, and fixed lane attributes (e.g., length, grade,
and maximum speed). The feasible space ì consists of
a set of general, typically nonconvex, deterministic,
analytical, and differentiable constraints.

This paper proposes a technique that can efficiently
address generally constrained large-scale simulation-
based urban transportation problems. The performance

of the technique is evaluated by considering a network-
wide traffic signal control problem. This problem is
considered large-scale and complex for derivative-free
algorithms, signal control algorithms, and simulation-
based optimization algorithms.
Additionally, the paper focuses on SO techniques

with good short-term performance, i.e., computationally
efficient methods that can identify alternatives with
improved performance within a tight computational
budget. The computational budget can be defined
as a limited number of simulation runs or a limited
simulation run time. Such techniques respond to the
needs of transportation practitioners by allowing them
to address problems in a practical manner.
We present a review of past work in this field

in §2. In §3 of this paper, we present the methodology.
We then present the traffic signal control problem,
which is used to evaluate the scalability and short-term
performance of this approach (§4). Empirical results
are detailed in §5, followed by conclusions (§6).

2. Literature Review
Few SO methods that embed microscopic simulators
have been developed (Li et al. (2010); Stevanovic et al.
(2008); Branke, Goldate, and Prothmann (2007); Yun and
Park (2006); Hale (2005); Joshi, Rathi, and Tew (1995)).
The most common approach is the use of heuristic algo-
rithms and, in particular, the use of genetic algorithms
(see Yun and Park (2006) for a review). These methods
embed microscopic simulators within general-purpose
optimization algorithms. They treat the simulator as
a black box, using no a priori structural information
about the underlying transportation problem (e.g., net-
work structure). They therefore require a large number
of simulated observations to identify transportation
strategies (i.e., trial points) with improved performance.
This paper proposes an SO technique with good

short-term performance suitable for microscopic traffic
simulators to be used to address complex high-
dimensional problems. To derive computationally
efficient methods that embed inefficient simulators,
information from other more efficient (i.e., tractable)
models that provide analytical structural information
to the algorithm should be used throughout the opti-
mization process.

In general, methods to address SO problems can be
classified as direct-search methods, stochastic gradient
methods, and metamodel methods. For reviews of
SO methods, see Hachicha et al. (2010); Barton and
Meckesheimer (2006); Fu, Glover, and April (2005). This
paper focuses on metamodel methods. For a description
of why metamodel techniques are a suitable approach
to address complex simulation-based transportation
problems, see Osorio and Bierlaire (2013).
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Metamodel methods build an analytical approxima-
tion of the simulation-based components of the opti-
mization problem (e.g., objective function, constraints).
In this paper, the objective function is simulation-based.
Thus, the metamodel provides an analytical approx-
imation of the objective function. By resorting to a
metamodel approach, the stochastic response of the sim-
ulation is replaced by an analytical response function
(the metamodel) such that deterministic optimization
techniques can be used. Metamodel techniques use
an indirect-gradient approach—i.e., they compute the
gradient of the metamodel, which is a deterministic
function. Thus, traditional deterministic gradient-based
optimization algorithms for generally constrained prob-
lems can be used.

Metamodel SO methods are iterative methods based
on the two main steps depicted in Figure 1. (For more
details see Osorio and Bierlaire (2013).) Step 1 fits
the metamodel based on the current sample of simu-
lated observations. Step 2 uses the fitted metamodel to
perform optimization and derive a trial point (e.g., a
suitable traffic management or network design alter-
native). The performance of the trial point is then
evaluated by the simulator, which leads to new obser-
vations. As new observations become available, the
metamodel is fitted again (step 1), leading to more
accurate metamodels and ultimately to trial points
with improved performance (step 2).

Reviews of metamodels are given by Conn, Schein-
berg, and Vicente (2009b); Barton and Meckesheimer
(2006); and Søndergaard (2003). Metamodels can be
classified as either physical or functional (Søndergaard
2003). Physical metamodels are application- or problem-
specific metamodels. Their functional form and parame-
ters have a physical interpretation. Functional metamod-
els are general-purpose (i.e., generic) functions chosen
based on their analytical tractability. The most common




m x ∇m x


x

m
 f x

   

 x

Figure 1 Metamodel Simulation-Based Optimization Methods

Source. Adapted from Alexandrov et al. (1999).

general-purpose metamodel is the use of low-order
polynomials, particularly quadratic polynomials (Conn,
Scheinberg, and Vicente (2009b); Kleijnen (2008); Marti
(2008)). Other general-purpose metamodels include
spline models, radial basis functions, and Kriging
models (Kleijnen, van Beers, and van Nieuwenhuyse
(2010); Wild, Regis, and Shoemaker (2008); Barton and
Meckesheimer (2006)).
The existing metamodels consist of either physical

or functional components. Recent work has proposed
a metamodel that is a combination of a functional
and physical metamodel (Osorio and Bierlaire 2013).
The functional component ensures asymptotic meta-
model properties necessary for convergence analysis
(such as full linearity (Conn, Scheinberg, and Vicente
2009a)). The physical component is an analytical and
differentiable macroscopic traffic model. It provides
a problem-specific analytical approximation of the
objective function, unlike the generic approximation
provided by the functional component. The physi-
cal component therefore yields structural information
about the problem at hand, which enables the identifi-
cation of well-performing alternatives (i.e., trial points)
with small samples (i.e., good short-term algorithmic
performance). The physical component used here is an
analytical differentiable queueing network model. This
macroscopic traffic model is less detailed and accurate
than the simulator, but it is computationally efficient to
evaluate.

The combined use of functional and physical meta-
models allows information from the detailed, yet
inefficient microscopic simulator to be combined with
analytical information from a more efficient macro-
scopic model. This leads to an algorithm with a
good detail-tractability trade-off and good short-term
performance.
This physical and functional metamodel approach

has been used to efficiently address complex urban
transportation problems, such as signal control prob-
lems that account for detailed (also called microscopic)
vehicle-specific energy consumption patterns (Osorio
and Nanduri 2015), emissions patterns (Osorio and
Nanduri 2013), and reliable signal control problems that
used detailed full distributional travel time estimates
provided by the simulator to improve both average
travel times and travel time reliability (Chen, Osorio,
and Santos 2012).

This approach has been successfully used to control
networks with approximately 50 roads, yet is unsuitable
to address problems for much larger-scale networks.
This paper builds on this existing metamodel SO
technique (hereafter referred to as the initial method)
and proposes a metamodel that can efficiently address
high-dimensional simulation-based problems.
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3. Methodology

3.1. Metamodel Functional Form
Recall the general form of the urban transportation
problems that we address (Equation (1)). Since there is
no closed-form available for the objective function, f ,
we use a metamodel to approximate it. The functional
form of the metamodel used in this paper is that
proposed by Osorio and Bierlaire (2013). It combines a
physical and functional component. Its functional form
is given by

m4x1y3�1�1q5= �T 4x1y3 q5+�4x3�51 (2)

where � (the functional component) is a quadratic poly-
nomial in x with diagonal second-derivative matrix, T
(the physical component) represents the approximation
of the objective function proposed by the analytical
macroscopic traffic model, y are endogenous macro-
scopic model variables (e.g., queue length distributions),
q are exogenous macroscopic parameters (e.g., total
demand), and � and � are parameters of the metamodel.
The metamodel m can be interpreted as a macroscopic
approximation of the objective function provided by T ,
which is corrected parametrically by both a scaling
factor � and a separable error term �4x3�5. For details
regarding the choice of this functional form, we refer
the reader to Osorio and Bierlaire (2013).
In this paper, we use the same functional com-

ponent as in Osorio and Bierlaire (2013) (i.e., the
quadratic polynomial �). We propose a novel scal-
able physical component. In §3.2 we recall the for-
mulation of the physical component of the initial
metamodel and describe its limitations. We then
present the new formulation of the physical component
in §3.3.

3.2. Initial Queueing Network Model
The physical component of the initial metamodel is an
urban traffic model based on queueing network theory.
It combines ideas from existing traffic models, various
national urban transportation norms, and queueing
models. The detailed formulation of the model is given
in Osorio and Bierlaire (2009b) (which is based on the
more general queueing network model of Osorio and
Bierlaire 2009a). We outline here the main ideas of its
formulation.
Each lane of an urban road network is modeled as

a queue (and in some cases as a set of queues). To
account for the limited physical space that a queue
of vehicles may occupy, we resort to finite capacity
queueing theory, where there is a finite upper bound
on the length of each queue. Each lane is modeled
as a finite capacity M/M/1/k queue. The network
model analytically approximates the queue interactions
among adjacent lanes. Congestion and spillbacks are
modeled by what is known in queueing theory as

blocking. This occurs when a queue is full and thus
blocks arrivals from upstream queues at their cur-
rent location. This blocking process is described by
endogenous variables such as blocking probabilities
and unblocking rates. The model consists of a set of
nonlinear equations that capture these between-queue
interactions.
In the following notation, the index i refers to a

given queue:

�i external arrival rate,
�i total arrival rate,
�i service rate,
�̃i unblocking rate,

�eff
i effective service rate (accounts for both service

and eventual blocking),
�i traffic intensity,

P
f
i probability of being blocked at queue i,
ki upper bound of the queue length,
Ni total number of vehicles in queue i,
P4Ni = ki5 probability of queue i being full, also

known as the blocking or spillback probability,
pij transition probability from queue i to queue j ,

and
¤i set of downstream queues of queue i.

The queueing network model is formulated as
follows:







































































































�i = �i +

∑

j pji�j41− P4Nj = kj55

1− P4Ni = ki5
1 (3a)

1

�̃i

=
∑

j∈¤i

�j41− P4Nj = kj55

�i41− P4Ni = ki55�
eff
j

1 (3b)

1

�eff
i

=
1

�i

+ P
f
i

1

�̃i

1 (3c)

P4Ni = ki5=
1−�i

1−�
ki+1
i

�
ki
i 1 (3d)

P
f
i =

∑

j

pijP4Nj = kj51 (3e)

�i =
�i

�eff
i

0 (3f)

Equation (3a) is a flow conservation equation that
relates flow transmission between upstream and down-
stream queues. The factor 41−P4Ni = ki55 represents the
probability that queue i is not full (i.e., the queue can
receive flow from its upstream queues). If the queue
is full, it cannot receive flow from upstream queues,
which may lead to spillbacks. Equation (3b) defines
the rate at which spillbacks at queue i dissipate, �̃i.
Equation (3c) defines the rate at which queue i dissi-
pates accounting for both spillback and nonspillback
states, �eff

i . It is defined as a function of the service rate
of the queue, �i. The latter is determined by combining
ideas from national transportation norms and is a

D
o
w

n
lo

ad
ed

 f
ro

m
 i

n
fo

rm
s.

o
rg

 b
y
 [

1
8
.5

8
.5

.3
9
] 

o
n
 1

0
 A

u
g
u
st

 2
0
1
5
, 
at

 0
9
:0

9
 .
 F

o
r 

p
er

so
n
al

 u
se

 o
n
ly

, 
al

l 
ri

g
h
ts

 r
es

er
v
ed

. 



Osorio and Chong: Large-Scale Simulation-Based Transportation Optimization
Transportation Science 49(3), pp. 623–636, © 2015 INFORMS 627

function, for instance, of the free flow capacity of the
underlying lane. Equation (3d) defines the probability
that a queue is full—i.e., the spillback probability of
the underlying lane. This expression is derived from
finite capacity queueing theory (Bocharov et al. 2004).
Equation (3e) defines the probability of a vehicle being
blocked while in queue i—i.e., the probability that a
vehicle at the underlying lane is affected by spillback
from a downstream lane. Equation (3f) defines the
traffic intensity of a queue; it is also derived from
traditional finite capacity queueing formulae.

In this model, the exogenous parameters of a given
queue are �i, �i, pij , and ki. All other parameters are
endogenous. When used to solve a signal control prob-
lem, the flow capacity of the signalized lanes become
endogenous, which makes the corresponding service
rates, �i, endogenous. In that case, the exogenous
parameters are �i1 pij , and ki. This is a stationary model
with exogenous traffic assignment (the turning proba-
bilities pij are exogenous). As described in §6, analytical
tractable formulations that describe both traffic dynam-
ics and endogenous assignment are being developed
as part of ongoing work.

As described in §2, this model has been used to solve
signal control problems for medium-scale networks.
However, it is not sufficiently tractable to address
large-scale network problems. For instance, in the
case of the Lausanne city network (with more than
600 links and 200 intersections), the time needed by a
standard nonlinear optimization algorithm to solve the
trust-region (TR) subproblem (detailed in §4.2) exceeds
20 minutes. Since this TR subproblem is solved at every
iteration of the SO algorithm, it is critical to solve it
efficiently.
In this paper, we propose a more tractable and

scalable physical component of the metamodel. It is
an approximation of this initial queueing network
model. It consists of a simple system of one lin-
ear and two nonlinear equations. In particular, as is
detailed in §5.2, the TR subproblem is now solved
on average within less than two minutes. This signifi-
cantly enhances the computational efficiency of the SO
algorithm and allows us to efficiently address more
complex high-dimensional constrained transportation
problems.

3.3. Highly Tractable Queueing Network Model
We introduce the following two variables:

�eff
i effective arrival rate3

�eff
i effective traffic intensity0

These two new variables are defined by

�eff
i = �i41− P4Ni = ki551 (4)

�eff
i =

�eff
i

�eff
i

0 (5)

The highly tractable queueing network model is
given by







































�eff
i = �i41− P4Ni = ki55+

∑

j

pji�
eff
j (6a)

�eff
i =

�eff
i

�i

+

(

∑

j∈¤i

pijP4Nj = kj5

)(

∑

j∈¤i

�eff
j

)

(6b)

P4Ni = ki5=
1−�eff

i

1− 4�eff
i 5ki+1

4�eff
i 5ki 0 (6c)

Equation (6a) is obtained directly by inserting Equa-
tion (4) into Equation (3a). Equation (6b) is obtained as
follows. Multiply Equation (3b) and (3c), respectively,
by �eff

i to obtain

�eff
i

�̃i

=
∑

j∈¤i

�eff
j

�eff
j

1 (7)

�eff
i =

�eff
i

�i

+ P
f
i

�eff
i

�̃i

0 (8)

Insert Equation (7) into (8) to obtain

�eff
i =

�eff
i

�i

+ P
f
i

(

∑

j∈¤i

�eff
j

)

0 (9)

Insert the expression of P
f
i given by Equation (3e), and

Equation (6b) results.
Equation (6c) is an approximation of Equation (3d)

that is obtained by replacing the traffic intensity �
with the effective traffic intensity �eff. That is, we use
the expression of the blocking probability of a finite
capacity queue, yet approximate the traffic intensity
with the effective traffic intensity.

Equation (5) defines �eff and shows that it may
underestimate �. For queues with light traffic, we have
�eff ≈ �, and the two models will yield similar network
performance estimates. For congested links, the scalable
approximation may underestimate link congestion.
The proposed model consists of three endogenous

variables per queue (�eff
i 1�eff

i 1P4Ni = ki5). When using
this model to address signal control problems, �i also
becomes endogenous. This model is defined by one
linear and two nonlinear equations. This formulation
results in increased computational efficiency, enabling
us to address a full city-scale microscopic simulation-
based optimization problem.

3.4. Example of Functional Form of T
As described in §2, one of the advantages of using
a physical component in the metamodel is to have
problem-specific approximations of the objective func-
tion. In this section, we give an example of the func-
tional form of the analytical approximation of the
objective function provided by the queueing model,
T 4x1y3 q5. In §4, we address a signal control problem,
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where the objective is to minimize the expected trip
travel time. The queueing approximation of this expec-
tation is obtained by applying Little’s law (Little (2011);
Little (1961)) to the entire network. It is given by:

∑

i E6Ni7
∑

i �i41− P4Ni = ki55
1 (10)

where E6Ni7 represents the expected number of vehicles
in lane i, �i is the rate of vehicles entering the network
via lane i (i.e., the external arrival rate), and P4Ni = ki5
is the probability that lane i is full (i.e., spillback or
blocking probability). The numerator of Equation (10)
represents the expected number of vehicles in the
network, whereas the denominator represents the
effective arrival rate to the network. Their ratio yields
the expected time in the network.

The expected number of vehicles on lane i, E6Ni7, is
given by

E6Ni7= �i

(

1

1−�i

−
4ki + 15�

ki
i

1−�
ki+1
i

)

0 (11)

This expression is derived in Appendix A. In the scal-
able model proposed in this paper, �i is approximated
by �eff

i in Equation (11).

3.5. SO Algorithm
The SO algorithm used in this paper is that of Osorio
and Bierlaire (2013). It is given in Appendix B and is
based on the derivative-free trust-region (TR) algorithm
proposed by Conn, Scheinberg, and Vicente (2009a).
For an introduction to TR methods, we refer the reader
to Conn, Gould, and Toint (2000). They summarize the
main steps of a TR method in the basic trust region algo-
rithm. The derivative-free method proposed by Conn,
Scheinberg, and Vicente (2009a) builds on the basic TR
algorithm by adding two additional steps: a model
improvement step and a criticality step. This algorithm
allows for arbitrary metamodels to be used, and unlike
traditional TR algorithms, it makes no assumptions
on how these metamodels are fitted (interpolation or
regression). It is therefore particularly appealing for the
simulation-based context where derivatives are costly
to estimate and where metamodels fitted via regression
are more suitable than their interpolated versions.

At a given iteration k of the SO algorithm, it solves a
TR subproblem and approximates the objective function
by the current metamodel mk (defined in Equation (2)).
The metamodel parameters (�k and �k) are fitted via
regression based on the simulated observations col-
lected so far. For a detailed description of the algorithm,
see Osorio and Bierlaire (2013).

4. Traffic Signal Control Problem
This methodology is suitable to address a variety of
simulation-based urban transportation optimization

problems. In this section, we evaluate the perfor-
mance of the methodology by considering a large-scale
network-wide traffic signal control problem.

4.1. Problem Formulation
A detailed review of traffic signal control formulations
is given in Appendix A of Osorio (2010). In this paper,
we consider a fixed-time strategy. Fixed-time (also
called time of day or pre-timed) strategies are predeter-
mined based on historical traffic patterns. They yield
one traffic signal setting for the considered time of
day. The traffic signal optimization problem is solved
offline.

In this paper, the signal plans of several intersections
are determined jointly. For a given intersection and a
given time interval (e.g., evening peak period), a fixed-
time signal plan is a cyclic (i.e., periodic) plan that is
repeated throughout the time interval. The duration of
the cycle is the time required to complete one sequence
of signals. The cycle times of the intersections controlled
in the Lausanne network (used in the case study of
this paper) are 80, 90, or 100 seconds.

A phase is defined as a set of traffic streams that are
mutually compatible and that receive identical control.
The cycle of a signal plan is divided into a sequence of
periods called stages. Each stage consists of a set of
mutually compatible phases that all have green times
simultaneously. The stage sequence is defined so as to
separate conflicting traffic movements at intersections.
The cycle may also contain all-red periods, where all
streams have red indications, as well as stages with
fixed durations (e.g., for safety reasons). The sum of
the all-red periods and the fixed periods is called the
fixed cycle time.
Cycle times, green splits, and offsets are the three

main signal timing control variables. The green split
corresponds to the ratio of green times (i.e., total dura-
tion of a phase) to cycle time. Offsets are defined as the
difference in time between the start of cycles for a pair
of intersections. Offset settings are especially important
in coordinating the signals of adjacent intersections
(e.g., to create green waves along arterials or corridors).

In this paper cycle times, offsets, and all-red dura-
tions are kept constant. The stage structure is also
given—i.e., the set of lanes associated with each stage
as well as the sequence of stages are both known. This
is known as a stage-based approach. The decision
variables consist of the endogenous green splits of the
different intersections.

To formulate this problem, we introduce the follow-
ing notation:

ci cycle time of intersection i,
di fixed cycle time of intersection i,
el ratio of fixed green time to cycle time of

signalized lane l,
s saturation flow rate [veh/h],
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x4j5 green split of phase j ,
xL vector of minimal green splits,
© set of intersection indices,
ℒ set of indices of the signalized lanes,

° I 4i5 set of endogenous phase indices of
intersection i, and

°L4l5 set of endogenous phase indices of lane l.

The problem is traditionally formulated as follows:

min
x

f 4x3p5≡ E6F 4x3p57 (12)

subject to
∑

j∈° I 4i5

x4j5=
ci − di
ci

1 ∀ i ∈ © 1 (13)

x≥ xL0 (14)

The decision vector x consists of the green splits for each
phase. The objective is to minimize the expected trip
travel time (Equation (12)). The linear constraints (13)
link the green times of the phases with the available
(i.e., nonfixed) cycle time for each intersection. Equa-
tion (14) ensures lower bounds for the green splits.
These bounds are determined based on the prevailing
transportation norms.

4.2. Trust-Region Subproblem
This section presents the trust-region (TR) subproblem
that is solved at each iteration of the SO algorithm. It is
a variation of the signal control problem defined in §4.1.
At a given iteration k, the SO algorithm considers
a metamodel mk4x1y3�k1�k1 q5, an iterate xk (point
considered to have best performance so far), and a
TR radius ãk. The TR subproblem is formulated as
follows:

min
x1y

mk = �kT 4x1y3 q5+�4x3�k5 (15)

subject to
∑

j∈° I 4i5

x4j5=
ci − di
ci

∀ i ∈ © 1 (16)

h4x1y3 q5= 01 (17)

�l −
∑

j∈°L4l5

x4j5s = els1 ∀ l ∈ℒ1 (18)

�x− xk�2 ≤ãk1 (19)

y ≥ 01 (20)

x≥ xL0 (21)

The TR subproblem approximates the objective func-
tion by the metamodel at iteration k, mk. It contains the
constraints of the signal control problem and includes
three additional constraints. Equations (16) and (21)
are the signal control constraints; they correspond
to Equations (13) and (14). The function h of Equa-
tion (17) represents the queueing network model (Equa-
tions (6a)–(6c)). Equation (18) relates the green splits

of a phase to the flow capacity of the underlying lanes
(i.e., the service rate of the queues). Constraint (19) is
the trust region constraint. The endogenous variables of
the queueing model are subject to positivity constraints
(Equation (20)). Thus, the TR subproblem consists of a
nonlinear objective function subject to nonlinear and
linear equalities, a nonlinear inequality, and bound
constraints.
Implementation notes. This problem is solved with

the Matlab routine for constrained nonlinear problems,
fmincon, and its sequential quadratic programming
method (Coleman and Li 1994, 1996). We set the toler-
ance for relative change in the objective function to
10−3 and the tolerance for the maximum constraint
violation to 10−2. For further details on the TR subprob-
lem formulation and its implementation, see Osorio
and Bierlaire (2013).

We implement the lower bound constraints of Equa-
tion (21) as nonlinear equations by introducing a new
variable g and implementing Equation (21) as

x= xL + g20 (22)

We do not enforce the positivity of all endogenous
variables (Equation (20)) but check a posteriori that all
endogenous variables are positive. In our numerous
experiments, we have not encountered a case with
a negative value. We insert Equation (18) into Equa-
tion (6b) and implement the two constraints as a single
constraint.
For a problem with n endogenous phases, l lanes,

and b signalized intersections, where each lane is
modeled by a single queue (i.e., we have l queues),
there are 3l+n endogenous variables, which consist of
3 endogenous queueing variables per lane, and the
green splits for each phase. There are l linear equations,
2l+b nonlinear equations, and one nonlinear inequality
(TR constraint).

5. Empirical Analysis

5.1. Lausanne City Network
We evaluate the scalability and short-term algorithmic
performance of this framework by solving a large-scale
signal control problem. We solve a problem for the
entire Swiss city of Lausanne. The map is displayed
in Figure 2; the considered area is delimited in white.

We use a microscopic traffic simulation model of the
Lausanne city center developed by Dumont and Bert
(2006). It is implemented with the Aimsun simulator
(TSS 2008) and is calibrated for evening peak period
demand. Details regarding this Lausanne network are
given in Osorio and Bierlaire (2009b). In this paper, the
considered demand scenario consists of the first hour
of peak period traffic, 17 h–18 h.

The road network consists of 603 links and 231 inter-
sections. The signals of 17 intersections are controlled in
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Figure 2 (Color online) Lausanne City Road Network

Source. Adapted from Dumont and Bert (2006).

this problem. The modeled road network is displayed
in Figure 3, where the 17 intersections are depicted as
filled squares. This leads to a total of 99 endogenous
phase variables (i.e., the dimension of decision vector
is 99).

The queueing model consists of 902 queues. The TR
subproblem consists of 2,805 endogenous variables
with 1,821 nonlinear equality constraints and 902 linear
equality constraints. The lower bounds of the green
splits (Equation (14)) are set to 4 seconds according to
the Swiss transportation norm (VSS 1992).

Performing network-wide signal control of networks
with around 70 links and 16 intersections is currently
considered large-scale in the field of signal control, as
illustrated by recent studies (Aboudolas et al. (2010);
Aboudolas, Papageorgiou, and Kosmatopoulos (2007)).
Thus, the simulation-based signal control problem of

Figure 3 Lausanne Network Model

this paper is a challenging large-scale network-wide
signal control problem that considers a congested
network with a complex topology.

This is considered a large-scale problem for existing
unconstrained derivative-free algorithms, where the
most recent methods are limited to problems with
around 200 variables (Conn, Scheinberg, and Vicente
2009b), not to mention the added complexity of nonlin-
ear constraints and stochasticity. Given the complexity
of the underlying simulator, this problem is also con-
sidered complex for simulation-based optimization
algorithms.

5.2. Numerical Results
We compare the performance of the proposed meta-
model method with a traditional metamodel method
that consists only of a functional component, which is a
quadratic polynomial with diagonal second derivative
matrix (i.e., the metamodel consists of �, defined in
Equation (2)). To compare the two methods, we con-
sider a tight computational budget, which is defined
as a maximum of 150 simulation runs that can be
carried out.

We consider three different initial points (i.e., signal
plans). These points are uniformly drawn from the
feasible space defined by Equations (13) and (14). For
each initial point, we run the SO algorithm five times,
each time allowing for 150 simulation runs. Thus,
for each method and each initial point, we derive five
“optimal” (or proposed) signal plans. We then use the
simulator to evaluate in detail the performance of
the proposed signal plans. For each proposed signal
plan, we run 50 replications. We compare the empirical
cumulative distribution function (cdf) of the average
travel times obtained from these 50 replications.

Each plot of Figure 4 considers a different randomly
drawn initial point. Each curve of each plot displays
the empirical cdf’s of a given signal plan. The solid
thick curve corresponds to the empirical cdf of the
initial signal plan (denoted x0), the dashed curves (resp.
solid thin curves) are the empirical cdf’s of signal
plans proposed by the traditional metamodel, i.e., the
polynomial � (resp. the proposed metamodel m).
Figure 4(a) indicates that all five plans derived by

both the proposed metamodel and the traditional meta-
model yield improved performance when compared
with the initial signal plan. All five plans derived
by the proposed metamodel also have better perfor-
mance compared with those proposed by the traditional
metamodel.

Figure 4(b) indicates that all five signal plans derived
by the proposed metamodel yield improved perfor-
mance when compared with the initial plan. Four of
them outperform all five plans derived by the tradi-
tional metamodel. Two of the signal plans derived by
the traditional metamodel outperform the initial plan,
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Figure 4 Empirical cdf’s of the Average Travel Times Considering Initial

Random Signal Plans and Allowing for 150 Simulation Runs

and the other three have performance similar to the
initial plan.

In Figure 4(c), all five plans derived by the proposed
metamodel yield improvement compared with the
initial plan, and three of them outperform all five
signal plans proposed by the traditional metamodel.

Two of the signal plans proposed by the traditional
metamodel have worse performance than the initial
signal plan, one has similar performance, and two have
improved performance.
For all three initial points, the proposed method

systematically derives signal plans with improved
performance when compared with the initial plan and,
most often, when compared with the plans obtained
from the traditional metamodel. Additionally, the plans
derived by the proposed method have good and very
similar performance across all SO runs and all initial
points, whereas the performance of the plans proposed
by the traditional metamodel varies depending on both
the initial point and the SO run. This illustrates the
robustness of the proposed method to both the initial
points and the stochastics of the simulator.
We evaluate the performance of the proposed

approach for larger sample sizes. We run the SO algo-
rithm once and allow for a total of 1,500 simulation runs.
We choose two random initial signal plans. We evalu-
ate the performance of the signal plans proposed at
sample sizes 50, 150, 200, 400, 600, 800, 1,000, and 1,500.
We evaluate their performance just as before—i.e., for
a given proposed plan we run 50 replications of the
simulator and plot the empirical cdf (over these 50
replications) of the average travel times.
Figure 5(a) displays the corresponding cdf’s of the

initial signal plan used in Figure 4(a). The proposed
approach identifies a signal plan with excellent perfor-
mance already at sample size 50 (cdf labeled m 50).
The signal plan identified as of sample size 150 remains
the best up to sample size 1,500. It has slightly improved
performance, and in particular reduced variability,
compared with that of sample size 50.
The performance of the signal plans proposed by

the traditional metamodel (dashed curves) improves as
the sample size increases. The traditional metamodel
requires a much larger sample size to identify signal
plans with good performance.

We carry out a paired t-test to evaluate whether the
difference in performance of the signal plans proposed
by each method at sample size 1,500 is statistically
significant. We assume that the observed average travel
times arise from a normal distribution with common
but unknown variance. The null hypothesis assumes
that the expected travel time is the same for both
methods, whereas the alternative hypothesis assumes
that they differ. The confidence level is 0.05, and there
are 49 degrees of freedom. The sample average and
sample standard deviation of our proposed signal plan
(resp. that proposed by the polynomial metamodel)
are 5.73 minutes and 0.51 minutes (resp. 5.95 minutes
and 0.47 minutes). The critical value of the test is 1.96.
The difference is statistically significant (t-statistic of
−2038, p-value of 0.02).
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Figure 5 (Color online) Empirical cdf’s of the Average Travel Times

Considering Initial Random Signal Plans and Allowing for

1,500 Simulation Runs

Thus, at sample size 1,500 the proposed method still
outperforms its traditional counterpart. That is, the
signal plan identified by the proposed method as of
sample size 150 outperforms that identified by the
traditional method at sample size 1,500.

0 to 40

40.1 to 80
80.1 to inf

0 to 40
40.1 to 80
80 to inf

Figure 6 (Color online) Average Link Travel Times Using the Initial Signal Plan (Left Map) and the Signal Plan Proposed by the SO Approach (Right Map)

Note. The averages (in seconds) are taken over 50 simulation replications.

Figure 5(b) displays the results considering the ini-
tial plan used in Figure 4(b). Similarly, the proposed
approach identifies a signal plan with an excellent
performance even at sample size 50. The signal plan
with the best performance derived by the proposed
metamodel is obtained at sample size 150 and remains
the same until sample size 1,500. It has a similar per-
formance to that of sample size 50.
For sample sizes smaller than 400, the traditional

metamodel yields signal plans with worse performance
than the initial plan. Their performance significantly
improves with increasing sample size until size 400.
The performance of the derived signal plans with
samples larger than 400 are similar. The signal plans
proposed by the traditional metamodel method for
sample sizes 600 to 1,500 are the same.
We carry out the same paired t-test as before to

evaluate whether the difference in performance of the
signal plans proposed by each method at sample size
1,500 is statistically significant. The sample average and
sample standard deviation of our proposed signal plan
(resp. that proposed by the polynomial metamodel)
are 6.25 minutes and 0.73 minutes (resp. 6.16 minutes
and 0.50 minutes). The difference is not statistically
significant (t-statistic of 0.72, p-value of 0.48).

Figure 6 displays two instances of the Lausanne city
map. The links are colored based on average link travel
times (averaged over the 50 replications). The left (resp.
right) map considers the average link travel times
for the initial (resp. proposed) signal plan. Here the
proposed plan is that obtained with the initial plan
and sample size of 150 of Figure 5(a). Green links have
average travel times below 40 seconds, yellow links
have travel times between 40 and 80 seconds, while red
links have travel times greater than 80 seconds. This
figure shows how the proposed plan yields city-wide
travel time improvements.
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Figure 7 Simulation and Trust Region Subproblem Run Times

At each iteration of the SO algorithm, the two most
computationally expensive tasks are the evaluation of
the simulator as well as the solution of the trust-region
(TR) subproblem (i.e., call of the fmincon routine).
We consider the first initial plan (used in Figures 4(a)
and 5(a)) and account for all five runs. Figure 7 displays
the cdf of the simulation runs and the TR subproblem
runs. On average one simulation run takes 1.3 minutes,
and it takes 1.9 minutes to solve the TR subproblem.
The experiments were run on a standard laptop (with
a 2.7 GHz processor and 4 GB of RAM). Thus, the
metamodel can be used to efficiently solve the TR
subproblem at each iteration of the SO algorithm.
Additionally, the structural information that it pro-
vides through the queueing network model allows the
SO algorithm to identify signal plans with excellent
performance under tight computational budgets.

5.3. Synchro Comparison
In this section we compare the performance of the sig-
nal plans derived by our approach with those derived
by the mainstream, commercial, and widely used traf-
fic signal control software Synchro (Trafficware 2011,
Synchro 8). Synchro is a traffic signal control optimiza-
tion software based on a macroscopic, deterministic,
and local traffic model. It is widely used across the
United States (NYCDOT (2012); Riniker, Eisenach, and
Hannan (2009); Abdel-Rahim and Dixon (2007); ATAC
(2003)). For details on the split optimization technique
within Synchro, we refer the reader to Chapter 14 of
Trafficware (2011).
The Synchro version used does not allow for any

fixed (i.e., exogenous) phase durations. Hence, we
solve a signal control problem without fixed phases.
For each intersection we take as cycle time its available
(i.e., nonfixed) cycle time, ci − di. The problem formula-
tion is given by Equations (12)–(14) and by replacing
the right-hand side of Equation (13) by 4ci−di5/4ci−di5,

which equals 1. Synchro and our proposed SO method
address the same problem. The corresponding TR
subproblem is given by Equations (15)–(21) and by
replacing the right-hand side of (16) by 1 and the
right-hand side of (18) with zero.
The Lausanne network is coded in Synchro. All

signal plan information needed for Synchro (e.g., phase
structure) is obtained from the existing Lausanne signal
plan. The minimum splits are set to 4 seconds as in §5.1.
Lane saturation flows (denoted s in §4.1) are set to
1,800 vehicles per hour, following Swiss transportation
norms. Synchro also needs, as inputs, estimates of
prevailing movement flows. This was also needed
when calibrating the analytical queueing model (e.g.,
to obtain turning probabilities). Hence, we use the
same estimates as those provided to the queueing
model. These are obtained from the simulator using
the existing Lausanne signal plan.

To initialize the proposed SO approach, we consider
the same three random initial signal plans as used
in Figure 4. For each initial plan, we run the SO
algorithm once, each time allowing for 150 simulation
runs. To evaluate the performance of a plan, we use
the simulator and proceed as described in §5.2.
Figure 8 presents the corresponding cdf curves.

The three solid thin curves correspond to the
plans derived by our proposed metamodel approach
(denoted m). The dashed curves correspond to the three
random initial signal plans (denoted x0). The solid
thick curve corresponds to the Synchro plan. All three
plans derived by the purposed metamodel approach
yield improved performance when compared with
all three initial plans. All three plans derived by the
SO approach also outperform the plan proposed by
Synchro. The Synchro plan has performance similar to
two of the three randomly drawn signal plans.
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Figure 8 Emprical cdf’s of the Average Travel Times of the Signal Plans

Proposed by the SO Approach and by Synchro
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6. Conclusions
This paper proposes a metamodel for large-scale
simulation-based urban transportation optimization
problems. It is a computationally efficient technique
that identifies trial points (e.g., signal plans) with
improved performance under tight computational bud-
gets. This metamodel SO technique is based on the
use of a highly tractable metamodel that combines a
general-purpose component (a quadratic polynomial)
with a physical component (a highly tractable analytical
queueing network model).
We evaluate the performance of this approach by

addressing a large-scale network-wide signal control
problem for the Swiss city of Lausanne. This problem
considers a congested network (evening peak period
demand) with an intricate topology. We compare the
performance of the proposed metamodel with that
of a traditional metamodel. The proposed method
identifies signal plans that improve the distribution of
average travel times compared with both the initial
signal plans and, most often, the signal plans derived
by the traditional method. This network-wide signal
control problem is considered high-dimensional for
SO algorithms, derivative-free algorithms, and signal
control algorithms. We also compare the performance
of the proposed approach with that of a widely used
signal control software, Synchro. All proposed signal
plans outperform the plan derived by Synchro.
In this paper, random uniformly drawn signal

plans are used as initial points for the SO algorithm.
The results illustrate the robustness of the proposed
metamodel method to initial points. This allows prac-
titioners to use the method to address a variety of
signal control problems without requiring any field
knowledge to initialize the method.

As part of ongoing research, we are investigating the
use of the proposed method to address a variety of
generally constrained simulation-based transportation
problems, including microscopic model calibration,
multimodal traffic management, and multimodal net-
work design problems. We are also developing SO
algorithms with improved short-term performance by
using information from analytical probabilistic traffic
models, such as the queueing network model used
in this paper, to inform both sampling strategies and
statistical tests.
We are also investigating novel analytical traffic

model formulations with increased accuracy. The model
used in this manuscript is a stationary model. We are
currently working on a time-dependent formulation
based on the use of transient finite capacity queueing
theory. Ongoing work is also developing a formula-
tion with endogenous analytical traffic assignment.
The main challenge in this analytical work is to derive a
differentiable and highly tractable formulation suitable
for large-scale simulation-based optimization.
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Appendix A. Derivation of E6N 7
In this section we omit the index i that refers to a given
queue. E6N 7 is defined as

E6N 7=
k
∑

n=0

nP4N = n50 (A1)

The stationary probabilities for each queue, P4N = n5, are
given in Bocharov et al. (2004) by

P4N = n5=
1−�

1−�k+1
�n0 (A2)

Inserting Equation (A2) into (A1) and then rearranging the
terms yields

E6N 7 =
k
∑

n=0

n
1−�

1−�k+1
�n1 (A3)

=
k
∑

n=1

n
1−�

1−�k+1
�n1 (A4)

=
1−�

1−�k+1

k
∑

n=1

n�n1 (A5)

=
1−�

1−�k+1
�

k
∑

n=1

n�n−10 (A6)

We then derive an expression for the last summation as
follows. For a geometric series, such that � 6= 1, we have

k
∑

n=0

�n =
�k+1 − 1

�− 1
0 (A7)

We differentiate this formula with respect to � and obtain

k
∑

n=1

n�n−1 =
1−�k+1

41−�52
−

4k+ 15�k

1−�
0 (A8)

Inserting the expression of Equation (A8) into Equation (A6),
and rearranging the terms gives

E6N 7 =
1−�

1−�k+1
�

(

1−�k+1

41−�52
−

4k+ 15�k

1−�

)

(A9)

= �

(

1

1−�
−

4k+ 15�k

1−�k+1

)

0 (A10)

Appendix B. SO Algorithm
This SO algorithm is formulated in detail in Osorio and
Bierlaire (2013) and is based on the derivative-free trust-
region (TR) algorithm of Conn, Scheinberg, and Vicente
(2009a). The parameters of the algorithm are set according to
the values in Osorio and Bierlaire (2013).

0. Initialization. Define for a given iteration k2 mk4x1y3
�k1�k1 q5 as the metamodel (denoted hereafter as mk4x5), xk
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as the iterate, ãk as the TR radius, �k = 4�k1�k5 as the vector
of parameters of mk, nk as the total number of simulation
runs carried out up until and including iteration k, uk as
the number of successive trial points rejected, and �k as
the measure of stationarity (norm of the derivative of the
Lagrangian function of the TR subproblem with regard to
the endogenous variables) evaluated at xk.

The constants �1, �, �inc, �c , �̄ , d̄, ū, and ãmax are given such
that 0<�1 < 1, 0< � < 1< �inc, �c > 0, 0< �̄ < 1, 0< d̄ < ãmax,
and ū ∈�∗. Set the total number of simulation runs permitted
(across all points) nmax; this determines the computational
budget. Set the number of simulation replications per point r̃
(here we use r̃ = 1).

Set k= 0, n0 = 1, and u0 = 0. Determine x0 and ã0 (ã0 ∈

401ãmax7).
Given the initial point x0, compute fA4x05 (analytical ap-

proximation of Equation (12)) and f̂ 4x05 (simulated estimate
of Equation (12)), fit an initial model m0 (i.e., compute �0).

1. Criticality step. If �k ≤ �c, then switch to conservative
mode.

2. Step calculation. Compute a step sk that reduces the
model mk and such that xk + sk (the trial point) is in the TR
(i.e., approximately solve the TR subproblem).

3. Acceptance of the trial point. Compute f̂ 4xk + sk5 and

�k =
f̂ 4xk5− f̂ 4xk + sk5

mk4xk5−mk4xk + sk5
0

—If �k ≥ �1, then accept the trial point: xk+1 = xk + sk,
uk = 0.

—Otherwise, reject the trial point: xk+1 = xk, uk = uk + 1.
Include the new observation in the set of sampled points

(nk = nk + r̃), and fit the new model mk+1.
4. Model improvement. Compute �k+1 = ��k+1 − �k�/��k�. If

�k+1 < �̄ , then improve the model by simulating the perfor-
mance of a new point x, which is uniformly drawn from

the feasible space. Evaluate fA and f̂ at x. Include this
new observation in the set of sampled points (nk = nk + r̃).
Update mk+1.

5. TR radius update.

ãk+1 =











min8�incãk1ãmax9 if �k >�1

max8�ãk1 d̄9 if �k ≤ �1 and uk ≥ ū

ãk otherwise0

If �k ≤ �1 and uk ≥ ū, then set uk = 0.
If ãk+1 ≤ d̄, then switch to conservative mode.

Set nk+1 = nk, uk+1 = uk, and k= k+ 1.
If nk <nmax, then go to Step 1. Otherwise, stop.
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